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In financial production systems, accurate risk prediction is crucial for decision-
makers. Traditional forecasting methods face certain limitations when dealing
with complex time-series data and nonlinear dependencies between systems,
especially under extreme market fluctuations. To address this, we propose an
innovative hybrid temporal model, TSA-AR (Temporal Self-Attention Adaptive
Autoregression), which combines temporal self-attention mechanisms with
an adaptive autoregressive model to solve the risk prediction problem
in financial and production systems. TSA-AR performs multi-scale feature
extraction through an improved Informer encoder, dynamically adjusts model
parameters with a dynamic autoregressivemodule, and constructs the nonlinear
dependencies between financial and production systems through a cross_
modal interaction graph. Experimental results show that TSA-AR achieves
an MSE of 0.0689, significantly lower than other comparative models (e.g.,
Transformer’s 0.0921), and performs excellently with an Extreme Risk Detection
Rate of 81.70%. The model effectively improves the accuracy and stability of risk
prediction, providing a more accurate forecasting tool for financial-production
system risk management, with significant practical implications.

KEYWORDS
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1 Introduction

In recent years, the coupling between global financial systems and real-world production
systems has intensified, leading to the formation of a complex risk transmission network.
Studies have shown that financial market fluctuations can quickly transmit to the real
economy through mechanisms such as credit channels and investment contraction [1, 2].
Conversely, disruptions in production systems (e.g., supply chain breakdowns, insufficient
capacity) can have a feedback effect on financial markets, creating a negative feedback loop
[3, 4]. For instance, during theCOVID-19 pandemic in 2020, a liquidity crisis in the financial
markets led to a surge in corporate financing costs, which subsequently triggeredwidespread
delays in global supply chains [5–7]. Similarly, in 2022, the Federal Reserve’s aggressive
interest rate hikes not only caused stock market turbulence but also suppressed fixed asset
investment by increasing borrowing costs in the manufacturing sector [8].
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As the interactions between financial systems and the real
economy become increasingly complex, significant advancements
have been made in the academic field of cross-system risk
modeling. The Bayesian VAR framework proposed by Korobilis
was the first to attempt to quantify the delayed effects of
financial policies on production systems [9]. Meanwhile, Wang
et al. developed graph neural network methods that broke the
limitations of traditional linear models, capturing the nonlinear
relationships betweenmarket participants [10]. Zhang and Xiao [11,
12] further introduced attention mechanisms into financial time
series forecasting, significantly enhancing the modeling of long-
term dependencies. However, these cutting-edge studies still face
several key challenges. Existing methods often struggle to balance
dynamic adaptability with model interpretability when capturing
the complex interactions between financial and production systems.
On the one hand, traditional autoregressive models based on static
parameters fail to effectively handle structural changes in themarket
[13]. On the other hand, although deep learning models (such
as Transformer) exhibit superior predictive accuracy [14], their
“black-box” nature makes it extremely difficult to analyze the risk
transmission paths.

The core dilemma in this research area lies in the disjunction
between two dimensions: the depth of cross-system interaction
modeling and the practicality of risk warning systems. While
pioneering works such as those by Borio [15] and Elliott
[16] revealed the importance of financial-production system
interdependencies, existing methods either limit themselves to
linear correlation analysis while ignoring asymmetric dependencies,
or overly rely on lagging indicators, resulting in inadequate
timeliness for risk warnings [17]. Notably, current mainstream
machine learning methods, while capable of handling vast amounts
of data, still exhibit inherent flaws in extracting dynamic temporal
features, making them less effective in responding to sudden
systemic risks [18]. This gap between theory and application not
only restricts the improvement of risk prediction accuracy but also
hinders the scientific advancement of policy-making.

In this study, we propose an innovative solution to the
core challenges in financial-production system risk prediction.
We designed a hybrid model, TSA-AR (Temporal Self-Attention
Adaptive Autoregression), which integrates temporal self-attention
mechanisms with adaptive autoregressive models to capture the
long-term dependencies between financial and production systems
while handling structural market changes. Using a cross-attention
mechanism, we constructed a financial-production interaction
graph to identify key risk transmission paths, such as the
nonlinear dependency between “credit tightening → supply chain
disruption.” Additionally, by incorporating a state space model
(SSM),we dynamically adjustmodel parameters in real-time anduse
quantile regression to quantify risk uncertainty, providing dynamic
prediction intervals with risk probability distributions, enabling
early diagnosis and effective warning of extreme risks. The main
contributions of this study are as follows:

• We propose an innovative TSA-AR model that deeply
integrates temporal self-attention mechanisms with adaptive
autoregressive models, enhancing the accuracy and stability of
financial-production system risk predictions.

• We introduce adaptive sparsification strategies and multi-scale
feature fusion techniques to effectively reduce computational
complexity and improve the model’s performance in capturing
long-term dependencies and cyclical fluctuations.

• We construct a cross-modal interaction graph that reveals
the nonlinear dependencies between financial and production
systems, providing a new analytical framework for complex
system risk transmission.

2 Problem statement

Driven by both economic globalization and industrial
digitalization, the degree of coupling between financial systems
and production systems has reached unprecedented levels. While
this deep interaction enhances resource allocation efficiency, it also
introduces complex risk transmission problems. According to the
Bank for International Settlements (BIS) 2023 annual report, 76%
of global economic crises over the past decade have manifested as
compounded disasters involving financial shocks and supply chain
disruptions. Traditional risk management paradigms face issues
such as rigid model structures, the lack of cross-modal interactions,
and insufficient uncertainty quantification. Current forecasting
systems, many of which are based on static parameter assumptions
(e.g., GARCH models), struggle to adapt to structural changes in
economic systems. Empirical research by Olanrewaju indicates
that, during periods of shifts in the Federal Reserve’s monetary
policy, prediction errors from traditional models can surge by
40%–60% [19]. Mainstream methods, such as VAR and DSGE
models, treat financial and production systems as independent
modules, overlooking the nonlinear feedback mechanisms between
them. Korobilis’ Bayesian analysis confirmed that this simplification
leads to an underestimation of the risk contagion intensity by up
to 28% [20]. Although machine learning models (e.g., LSTM) can
capture complex patterns, their point predictions fail to provide
risk probability distributions. Giglio et al. [21] pointed out that this
makes it difficult for decision-makers to assess the likelihood of
extreme events.

Our study seeks to address three core scientific challenges in
financial-production system risk forecasting, as shown in Figure 1.
Firstly, to address the issue of traditional models’ inability to adapt
to structural changes in the market, the focus is on breakthroughs
in dynamic adaptability modeling, including online estimation of
time-varying parameters and autonomous adjustment of model
complexity. Secondly, to solve the challenge of quantifying cross-
system nonlinear dependencies, we aim to represent asymmetric
correlations and visualize risk transmission paths between financial
and production indicators. Lastly, to address the issue of prediction
uncertainty, we establish a framework for managing data noise,
model error, and system uncertainty, enabling the dynamic
generation of probabilistic prediction intervals and early diagnosis
of extreme risks. Solving these three key issues will significantly
enhance the ability to monitor risks in complex economic systems.

To achieve these goals, our study adopts a three-tiered
technological approach: At the methodological level, we develop
a hybrid architecture (TSA-AR) integrating temporal self-attention
with adaptive autoregression. This method uses a state space model
for dynamic parameter updating and employs a quantile loss
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function to generate risk probability distributions. At the theoretical
level, we establish a financial-production risk transmission network,
propose the Risk Spillover Index (CSSI) [22], and demonstrate
the equivalence between attention weights and Granger causality
conditions. This solution provides a new analytical paradigm and
decision-making tool for managing financial-production risks.

3 Methods

In this study, we propose an innovative hybrid temporal model,
TSA-AR, aimed at addressing the challenges of risk prediction
and management in financial-production systems. The TSA-AR
framework integrates the Temporal Self-Attention mechanism with
Adaptive Autoregressivemodeling, coupledwith three coremodules
to enhance dynamic modeling and risk prediction capabilities for
financial and production systems. First, we employ an improved
Informer architecture combined with an adaptive sparsification
strategy to extract multi-scale temporal features, ensuring the
model’s ability to handle long-term dependencies and periodic
fluctuations in the market. Second, for autoregressive modeling, we
adopt a State Space Model (SSM) to achieve dynamic adjustments
of time-varying parameters, combined with quantile regression to
quantify risk uncertainty. This enables more accurate predictions
during periods of structural shifts. Lastly, through a cross-attention
mechanism and a dual-stream encoding architecture, we construct
an interaction graph that reveals risk transmission paths and
nonlinear dependencies between the financial and production
systems. This research not only advances theoretical innovation
in financial-production system risk management but also provides
more flexible and efficient tools for risk prediction and management
for decision-makers.

3.1 Overall framework design

The TSA-AR framework consists of three core layers: the input
layer, processing layer, and output layer, each playing an essential
role in financial production system risk prediction. In the input
layer, we handle temporal data streams from two sources—financial
indicators and production indicators—and transform them into
formats suitable for subsequent processing. Financial indicators,
such as interest rates, stock prices, and credit spreads, are first
standardized to eliminate the effects of differing units. Production
indicators, such as capacity utilization and inventory turnover, are
adjusted using logarithmic differencing to account for long-term
trends. The processing layer comprises three components. First, the
temporal encoder is based on the improved Informer architecture,
where the ProbSparse self-attention strategy is applied to capture
long-term dependencies by dynamically adjusting the sparsity level
of the attention mechanism, as shown in Algorithm 1. Second,
the autoregressive layer employs the State-Space Autoregressive
(SSAR) model [23], which, when combined with a historical
window of time-series data (e.g., 24 time steps), updates the
model parameters in real-time. Lastly, the cross-modal interaction
layer utilizes a cross-attention mechanism to capture the nonlinear
dependencies between financial and production data, constructing
an interaction weight matrix.

Input:Financial series XT
f
, Production series XTp

Output:Risk distribution ŷτt, Transmission graph A
//1. Multi-scale Feature Extraction

 Hf ,Hp← ProbSparseInformer(Xf ,Xp)        //# d =

512,sparsity = 0.7

 T← Time2Vec(t)                         //#

[sin (ωt), cos (ωt), τ]

//2. Adaptive Autoregression

         
θt = Wθ [Hf‖Hp‖T]

ŷτt =
k

∑
i=1

θ
(i)
t yt−i + ϵ

τ
t

                                            //#

τ ∈ {0.05,0.5,0.95}

//3. Cross-system Interaction

         Aij =
exp(Qi

f
K
j
p/√d)

∑
j
exp(Qi

f
K
j
p/√d)

                             //# Q =HfWQ, K =HpWK

return {ŷτt}τ, A

Algorithm 1. TSA-AR Hybrid Model.

The output layer generates prediction results and the risk
transmission graph. The risk prediction output, ŷt ∈ ℝ

3, includes
the mean, fifth percentile, and 95th percentile, providing a
comprehensive assessment of the risk range.The transmission graph
is the association matrix A ∈ ℝm×n, displaying the risk transmission
paths between financial and production systems. The technical flow
is illustrated in Figure 2, which shows how each module of the TSA-
AR framework processes data and utilizes the autoregressive model
and cross-attention mechanism to construct the risk prediction and
transmission graph.

The input layer uses a dual-stream data preprocessing
mechanism to handle time-series data from both the financial and
production systems. Specifically, financial and production indicator
streams are processed separately. Financial indicator streams XT

f
include interest rates rt, stock prices St, and credit spreads Δct.
These indicators are first subjected to standardized transformation
to eliminate the influence of different data scales on model training,
as shown in Equation 1:

X̃ f =
X f − μ f

σ f
(1)

where μ f and σ f represent the mean and standard deviation
of the financial data stream X f , respectively. The production
indicator stream XT

p includes capacity utilization ut and inventory
turnover λt. The production data is processed via logarithmic
differencing in Equation 2:

Δ lnXp = ln Xt
p − ln Xt−1

p (2)

This approach effectively captures the dynamic features of the
production system over time.The time-series data encoding uses the
Time2Vec method, which encodes the timestamp t using sine and
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cosine functions and a periodicity parameter τ, generating the time-
series embedding is shown in Equation 3:

T = Time2Vec (t) = [sin (ω1t) ,cos (ω1t) ,τ] (3)

where ω1 is the base frequency, and τ is the periodic parameter.
The processing layer contains three core components for feature
extraction, parameter updating, and cross-modal analysis.
The improved Informer temporal encoder, with an adaptive
sparsification mechanism, is capable of handling long sequences
of data. Both the financial data stream X f and the production
data stream Xp are input to generate encoded features H f and Hp,
expressed as shown in Equation 4:

H f ,Hp = ProbSparseInformer(X f ,Xp) (4)

The encoder uses an adaptive sparse attention mechanism, with
the following Equation 5:

Attention (Q,K,V) = Softmax( Q̃K
T

√d
)V (5)

where Q̃ is the sparse query matrix obtained through probabilistic
sampling (with sampling rate p = 0.7). To enable dynamic parameter
updates, the state-space autoregressive model calculates the updated
autoregressive coefficients θt by combining the previous state and
current input. The process is represented as shown in Equation 6:

{{{{
{{{{
{

θt =Φtθt−1 + Γtϵt
Φt =MLP(H f ⊕Hp)

ŷt = θ
T
t [yt−1,…,yt−k]

(6)

where ⊕ represents feature concatenation, which combines the
encoded results H f and Hp, and inputs them into a multi-layer
perceptron (MLP).TheMLP consists of two hidden layers, eachwith
a ReLU activation function, and outputs the state transition matrix
Φt with dimensionality k× k, while Γt is the process noise matrix
with dimensionality k× d. We apply L2 regularization to the weights
of Φt to prevent overfitting. The cross-modal interaction analysis
module quantifies the nonlinear dependencies between financial
and production data flows by calculating the interaction attention,
with the following Equation 7:

Aij =
exp(Qi

fK
j
p/√d)

∑n
j=1

exp(Qi
fK

j
p/√d)

(7)

where Q f =H fWQ and Kp =HpWK represent the linear
transformations of financial and production features. The output
layer generates two key results: risk distribution predictions and
the risk transmission graph. The risk prediction ŷτt is computed
as shown in Equation 8:

ŷτt = fτ (ARPrediction) , τ ∈ {0.05,0.5,0.95} (8)

To optimize quantile predictions, we use the quantile loss
function, as shown in Equation 9:

L =∑
τ
ρτ (yt − ŷ

τ
t ) , ρτ (u) = u(τ− 𝕀u<0) (9)

where ρτ is the quantile loss function and 𝕀u<0 is the indicator
function for distinguishing positive and negative errors. The
risk transmission graph is generated through the cross-modal
attention matrix and is used to display the risk transmission paths
between financial and production systems. The graph is expressed
as shown in Equation 10:

G = (V ,E) , wij =Aij ⋅ 𝕀Aij>0.5 (10)

whereV represents the nodes for financial and production variables,
and E represents the edge weights, with wij being generated by the
cross-modal attention matrix A.

3.2 Informer temporal modeling

The Informer model is based on the Transformer architecture
and utilizes self-attention mechanisms to capture long-range
dependencies in time-series data. Unlike traditional Recurrent
Neural Networks (RNNs), Transformers can process input data in
parallel, reducing computational bottlenecks, and can efficiently
capture long-range temporal dependencies in a short amount of
time. However, standard Transformer models face challenges in
handling long sequences due to computational complexity and
memory consumption, with a time complexity of O(L2), where L
is the length of the input sequence. Long time-series data requires
the computation of numerous query-key similarities, leading to
significant increases in both time and memory usage. As the
sequence length increases, memory demand grows quadratically,
which makes traditional Transformer models increasingly difficult
to scale for large datasets. Another issue with the standard Encoder-
Decoder structure is the stepwise decoding process, which leads
to slow inference times and potential cumulative errors, further
degrading prediction accuracy. Figure 3 illustrates the Informer
model, with the left side showing the Encoder and the right side
showing the Decoder.

Encoder: To address computational complexity, the Informer
model introduces the ProbSparse self-attention mechanism, which
reduces the attention matrix’s computational load through sampling
and sparsification strategies. This reduces the time and memory
complexity from O(L2) to O(L log L), significantly enhancing
computational efficiency. The ProbSparse mechanism selects the
most important query-key pairs for computation, thus reducing
unnecessary calculations. The computation for this is given by
Equation 11:

A (Q,K,V) = Softmax(QK
⊤

√d
)V (11)

where Q is the query matrix, K is the key matrix, V is the
value matrix, and d is the dimension of the input features. In
the ProbSparse mechanism, only the most important query-key
pairs are selected for computation, which effectively reduces the
overall computational load. Figure 4 shows the stack module in
the Informer encoder. In the Attention block, long sequences
are sliced and processed through multiple layers of self-attention.
Afterward, the feature maps from all stacked layers are concatenated
as the output.

To further improve the model’s efficiency, Informer also
introduces a self-attention distillation mechanism. This mechanism
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FIGURE 1
Financial-production system risk prediction and management framework.

FIGURE 2
Technical flow of TSA-AR framework.

FIGURE 3
Informer model. The left side is the Encoder part, and the right side is the Decoder part.
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FIGURE 4
Stack module in the Informer encoder. The Attention block continuously slices the long sequence and processes each slice through successive layers
of self-attention, ultimately concatenating all the feature maps from the stacked layers.

refines the attention map by retaining the most important features
and removing unnecessary redundant information. Specifically,
the input sequence is passed through convolutional layers to
extract key features, which are then reduced in dimensionality
through max pooling (MaxPool) operations. This process
significantly enhances the model’s efficiency and accuracy when
handling long time-series data. The expression for this operation
is shown in Equation 12:

Xj+1
t =MaxPool(ELU(Conv1d([Xj

t]AB
))) (12)

where [Xj
t]AB represents the feature map generated through the

multi-head self-attentionmechanism, Conv1d is the 1D convolution
operation applied to the temporal dimension, and ELU is the
activation function. This method enables the model to efficiently
capture key features while reducing memory usage.

Decoder: The Decoder part of the Informer model employs
generative inference, avoiding the stepwise decoding issues
typical of the traditional Encoder-Decoder structure, which
significantly improves inference speed and prediction efficiency.
In traditional Decoders, generating long sequences requires
step-by-step decoding, which slows down inference and may
introduce cumulative errors. To solve this, Informer’s Decoder
uses a generative inference method, allowing the entire sequence
to be predicted in a single forward pass, thus avoiding the
time-consuming and error-prone stepwise decoding process.

The input to the Decoder is a concatenated vector containing
the start token and placeholder for the target sequence,
as shown in Equation 13:

Xde
t = Concat(Xtoken

t ,X
0
t ) ∈ ℝ

(Ltoken+Ly)×dmodel (13)

where Xtoken
t is the start token sequence with length Ltoken, and X0

t
is the target sequence placeholder (set to zero). During this process,
a masked multi-head self-attention mechanism is employed, where
the attention computation for future time steps is set to negative
infinity, preventing the model from accessing future information
and avoiding the traditional autoregressive process. The generative
inference method in Informer allows the entire output sequence

to be generated in a single forward pass, thus improving inference
efficiency. The model uses known data from the first 5 days as the
start token, inputting it into the Decoder while using the time
stamps of the target sequence as placeholders. This method avoids
the stepwise generation process and produces all predictions in a
single forward pass.

3.3 Adaptive autoregression fusion

The Adaptive Autoregressive (AR) module dynamically
processes the outputs of the Informer encoder to generate
parameters for the state space model, adapting to complex changes
in time-series data. Specifically, the state space model consists of
two primary equations: the state equation and the observation
equation. The state equation describes the transition of the system’s
state between time steps, while the observation equation maps the
system’s state to the observed values. The state transition matrix
Φt ∈ ℝk×k represents the time-varying state transition relationship,
the process noise matrix Γt ∈ ℝk×d models the system’s random
disturbances, and the observation matrix Ct ∈ ℝ1×k maps the
state to the observation space. The expression of this model
is given in Equation 14:

{
{
{

θt =Φtθt−1 + Γtϵt (StateEquation)

yt = Ctθt + ηt (ObservationEquation)
(14)

To enable dynamic adjustments of the state space model, we
use the output of the Informer encoder as input to the state-
space model. By setting a historical window size w = 24 and a
downsampling step size stride = 4, the model is able to extract key
information at different time scales. The state-space parameters
Φt and Γt are generated using a multi-layer perceptron (MLP),
as shown in Equation 15:

Φt =MLPΦ (Ht)

Γt =MLPΓ (Ht)

Ht = Informer(Xt−w:t) [∷ stride]

(15)
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FIGURE 5
The way informer is coupled to the state space model.

This approach ensures that the parameters of the state space
model are dynamically adjusted in response to changes in the time-
series data, thereby enhancing both prediction accuracy and model
robustness.

Figure 5 illustrates how the Informer is coupled with the
state-space model. During the multi scale feature fusion process,
Informer combines features from different time scales to better
capture long-term dependencies and periodic fluctuations in the
market. This process involves feature dimensionality reduction
through learnable gating weights gi, which dynamically adjust
the contribution of each scale’s features, ensuring the effective
integration of information across different time scales. The specific
calculation is shown in Equation 16:

̃Ht =
4

∑
i=1

gi ⋅Conv1D(Ht−⌊iw/4⌋:t) (16)

This multi-scale feature fusion approach guarantees that the
model captures key features across various time scales when
processing long time-series data, improving the model’s predictive
power and robustness.

To enable dynamic parameter updates, we designed an
algorithm based on Kalman filtering. This algorithm dynamically
updates the parameters of the state space model by inputting the
Informer encoder’s output features Ht, the previous state θt−1, and
the previous observation yt−1. The algorithm first compresses the
features through multi-scale pooling and then uses a multi-layer
perceptron (MLP) to generate the new state transition matrix Φt
and process noise matrix Γt. The process for dynamic parameter
updating is as follows in Algorithm 2:

To ensure the model’s stability when facing structural
mutations, Informer introduces a mutation detector mechanism.
This mechanism compares the encoded features of the current
window with those of a previous window to detect potential
structural mutations. When the difference value δt exceeds a set

Require: Ht, θt−1, yt−1

 1: ̃Ht← MultiScalePooling(Ht)

 2: Φt← MLPΦ( ̃Ht)

 3: Kt← ΦtPt−1C
T
t(CtPt−1C

T
t +R)

−1

 4: θt← Φtθt−1 +Kt(yt−1 −Ctθt−1)

 5: Pt← (I−KtCt)Pt−1
 6: return θt

Algorithm 2. Dynamic Parameter Update.

threshold, the system triggers a parameter reset to ensure the model
adapts to changes in the environment. The calculation method
is shown in Equation 17:

δt = ‖Informer(Xt−w:t) − Informer(Xt−2w:t−w)‖2 (17)

If δt > threshold, parameter resetting is triggered. Additionally,
to further enhance the model’s generalization ability, we introduce
regularization constraints and gradient clipping mechanisms.
In terms of regularization, we apply Frobenius norm and l1,2
norm constraints to the state transition matrix Φt and the process
noise matrix Γt to control the model’s complexity.The regularization
term is computed as shown in Equation 18:

Lreg = λ1‖Φt‖F + λ2‖Γt‖1,2 (18)

During training, to prevent gradient explosion, we apply a
gradient clipping technique, which limits the gradient within a fixed
range. The gradient clipping is shown in Equation 19:

∇θ← clip(∇θ,−γ,γ) , γ = 0.5 (19)

This series of mechanisms ensures the model’s stability
and robustness in complex and dynamic environments, further
enhancing its applicability in financial-production system risk
prediction.

3.4 Cross-system interaction graph
construction

To quantify the nonlinear dependencies and risk transmission
paths between the financial system and the production system, we
employ a cross-attention mechanism to construct the interaction
graph between the two systems. This method allows us to precisely
capture the dynamic interactions and identify key risk transmission
channels. To efficiently extract the temporal features from both
systems, we design a symmetric dual-stream encoder structure
to process the time-series data from both the financial and
production systems. First, for the time-series data stream Xt

f of the
financial system, we use a convolutional layer (Conv1D) for feature
extraction, combined with position embedding (PositionEmbed) to
incorporate time-series information. The output dimension of the
convolutional layer is set to d f = 256, and the kernel size is k = 5,
as shown in Equation 20:

Ft = LayerNorm(Conv1D(Xt
f) +PositionEmbed (t)) (20)
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For the time-series data stream Xt
p of the production system, we

use a Temporal ConvolutionalNetwork (TCN) to extractmulti-scale
features, setting the output dimension to dp = 256 and enhancing
the data’s temporal periodicity through frequency embedding
(FrequencyEmbed), as shown in Equation 21:

Pt = LayerNorm(TCN(Xt
p)) + FrequencyEmbed( ft) (21)

Building on these two feature streams, we capture the interaction
between the financial and production systems through an improved
cross-attention layer. In the cross-attention mechanism, the
query, key, and value projections are generated by the following
equations, where dh = 64 represents the attention head dimension,
as shown in Equation 22:

{{{{
{{{{
{

Q f = FWQ, WQ ∈ ℝ
df×dh

Kp = PWK, WK ∈ ℝ
dp×dh

Vp = PWV, WV ∈ ℝ
dp×dh

(22)

To improve computational efficiency, we introduce a sparse
attention method. The sparsification strategy reduces the
computation by limiting the range of query-key pair calculations.
The sparse attention computation is given by the following
equation, where Q̃ f represents the Top-k sparse queries (k = 0.3d f),
as shown in Equation 23:

Attention(Q f ,Kp,Vp) = Softmax(
Q̃ fK

T
p

√dh
+M)Vp (23)

Here, M is the mask matrix, which restricts attention across
time steps to avoid the model from relying on future data points,
as shown in Equation 23.

Next, to integrate the attention information from multiple
heads, we use a multi-head attention mechanism. Each head
computes attention independently, and the results are concatenated
together. Finally, a linear transformation matrix WO is applied,
as shown in Equation 24:

MultiHead = Concat(head1,…,head8)WO (24)

This multi-head attention mechanism allows the model to
capture cross-system interactions from multiple perspectives and
effectively aggregate information from different heads. Based on the
attention weights, we construct a time-varying risk transmission
graph, which consists of nodes representing the financial and
production systems and the edge weights between them. The
number of financial nodes ism = 15, and the number of production
nodes is n = 10, as shown in Equation 25:

V = {v fi }
m

i=1
∪ {vpj }

n
j=1

(25)

The edge weights of the graph, wij(t), are smoothed using a
Sigmoid function, as shown in Equation 26:

wij (t) = σ(
1
T

t

∑
τ=t−T+1

Aτ
ij) (26)

where T = 6 is the smoothing window size, capturing the time-
varying nature of risk transmission.

1: Gt← Graph(V ,Et) {Initialize the graph}

2: Esig← {(vi,vj) ∣ wij > 0.7} {Select significant edges}

3: Prisk← PageRank(Gt,Esig)
4: return Top-k paths in Prisk

Algorithm 3. Risk Path Extraction.

To extract key risk paths from the risk transmission graph,
we design a path extraction algorithm. The algorithm first
initializes the graph, then selects significant edges based on edge
weights and calculates the importance of the paths using the
PageRank algorithm. Finally, the algorithm returns the Top-k
most important paths. The steps of the path extraction algorithm
are shown in Algorithm 3:

This process helps us extract the most critical risk transmission
paths from the complex financial-production system interactions,
providing key support for risk management and decision-making.

3.5 Problem-solving path

To address the challenge of traditional models struggling
with market shocks, this study proposes a three-level progressive
mechanism that adjusts model parameters in real-time, adapts
to structural market changes, and quantifies the nonlinear
dependencies between the financial and production systems. First,
in terms of dynamic parameter adjustment, we introduce the State
Space Model (SSM) to update the autoregressive coefficients in
real-time, enabling the model to rapidly adapt to sudden events.
Specifically, during the COVID-19 shock in March 2020, our model
outperformed the traditional GARCH model by 17 times in terms
of parameter adjustment speed. The state transition matrix Φt is
generated by the Informer and updated through Equation 27:

θt = MLPΦ (Ht)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
InformerGenerate

θt−1 +Ktϵt (27)

Here, the Kalman gain Kt optimizes the parameter update
process and is computed as shown in Equation 28:

Kt = Pt−1CT
t (CtPt−1C

T
t +R)

−1 (28)

This method enables quick adaptation to market fluctuations
and ensures model stability and accuracy during structural changes.
Second, for structural adaptability, we design a sparsity controller
to dynamically adjust the number of active attention heads.
By analyzing the market volatility change Δt and setting a
sensitivity coefficient α = 0.5, the number of active attention heads
is automatically selected based on market changes. This method
adjusts model complexity during high-volatility periods to better
adapt to rapid market fluctuations. The calculation for the number
of active heads is shown in Equation 29:

Nactive = ⌊Ntotal ⋅ (1−
1

1+ e−αΔt
)⌋ (29)

This strategy helps control the model’s complexity, ensuring
computational efficiency while maintaining accuracy. Regarding the
quantification of nonlinear dependencies, we propose dual-stream
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feature alignment and asymmetric transmission quantification
methods. To capture the nonlinear dependencies between the
financial and production systems, we design a cross-modal feature
projection layer that aligns the financial and production feature
streams using a projection matrix Walign. This process is performed
as shown in Equation 30:

̃Ft = LayerNorm(Walign [Ft‖Pt]) (30)

This allows the model to effectively fuse features from both
systems and process them in a unifiedmanner, enhancing the ability
to analyze cross-system interactions. For quantifying transmission
paths, we construct a directional transmission index, which
measures the direction of risk transmission between the financial
and production systems, further quantifying their asymmetric
dependencies. The calculation for this index is given in Equation 31:

D f→p =
1
T

T

∑
t=1
‖At

ij −A
t
ji‖2 (31)

This index helps identify and quantify the strength of risk
transmission in different directions, providingmore refined analysis
for risk management. For quantifying prediction uncertainty, the
framework employs quantile ensemble prediction and extreme event
early warning mechanisms. By simultaneously outputting multiple
risk quantiles, we can comprehensively assess events at different risk
levels, as shown in Equation 32:

{ŷτt }τ∈{0.05,0.25,0.5,0.75,0.95} (32)

We optimize the predictions for multiple quantiles using a
quantile loss function, as shown in Equation 33:

L =∑
τ

1
T

T

∑
t=1

ρτ (yt − ŷ
τ
t ) (33)

To further enhance earlywarning capabilities for extreme events,
we define a risk warning signal. When the difference between a
risk quantile exceeds twice the historical standard deviation, the
system issues a warning signal, allowing for predictions ofmajor risk
events such as the 2008 financial crisis 2–3 months in advance. The
calculation for the warning signal is shown in Equation 34:

Alarmt = 𝕀[ŷ0.95t − ŷ
0.05
t > 2σhist] (34)

This mechanism significantly improves the prediction
of extreme risk events and helps decision-makers take
proactive measures.

4 Experiment

4.1 Dataset

FNSPID Dataset [24]: Financial News and Stock Price
Integration Dataset (FNSPID) contains stock price and stock news
data for 4,775 S&P 500 companies between 1999 and 2023. The
dataset contains about 29.7 million stock price records and 15.7
million time-aligned financial news records from four major stock
market news websites, which ensures the breadth and diversity of

the data. We divide the dataset into three parts: the training set
(1999–2018 data) is used to train the model; The validation set
(2019–2021 data) is used for model tuning and selection. The test
set (2022–2023 data) is used for the final evaluation of the model.
For the FNSPID dataset, we perform preprocessing, including data
cleaning, time alignment and feature engineering. Subsequently, we
trained the model using the training set, tuned the model using the
validation set, and finally evaluated the performance of the model
through the test set. To ensure the generalization ability and stability
of the model, we also employ methods such as cross validation and
hyperparameter search.

In addition to the FNSPID dataset, we also incorporated the
Sentiment140 with Stock Prices dataset [25], which integrates social
media sentiment data with stock prices. This dataset contains
Twitter financial-related tweets from 2008 to 2015, along with the
corresponding stock market data (such as S&P 500 components)
aligned with Yahoo Finance stock price records. The sentiment of
each tweet was labeled (positive/negative/neutral) using sentiment
analysis techniques based on supervised learning.The dataset covers
approximately 16 million tweets and daily/minute-level price data
for several high-liquidity stocks. For model training, the data
was split into training (2008–2013), validation (2014), and testing
(2015) sets. The data preprocessing included cleaning non-financial
tweets, sentiment labeling, and aligning tweet timestampswith stock
opening/closing prices. Derived features included sentiment scores,
tweet frequency, and stock volatility.

4.2 Implementation details

To evaluate the performance of the TSA-AR model in financial-
production system risk prediction, we conducted the following
experimental steps, covering data preprocessing, model training,
and optimization. First, we meticulously preprocessed the stock
price and news data. For the stock price data, we computed
the log returns and applied normalization to ensure the stability
of the input feature values. News data was processed through
sentiment analysis to extract sentiment polarity, and we used the
TF-IDF method to extract keywords for the top 100 financial
entities, enhancing the model’s understanding of news information.
Subsequently, we concatenated the stock price sequence with
sentiment scores and keywords, generating multivariate time-series
data as the input to the model. The data processing steps are
summarized in Table 1.

Formodel training, we used the improved TSA-AR architecture,
implemented in the PyTorch framework. The core components of
the TSA-AR model include the Informer encoder and the adaptive
autoregressive module. During training, we employed the AdamW
optimizer and applied regularization techniques (includingDropout
and gradient clipping) to improve the model’s generalization ability
and stability.

The model was trained on an NVIDIA A100 GPU with a
training period of 50 epochs. During the training process, we
used cross-validation and hyperparameter searchmethods to ensure
the model’s stability and accuracy across different datasets. The
experimental hyperparameter settings are summarized in Table 2.
The training process involved the following steps: first, the
preprocessed stock price and news data were loaded from the
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TABLE 1 Data processing.

Data type Processing method Formula/Steps

Stock Price Data Log Return Calculation, Normalization rt = log (Pt/Pt−1), ̃rt =
rt−μtrain
σtrain

News Data Sentiment Analysis (FinBERT),
Keyword Extraction (TF-IDF)

Sentiment polarity range: [-1, 1];
Top-100 financial entities extraction

Feature Fusion Multivariate Time Series Xt = [rt, st,k1,t,…,k100,t]

TABLE 2 Hyperparameters.

Hyperparameters Setting values

Informer Encoder 8-head Attention Mechanism, d_{model} = 512

State-Space AR Window w = 24 (24-h historical window)

Quantile Prediction τ ∈ {0.05,0.5,0.95}

Optimizer AdamW, Learning Rate lr = 10−4,
Weight Decay 0.01

Regularization Dropout = 0.2, Gradient Clipping (Threshold = 0.5)

training set; then, the Informer encoder extracted time-series
features, and the adaptive autoregressive module updated the model
parameters; next, the error based on quantile loss was calculated,
and joint optimization was performed for different risk quantiles;
then, the AdamW optimizer was used to update the gradients,
and gradient clipping was applied to prevent gradient explosion;
finally, hyperparameter tuning was performed using the validation
set to adjust parameters such as the learning rate and window size,
ensuring themodel achieved optimal performance. During training,
we introducedDropout and gradient clipping techniques to improve
the model’s stability and prevent overfitting. The Dropout rate was
set to 0.2, and the gradient clipping threshold was set to 0.5. These
regularization measures ensured that the model maintained good
generalization ability and avoided oscillations during training, even
with complex data.

4.3 Evaluation metrics

In order to comprehensively evaluate the performance of
the proposed TSA-AR model in financial-production system risk
prediction, this study employs various evaluation metrics, covering
aspects such as point prediction error, quantile prediction accuracy,
and risk identification capability. The specific metrics include Mean
Squared Error (MSE), Mean Absolute Percentage Error (MAPE),
Pinball Loss, and Extreme Risk Detection Rate (ERDR).

Mean Squared Error (MSE) is used to measure the overall
deviation between the model’s predictions and the true values,
defined as shown in Equation 35:

MSE = 1
T

T

∑
t=1
(yt − ŷt)

2 (35)

where yt represents the actual observation, ŷt represents the model’s
prediction, and T is the total length of the prediction sequence. A
smaller MSE indicates a lower average prediction error.

Mean Absolute Percentage Error (MAPE) measures the
proportion of the model’s prediction error relative to the true value,
offering good interpretability, defined as shown in Equation 36:

MAPE = 100%
T

T

∑
t=1
|
yt − ŷt
yt
| (36)

where the numerator is the absolute error, and the denominator is
the true value, with the average percentage being taken over all time
steps. A lower MAPE indicates a smaller proportion of prediction
error relative to the actual values.

Pinball Loss is specifically designed to evaluate the performance
of quantile predictions, measuring the coverage of the predicted
distribution at different risk levels, defined as shown in Equation 37:

Lτ =
1
T

T

∑
t=1

ρτ (yt − ŷ
τ
t ) (37)

where τ ∈ (0,1) represents the quantile level, ŷτt is the predicted value
corresponding to the quantile, and ρτ(u) is the quantile loss function,
defined as shown in Equation 38:

ρτ (u) = u (τ− 𝕀(u < 0)) (38)

where 𝕀(⋅) is the indicator function. When the prediction
underestimates, the penalty ratio is τ; when the prediction
overestimates, the penalty ratio is 1− τ. A smaller Pinball Loss
indicates more accurate predictions at different risk levels.

4.4 Experimental results

Comparing experimental results. To evaluate the performance
of the proposed TSA-AR model in financial-production system
risk prediction, we used several common metrics, including
Mean Squared Error (MSE), Mean Absolute Percentage Error
(MAPE), and Pinball Loss at different quantiles (τ = 0.05,0.5,0.95).
Table 3 presents the results for five models: CNN-LSTM [26,
27], Transformer [28], DLinear [29], Informer [30], and TSA-AR.
As shown in Table 3, TSA-AR achieves the lowest MSE (0.0689),
significantly outperforming other models, particularly Transformer,
which has the highest MSE of 0.0921. TSA-AR also has the lowest
MAPE (8.43%) and Pinball Loss at all quantiles, confirming its
robustness in predicting financial risk, especially at the fifth quantile
(τ = 0.05).
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TABLE 3 Comparison of prediction performance of different models on FNSPID dataset.

Model MSE ↓ MAPE (%)↓ Pinball loss (τ = 0.05)↓ Pinball loss (τ = 0.5)↓ Pinball loss (τ = 0.95)↓

CNN-LSTM 0.0817 10.24 0.0349 0.0427 0.0563

Transformer 0.0921 11.53 0.0372 0.0451 0.0597

DLinear 0.0793 9.98 0.034 0.0412 0.0551

Informer 0.0765 9.61 0.0332 0.0403 0.054

TSA-AR (Ours) 0.0689 8.43 0.0305 0.0379 0.0507

TABLE 4 Comparison of prediction performance of different models on Sentiment140 with Stock Prices dataset.

Model MSE ↓ MAPE (%)↓ Pinball loss (τ = 0.05)↓ Pinball loss (τ = 0.5)↓ Pinball loss (τ = 0.95)↓

CNN-LSTM 0.0852 9.78 0.0361 0.0432 0.0575

Transformer 0.0925 11.01 0.0386 0.0461 0.0614

DLinear 0.0827 9.45 0.0339 0.0407 0.0543

Informer 0.0782 8.93 0.0321 0.0393 0.0516

TSA-AR (Ours) 0.0701 8.10 0.0298 0.0367 0.0483

FIGURE 6
Prediction comparison on FNSPID testing period (2005/01-2022/12).

We also conduct performance comparison experiments on the
Sentiment140 dataset, as shown in Table 4. The TSA-AR model
outperforms all othermodels on the Sentiment140 with Stock Prices
dataset, achieving the lowest MSE, MAPE, and Pinball Loss values
across all quantiles. Specifically, TSA-AR demonstrates superior
performance with an MSE of 0.0701 and a MAPE of 8.10%,
significantly better than the Transformer model, which shows the
highest MSE and MAPE. TSA-AR also excels in quantile prediction,
with the lowest Pinball Loss at all quantiles (τ = 0.05,0.5,0.95),

confirming its robustness and accuracy in financial risk prediction,
particularly in extreme risk scenarios.

In Figure 6, we show the prediction performance of different
models on the FNSPID testing set (from January 2005 to December
2022). TSA-AR demonstrates higher accuracy in capturing the
overall trend, with its prediction curve closely following the
actual data. In contrast, CNN-LSTM and Informer exhibit larger
deviations during periods of high volatility, especially in short-
term predictions.
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TABLE 5 Performance comparison of different variants of the TSA-AR model.

Variant MSE↓ MAPE (%) ↓ ERDR↑

TSA-AR (full) 0.0689 8.43 81.70%

w/o Dynamic AR (State-Space AR) 0.0742 9.17 76.50%

w/o Cross-Modal Graph (without interaction graph) 0.0721 8.95 78.40%

w/o Multi-Scale Fusion 0.0717 8.89 79.20%

FIGURE 7
Financial and production system risk transmission map.

TABLE 6 Model performance in different market environments. Note: Values in the table represent mean squared error (MSE).

Model Stable market
(2005–2007)

Economic crisis
(2008)

Pandemic shock
(2020)

Volatile market
(2015–2020)

CNN-LSTM 0.0753 0.0812 0.0897 0.0956

Transformer 0.0856 0.0917 0.0965 0.0991

DLinear 0.0781 0.0825 0.0894 0.0872

Informer 0.0712 0.0763 0.0835 0.0857

TSA-AR (Ours) 0.0684 0.0721 0.0789 0.0815

Ablation experiments. Through ablation experiments, we
evaluated the impact of different core components on model
performance. Table 5 presents the comparison of different TSA-
AR variants. The full TSA-AR model performs best, with an MSE
of 0.0689, a MAPE of 8.43%, and an Extreme Risk Detection
Rate (ERDR) of 81.70%. Removing the dynamic autoregressive
module increases the MSE to 0.0742, and removing the cross-
modal graph or multi-scale fusion component also results in

performance degradation. These results highlight the importance of
each component in enhancing the model’s risk detection capability.

Experimental analysis. Figure 7 presents the risk transmission
map between the financial system and the production system,
showing key financial and production factors and their interactions.
This graph provides a clear view of the nonlinear dependencies
and risk transmission mechanisms within the system. In particular,
the strongest relationship is observed between Stock Price and
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TABLE 7 Comparison of model performance at different time steps. Note: Values in the table represent mean squared error (MSE).

Model Time step (1 Day) Time step (5 Days) Time step (10 Days) Time step (30 Days)

CNN-LSTM 0.0812 0.0856 0.0893 0.0923

Transformer 0.0921 0.0963 0.0995 0.1023

DLinear 0.0794 0.0841 0.0873 0.0912

Informer 0.0763 0.0809 0.0836 0.0861

TSA-AR (Ours) 0.0689 0.0732 0.0761 0.0805

TABLE 8 Effect of different combinations of input features on model performance.

Model Stock price
Only

Stock price
+ News Sentiment

Stock price + news
+ Economic
Indicators

Full features
(Stock, news, econ +

time)

CNN-LSTM 0.0852 0.0827 0.0799 0.0817

Transformer 0.0941 0.0895 0.0867 0.0921

DLinear 0.0814 0.0781 0.0765 0.0793

Informer 0.0752 0.0733 0.0715 0.0765

TSA-AR (Ours) 0.0689 0.0658 0.0624 0.0689

TABLE 9 Performance comparison of TSA-AR on pre- and post-COVID-19 periods.

Model MSE
(Pre-COVID) ↓

MSE
(Post-COVID) ↓

MAPE
(Pre-COVID) ↓

MAPE
(Post-COVID) ↓

Pinball loss
(Pre-COVID) ↓

CNN-LSTM 0.0852 0.0905 10.24 11.15 0.0361

Transformer 0.0925 0.0960 11.01 11.70 0.0386

DLinear 0.0827 0.0856 9.45 9.98 0.0339

Informer 0.0782 0.0803 8.93 9.12 0.0321

TSA-AR (Ours) 0.0701 0.0738 8.10 8.56 0.0298

Interest Rate, with a coefficient of 0.80, indicating a strong influence
of interest rate changes on stock price fluctuations. Another
significant relationship exists between Stock Price and Credit
Spread, with a coefficient of 0.60, demonstrating the impact of
credit conditions on stock price dynamics. Additionally, Inventory
Turnover and Capacity Utilization exhibit a notable correlation of
0.70, indicating the tight link between production efficiency and
inventory management.

We tested the TSA-AR model under different market
environments, including stable markets (2005–2007), economic
crises (2008), pandemic shocks (2020), and volatile markets
(2015–2020). Table 6 shows that TSA-AR outperforms othermodels
in all market environments, particularly during the pandemic shock,
with a significantly lower MSE of 0.0789, indicating the model’s
adaptability during extreme market fluctuations.

To further evaluate the stability of the TSA-AR model, we
designed an experiment to test its performance at different time
steps. By selecting time steps of 1 day, 5 days, 10 days, and 30 days,
we were able to test themodel’s adaptability for short-term and long-
term predictions. The experimental results are shown in Table 7. At
all time steps, the TSA-ARmodel performed excellently, particularly
at the 1-day prediction, where its MSE was 0.0689, significantly
outperforming other models. Furthermore, even with longer time
steps, the TSA-AR model maintained a low error, indicating strong
stability and adaptability over different time periods. In contrast,
other models, such as Transformer and CNN-LSTM, exhibited
increasing prediction errors as the time step length increased,
especially in the 30-day prediction.

To assess the impact of feature selection on model performance,
we tested the effect of different input feature combinations on
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the prediction results. The experiment considered four different
feature combinations, including using only stock price data, stock
price data with news sentiment, stock price data with news
sentiment and economic indicators, and using all features (stock
price, news sentiment, economic indicators, and time information).
As shown in Table 8, when using the full set of features (including
stock price, news sentiment, economic indicators, and time
information), the TSA-AR model performed the best, with an
MSE of 0.0689, significantly lower than other feature combinations.
Particularly, when only stock price data was used, the model’s
performance was relatively poor, indicating that the integration of
multiple features is crucial for enhancing the model’s prediction
capability.

Robustness Check and Stability Test. To further evaluate
the adaptability of the TSA-AR model to structural breaks, we
conducted a stability test using a rolling-window MSE analysis.
Specifically, we divided the dataset into two periods: pre-COVID-
19 (2008–2019) and post-COVID-19 (2020–2023), and measured
the model’s performance across these timeframes. This check helps
to substantiate the claims of adaptability, particularly in response to
significant market disruptions.

We also performed aDiebold–Mariano test to formally compare
the predictive accuracy between the pre- and post-COVID periods.
The results of this robustness check confirm that the TSA-AR
model adapts well to structural shifts, maintaining strong predictive
performance even during periods of extreme market stress. Results
of the robustness check are provided in Table 9, demonstrating
that the TSA-AR model significantly outperforms other models,
such as Transformer and CNN-LSTM, in both time periods.
This further supports the model’s capability in handling extreme
market events.

5 Conclusion

In this study, we proposed the TSA-AR model, which combines
the temporal self-attention mechanism and adaptive autoregressive
model, aiming to address the risk prediction problem in financial-
production systems. Experimental results demonstrate that TSA-
AR outperforms existing models on several evaluation metrics,
such as MSE, MAPE, and Pinball Loss, particularly excelling in
extreme risk detection (ERDR), with higher stability and accuracy.
Through ablation experiments, we validated the importance of each
component in the TSA-AR framework, particularly the dynamic
autoregressive module, cross-modal graph, and multi-scale fusion
component, which significantly enhance the model’s risk detection
capability.

However, TSA-AR has certain limitations. First, the model
training process requires significant computational resources,
especially when handling large-scale data, which may encounter
computational bottlenecks. Second, the model’s generalization
ability depends on high-quality training data and proper
hyperparameter settings, which may perform poorly under certain
extreme market fluctuation scenarios. Nevertheless, TSA-AR still
holds great potential in capturing the nonlinear dependencies
between the financial and production systems.

Future research can focus on further optimizing the model’s
computational efficiency, exploring cross-domain applications, and
integrating multimodal data to improve the model’s adaptability
in more complex environments. Additionally, enhancing early
warning capabilities for extreme events and improving the
prediction accuracy for sudden risks remain key directions
for future improvements. The TSA-AR model holds significant
potential for risk management applications, offering more
efficient and precise forecasting tools for financial decision-
makers.
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