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In future 6G edge networks, Device-to-Device (D2D)-assisted Mobile Edge
Computing (MEC) can fully utilize the idle resources of user terminals (UT) and
alleviate the burden on backhaul links. However, the limited idle resources of
UT and the over-reliance on D2D-assisted computation offloading may result
in a large number of terminals experiencing task overload, which could lead to
the risk of edge network paralysis. To address these issues, this paper establishes
a Service-Auxiliary-Request-Healing (SARH) task-offloading propagation model
based on propagation dynamics theory. This model describes the dynamic
transmission process of offloaded tasks in 6G edge networks and constructs
two linear threshold functions to characterize the differences in task processing
capabilities between UT and edge servers (ES). Furthermore, the proposed task-
offloading propagationmodel is theoretically analyzed using edge compartment
theory, and the propagation dynamics equations are established to derive
the saddle point and critical conditions leading to task overload in a large
number of UT, providing theoretical guidance for preventing network paralysis.
Finally, simulation results show that the SARH model effectively describes the
task-offloading propagation process in edge networks, and by controlling key
factors such as the proportion of UT selecting D2D-assisted MEC synergistic
task-offloading, network connectivity density, and network degree distribution
heterogeneity, network paralysis can be avoided.
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1 Introduction

With the continuous development of the 6G mobile communication networks and
the emerging Internet of Things (IoT), the rapid expansion of user terminals (UT) scale
and the sharp increase in computation-intensive and latency-sensitive applications, such
as immersive cloud augmented reality, holographic communication, autonomous driving,
and digital twins [1, 2], have led to an explosive growth in mobile internet data traffic
[3, 4]. This has heightened the demand for highly reliable network performance and
ultra-low latency [5, 6]. To meet the increasingly stringent requirements of emerging
intelligent applications, Device-to-Device (D2D)-assisted Mobile Edge Computing (MEC)
technology has been identified as a key enabler to address the challenges faced by 6G
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edge networks [7–9], representing an essential component of the
distributed architecture and ubiquitous edge intelligence envisioned
in 6G [10–12]. By offloading complex computational tasks to nearby
edge servers (ES) or neighboring UT, this approach can fully
utilize the idle computational resources of UT, effectively improving
the efficiency of task processing, and significantly reducing task
processing delay and energy consumption [11, 13, 14], while also
alleviating data traffic pressure on the backhaul link [15, 16].
Therefore, research on D2D-assisted MEC technology is of great
significance for 6G edge synergistic networks.

With the widespread application of UT and their increasing
intelligence, the MEC collaborative computing offloading model
assisted by D2D technology has garnered significant attention
from researchers. Hu et al. [12] proposed a fully distributed task
offloading algorithm, SITOff, which leverages graph computation
and attention mechanisms to enable efficient knowledge
collaboration among mobile devices (MDs) in decentralized MEC
(D-MEC) systems, thereby enhancing offloading performance
without centralized control. Liu et al. [17] formulated a joint
optimization scheme considering task offloading and computational
resource allocation in D2D-assisted MEC networks by establishing
a cost optimization model with multi-objective constraints, aiming
to minimize task delay and terminal energy consumption. Dai et al.
[18] proposed a collaborative offloading framework that integrates
migration costs and offloading willingness into D2D-assisted
MEC networks and studied a learning-based task collaboration
offloading algorithm to achieve minimum system costs. Wang
et al. [19] developed a DRL-based offloading framework, DMOEA,
integrating entropy and attentionmechanisms tomodel interactions
between D2D cooperation and edge offloading. The framework
adopts a multi-agent structure and attention mechanisms to achieve
efficient and low-latency dynamic MEC offloading. Jiang et al. [20]
introduced a hierarchical deep reinforcement learning (HDRL)
framework that combines DQN and DDPG to jointly optimize
computation offloading and resource allocation. By employing a
multi-level actor-critic architecture, it effectively addresses mixed
action spaces and device coordination, significantly reducing task
latency. Saleem et al. [21] investigated the question of computational
task execution delay and interference under shared resources,
proposing a D2D-supported MEC framework and using the Joint
Partial Offloading and Resource Allocation (JPORA) allocation
scheme to minimize delay. Reference [22] presented a distributed
D2D collaboration and task offloading framework that integrates
the power-of-two-choices mechanism with a Stackelberg game. By
incorporating mean field modeling and Lyapunov optimization, the
framework jointly optimizes collaboration efficiency and pricing
fairness in large-scale MEC systems.

Most studies mentioned above focus on minimizing task delay,
reducing energy consumption, and enhancing network capacity. In
6G edge networks, an increasing number of UT are opting to offload
computational tasks to surrounding UT. When a UT node receives
an excessive number of offloading tasks, it may become overloaded,
losing its ability to provide offloading services, and task processing
delays may significantly increase, potentially leading to large-scale
network paralysis. Moreover, due to the diversity and large scale of
devices in 6G edge networks, challenges such as complex network
topology and significant dynamic heterogeneity in service demands
arise. Most existing studies lack a comprehensive analysis of the

overall state of the network system and fail to consider the dynamic
changes in task-offloading propagation in 6G edge synergistic
computing networks, as well as the potential risk of network
paralysis caused by excessive reliance on D2D-assisted computation
offloading. Complex network propagation dynamics theory can
reveal the characteristics and dynamic mechanisms of information
dissemination within a network and provide insights into the overall
state of the network. Therefore, from a system perspective, applying
complex network propagation dynamics theory and models to
analyze the dynamic task offloading patterns in 6G edge networks
is an emerging approach and trend.

Several studies have applied propagation dynamics theory
and models to disseminate information and content in networks
[23–25]. These works explore the dynamic propagation behavior
and patterns in mobile edge networks by applying established
propagation dynamics models or constructing new information
dissemination models. In [26], a contagious disease model is
proposed to study the D2D propagation of malware in wireless
IoT, providing a foundation for assisting in planning, designing,
and defending such networks from a defender’s perspective. Lien
et al. [27] derived a caching and content distribution strategy for
edge mobile devices through analysis. An epidemic model was used
to analyze the temporal evolution of information dissemination
between mobile devices, with optimal control theory applied
to cache deployment accordingly. Fan et al. [28] employed a
propagation dynamics model to characterize content dissemination
between user terminals in mobile edge networks and formulated
a joint optimization problem for cache placement and base
station resource allocation, maximizing user satisfaction. Hu et al.
[29] investigated caching and data-sharing strategies in non-
geostationary orbit satellite constellations, deriving the optimal data
density threshold based on propagation dynamics and improving
the water-filling algorithm and reinforcement learning techniques.
Experimental results demonstrated that this strategy effectively
reduced both energy consumption and service latency. Ren et al.
[30] utilized the diffusion threshold model from propagation
dynamics theory to describe the process of collaborative task
offloading delivery among terminals inmobile edge networks and its
effects. Zhang et al. [31] developed a 6G space-air-ground integrated
multi-layer information propagation model based on propagation
dynamics, analyzing the impact of network node degree, link
relationships, and interference factors on information transmission
while discussing key research challenges. Wang et al. [32] proposed
an edge caching distribution strategy based on propagation
dynamics to address the problem of decreasing cache success rates
caused by the time-varying nature of content popularity. Simulation
results confirmed that the proposed caching strategy improves cache
success rates compared to baseline strategies. These studies leverage
established models from propagation dynamics theory, such as
epidemic models and threshold adoption models, to explore the
dynamic propagation behavior and characteristics of information
and content in mobile edge networks, and to propose related
optimization algorithms and resource allocation schemes. However,
most of the existing research does not consider the dynamic changes
in task-offloading propagation and the complexity of network
topology in the context of 6G edge synergistic computing networks.

Motivated by the aforementioned studies, and considering the
dynamic variations in task-offloading propagation in 6G edge
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synergistic computing networks as well as the potential network
paralysis caused by excessive reliance on D2D technology for
computational offloading, this paper establishes a Service-Auxiliary-
Request-Healing (SARH) task-offloading propagation model based
on propagation dynamics theory. This model is used to investigate
the dynamic mechanisms of offloading propagation in 6G edge
synergistic computing networks and to explore the topological
structure rules and evolutionary mechanisms of the network.

Themain contributions of this paper are summarized as follows:

(1) Based on propagation dynamics and threshold theory, this
paper proposes a SARH task-offloading propagation model to
illustrate the dynamic process and behavioral characteristics
of offloading propagation in 6G edge synergistic computing
networks. Two types of state transition linear threshold
functions are constructed to characterize the differences in
task-handling capabilities and capacities between UT and ES.

(2) A theoretical analysis of the proposed SARH task-
offloading propagation model is conducted using edge-based
compartmental theory. The propagation dynamics equations
are established, and the saddle point is derived through
mathematical methods. Critical conditions leading to network
paralysis in 6G edge synergistic computing networks are
identified, providing a theoretical reference to prevent edge
network failures, which aids in the deployment of edge
communication networks to ensure their stability.

(3) Simulation results demonstrate that the SARH model
effectively describes the task-offloading propagation process
in 6G edge networks. Additionally, the study explores the
effects of the proportion of initially R state UT, the service
capacity of individual A state UT, the density of network
connections, offloading propagation probability, and network
degree distribution heterogeneity on the dynamic offloading
propagation process in 6G edge synergistic computing
networks. These findings lead to conclusions that can
effectively prevent network paralysis, thereby enhancing the
efficiency and stability of the network.

The rest of this paper is organized as follows: In Section 2,
the System Model is introduced. Section 3 presents the theoretical
analysis and derivations. Section 4 provides simulation results along
with detailed discussions. In Section 5, the conclusion of this paper
is proposed.

2 System model

2.1 6G edge synergistic computing
network

This paper considers a 6G edge synergistic computing network
with a total of N node devices and a degree distribution P(k)
as shown in Figure 1. In this network, there are four types of node
devices: Service state (S), Auxiliary state (A), Request state (R), and
Healing state (H).The definitions of these four types of node devices
are as follows:

S State:These refer to ES that have sufficient computing resources
and capacity to provide offloading services for computational tasks,
in addition to meeting their task requirements.

A State: These are UT that can meet their task requirements and
also provide computational task offloading services.

R State: These UT experience task overload and need to initiate
a synergistic computational task offloading request.

H State: These are UT that have recovered from the request
state through task offloading and can meet their task requirements.
However, due to prior task overload, they are no longer willing to
offer computational task offloading services for safety reasons.

In 6G edge synergistic computing networks, communication
between two neighboring node devices can be classified into two
types: one is D2D communication between UT, and the other is
wireless cellular communication between UT and ES. State UT can
offload computational tasks to neighboring UT, neighboring ES, or
cloud servers for processing. For the sake of analytical simplicity,
this paper stipulates that during the task-offloading propagation
process within the entire network, each pair of neighboring R state
UT and A state UT (or S state devices) can only perform one
synergistic computing task-offloading at a time, with each offloading
corresponding to one computational task.

Regardless of the state of the node devices, potential
computational tasks are categorized into two types: tasks generated
by the device itself and tasks offloaded by neighboring UT. The
task arrival and processing models for S state devices, A state
terminals, and R state terminals are illustrated in Figure 2. It is
assumed that the computational resources required to process a
single data packet are identical across all node devices, denoted as
W0(cycles). The set of computational resources available to each
node device is represented as f(cycles/s) = { f1, f2, , fi, , fN}, and the
set of computational delays for processing a single data packet across
the network is t = {t1, t2, , ti, , tN}, where ti =W0/ fi.

For the locally generated computational tasks, an M/M/1/N
queuing model is assumed with an arrival rate of λi and a service
rate of μi. Here, the arrival rate λi represents the number of data
packets arriving at the node per second, while the service rate
μi denotes the number of data packets the node can process per
second. Accordingly, the service rate is given by μi = 1/ti. Let ρ = λ/μ,
then, according to the queuing model, the steady-state queue length
for the data packet sequence generated by the node device itself
is Li = ρ/(1− ρ), where Li < Np,Nq, with Np and Nq representing
the maximum queue lengths that can be accommodated by each
S state device and A state UT, respectively. For tasks offloaded
from neighboring R state UT, since the task-offloading transmission
process is not stable or continuous, the task processingmodel differs
from that for the node’s tasks. The specific handling mechanism is
detailed in the SARH task-offloading propagation model.

2.2 SARH task-offloading propagation
model

In the 6G edge synergistic computing network scenario,
as shown in Figure 3, this paper establishes a SARH model to
describe the task-offloading propagation process. It is assumed that
the network is in a stable state initially, with two types of node
devices in the network: S state andA state.The proportions of S state
ES and A state UT are denoted as p and q, respectively, with p+ q =
1. At a certain time t0, the base station in the network dispatched an
excessive number of computational tasks, resulting in a proportion
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FIGURE 1
6G edge synergistic computing network.

FIGURE 2
Illustration of task arrival and processing models for S state devices, A state terminals, and R state terminals.
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FIGURE 3
Schematic of the SARH task-offloading propagation model.

ρ0 of UT experiencing task overload and subsequently transitioning
to a R state. In each time step, R state UT may transmit offloading
tasks to neighboringA state UT or neighboring ESwith a probability
α. For A state UT, when the accumulated packet sequence exceeds
the threshold, they will transition to the R state with a probability
hq(m,Tq). Similarly, S state devices will transition to the R state
with a probability hp(m,Tp). It is generally assumed that ES can
provide sufficient computing resources and system capacity, so S
state devices remain in the S state. Meanwhile, each R state UT
can transition to the H state with a probability γ, and no longer
participate in the task-offloading propagation. The task-offloading
propagation process terminates when there are no more R state UT
in the network, and the network reaches stability.

For analysis, this paper proposes two linear threshold functions
to describe the state transition threshold models for UT and ES.
For A state UT, the set of stable queue lengths of all UT in the
network can be represented as Lq = {Lq,1,…,Lq,n,…,Lq,qN}, where
the maximum value is denoted as Lq,max. The threshold for the
number of data packets that each A state UT can accommodate is
defined as Thq = Nq − Lq,max. The number of offloaded data packets
received by theA stateUTmust not exceed this threshold, otherwise,
the terminal will undergo a state transition. Assuming that the
number of data packets contained in each offloaded task P satisfies
Thq/(Tq + 1) < P < Thq/Tq, this indicates that the A state UT will
not undergo a state transition as long as it receives no more than
Tq offloading tasks. Therefore, for A state terminals, the following
threshold function is used to represent the relationship between
the state transition probability and the number of offloading
tasks received:

hq (m,Tq) = {
0, 0 <m ≤ Tq

1, m > Tq
(1)

Let m represent the number of computational tasks received by
an A state terminal within a time step, and let hq(m,Tq) denote the
state transition probability of the A state UT.

Similarly, for S state devices, the set of stable queue
lengths of all ES in the network can be represented as Lp =
{Lp,1,Lp,2,…,Lp,n,…,Lp,pN}, where the maximum value is denoted
as Lp,max. The threshold for the number of data packets that each
S state device can accommodate is defined as Thp = Np − Lp,max,

with Thp ≫ Thq. The threshold Tp for the number of offloading
tasks that a S state device can receive satisfies Thp/(Tp + 1) <
P < Thp/Tp, where Tp is sufficiently large. Therefore, for service
S devices, the following threshold function is used to represent the
relationship between the state transition probability and the number
of offloading tasks received:

hp (m,Tp) = {
0, 0 <m ≤ Tp

1, m > Tp
(2)

m is the number of computational tasks received by the S state device
in a time step, and hp(m,Tp) is the S state device state transition
probability.

3 Theoretical analysis

In this paper, S(t), A(t), R(t) and H(t) are used to represent
the proportion of node devices in each state. Let θ(t) denote the
probability that neighbor i has not offloaded a task to the S state
device (or A state terminal) j before time t. If the node degree of
S state device (or A state terminal) j, i.e., the number of neighboring
nodes or devices, is kj, then the probability that node j has received
offloaded tasks fromm neighbors before time t can be expressed as:

ϕm (kj, t) = C
m
kj
⋅ θ(t)kj−m ⋅ (1− θ (t))m (3)

ForA state terminal j, according to the linear thresholdmodel, its
state remains unchanged when it receives nomore thanTq offloaded
tasks.Therefore, the probability thatA state terminal j remains in the
auxiliary state at time t is:

A(kj, t) =
kj

∑
m=0

ϕm (kj, t) ⋅
m

∏
l=0
[1− hq (l,Tq)]

=
Tq

∑
m=0

ϕm (kj, t)

(4)

For a randomly selected A state terminal j, given that the degree
distribution of the network is P(k), the probability that A state
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terminals in the entire network do not undergo a state transition at
time t is:

ηq =
kmax

∑
kj=kmin

P(kj) ⋅A(kj, t) (5)

The proportion of user terminals in the A state in the entire
network at time t is:

A (t) = (1− ρ0) ⋅ q ⋅ ηq (6)

For S state device j, according to the linear threshold model, its
state remains unchanged when it receives nomore thanTp offloaded
tasks. Therefore, the probability that S state device j remains in the
service state at time t is calculated as follows:

S(kj, t) =
kj

∑
m=0

ϕm (kj, t) ⋅
m

∏
l=0
[1− hp (l,Tp)]

=
Tp

∑
m=0

ϕm (kj, t)

(7)

For a randomly selected S state device j, given that the degree
distribution of the network isP(k), the probability that S state devices
in the entire network maintain their original state at time t is:

ηp =
kmax

∑
kj=kmin

P(kj) ⋅ S(kj, t) (8)

The proportion of node devices in the service state in the entire
network at time t is:

S (t) = (1− ρ0) ⋅ p ⋅ ηp (9)

Since both A state UT and S state ES participate in synergistic
task-offloading and provide task-offloading services throughout the
entire edge network and offloading propagation process, the roles
and state transition mechanisms of A state nodes and S state nodes
in the network are similar, with the only difference being their linear
propagation thresholds. Therefore, for ease of subsequent analysis,
the proportion of A state UT at time t, A(t), and the proportion of S
state ES at time t, S(t), can be combined to obtain SA(t):

SA (t) = S (t) +A (t) = (1− ρ0) ⋅ [pηp + qηq] (10)

where ρ0 represents the initial proportion of R state UT. From the
analysis, it can be seen that once θ(t) is obtained, SA(t) can be
determined.

Since neighbor node i of A state node j (or S state node j) can be
in one of four possible states, θ(t) can be expressed as:

θ (t) = ψS (t) +ψA (t) +ψR (t) +ψH (t) (11)

ψS(t), ψA(t), ψR(t), and ψH(t) represent the probabilities that
neighbor node i is in the S state, A state, R state, or H state,
respectively, and has not offloaded a task to A state (or R state) node
j before time t. The detailed analysis is as follows:

If neighbor i is anA state terminal and has ki neighboring nodes,
since node j is an A state terminal or S state device, node j will not
offload tasks to node i. Therefore, node i can only receive offloaded

tasks from the remaining ki − 1 neighboring nodes. The probability
that node i has received n offloaded tasks before time t is:

φn (ki − 1, t) = C
n
ki−1
⋅ θ(t)ki−1−n ⋅ [1− θ (t)]n (12)

Considering that neighbor i is an A state node and the
corresponding linear thresholdmodel, the probability that neighbor
i receives n offloaded tasks before time t and does not undergo a state
transition at time t is calculated as follows:

τA (ki, t) =
ki−1

∑
n=0

φn (ki − 1, t) ⋅
n

∏
l=0
[1− hq (l,Tq)]

=
Tq

∑
n=0

φn (ki − 1, t)

(13)

In a 6G edge synergistic computing network with a degree
distribution of P(k), the probability that node j is a neighbor of node
i with degree ki is given by kiP(ki)/⟨k⟩, where ⟨k⟩ is the average
degree of the network. For a randomly selected node i, considering
all possible values of ki, the probability that node i is an A state
terminal and does not undergo a state transition at time t in the
entire network is:

ψA (t) = (1− ρ0) ⋅ q ⋅ [
kmax

∑
ki=kmin

kiP(ki)
⟨k⟩
⋅ τA (ki, t)] (14)

If neighbor i is a S state device, and since node j is either an A
state terminal or a S state device, node j will not offload tasks to
node i. Therefore, node i can only receive offloaded tasks from the
remaining ki − 1 neighboring nodes. Considering that neighbor i is
a S state node and the corresponding linear threshold model, the
probability that neighbor i receives n offloaded tasks before time t
and does not undergo a state transition at time t is:

τS (ki, t) =
ki−1

∑
n=0

φn (ki − 1, t) ⋅
n

∏
l=0
[1− hp (l,Tp)]

=
Tp

∑
n=0

φn (ki − 1, t)

(15)

For a randomly selected node i, considering all possible values of
ki, the probability that node i is a S state device and does not undergo
a state transition at time t in the entire network is:

ψS (t) = (1− ρ0) ⋅ p ⋅ [
kmax

∑
ki=kmin

kiP(ki)
⟨k⟩
⋅ τS (ki, t)] (16)

Similarly, sinceA state nodes and S state nodes have similar roles
and state transition mechanisms in the network, differing only in
their linear propagation thresholds, for ease of subsequent analysis,
the probabilities of node i being in either the A state or the S state
and not undergoing a state transition at time t can be combined.This
yields ψSA(t):

ψSA (t) = (1− ρ0) ⋅
kmax

∑
ki=kmin

kiP(ki)
⟨k⟩
⋅ ε(ki, t) (17)

where, to simplify the equation, let ε(ki, t) = pτS(ki, t) + qτA(ki, t).
SinceA stateUTor S state ES do not offload tasks, the probability

that node i remains in the A or S state (i.e., does not undergo a state
transition) at time t is the same as the probability that neighbor node
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i is an A state terminal or S state device and has not offloaded tasks
to the A state (or S state) node j before time t.

If neighbor i is a R state terminal, we need to analyze the
evolution equation forψR(t).When aR state terminal i offloads tasks
to an A state (or S state) node j with probability α, the following
equation can be obtained:

dθ (t)
dt
= −αψR (t) (18)

If neighbor i is a H state terminal, then within the time interval
preceding time t, aR state terminalmay transition to theH state with
probability γ after offloading propagation (but not offloading to node
j).The evolution ofψH(t) can be expressed by the following equation:

dψH (t)
dt
= γ (1− α)ψR (t) (19)

By combining Equation 18 and Equation 19 with the initial
conditions θ(0) = 1 and ψH(0) = 0, the following can be derived:

ψH (t) = γ [1− θ (t)] ⋅ (
1
α
− 1) (20)

Substituting Equation 17 and Equation 20 into Equation 11
yields the following expression:

ψR (t) = −(1− ρ0) ⋅
kmax

∑
ki=kmin

kiP(ki)
⟨k⟩
⋅ ε(ki, t) − γ [1− θ (t)] ⋅ (

1
α
− 1)+ θ (t)

(21)

Substituting Equation 21 into Equation 18 allows the evolution
of θ(t) to be re-expressed as follows:

dθ (t)
dt
= α(1− ρ0) ⋅

kmax

∑
ki=kmin

kiP(ki)
⟨k⟩
⋅ ε(ki, t) + γ (1− α) − [γ+ α (1− γ)] ⋅ θ (t)

(22)

In the entire network, according to the propagation dynamics,
the density change of each state can be described as follows:

dH (t)
dt
= γR (t) (23)

dR (t)
dt
= −

dA (t)
dt
−
dS (t)
dt
− γR (t) (24)

Therefore, by combining and iterating Equation 6, Equation 9,
Equation 10, Equation 3, Equation 23 and Equation 24, the
proportions and evolution trends of the node devices in the four
states—S(t), A(t), R(t) and H(t)—across the entire network at any
given time can be computed.

According to the linear threshold model and the SARH task-
offloading propagation model, as t→∞, the system stabilizes,
offloading propagation ceases, and only A state, S state, and H state
UT or ES remain in the network, with no R state UT present. Thus,
dθ(t)
dt
|
t=∞
→ 0, from which the following can be derived:

θ (∞) =

α(1− ρ0) ⋅
kmax

∑
ki=kmin

kiP(ki) ⋅ ε(ki, t) + ⟨k⟩γ (1− α)

⟨k⟩γ+ α (1− γ)⟨k⟩

(25)

By combining and iterating Equation 6, Equation 9,
Equation 10, and Equation 25, along with R(∞) = 0, the values

of S(∞), A(∞), SA(∞), and H(∞) can be determined. The
phenomenon of behavioral adoption outbreaks, similar to social
propagation processes, warrants attention [33–35]. Therefore, the
critical condition for task overload leading to network failure due
to a large number of UT in a short period can be determined by
deriving the non-trivial solution of Equation 25. Let the function be
as shown in Equation 26.

y [θ (∞)] =

α(1− ρ0) ⋅
kmax

∑
ki=kmin

kiP(ki) ⋅ ε(ki,∞)

〈k〉γ+ α (1− γ)〈k〉
− θ (∞) +

γ (1− α)
γ+ α (1− γ)

(26)

From the analysis, it can be seen that the solution to the
critical condition corresponds to the x-coordinate θc(∞) of the
point where the function Equation 26 is tangent to the horizontal
axis. Here, θc(∞) represents the probability that no offloaded
tasks will be propagated to A state (or S state) node j under the
critical offloading propagation probability αc, once the network has
stabilized. Therefore, the critical condition is defined as follows:

dy
dθ (∞)
|
θ(∞)=θc(∞)

= 0 (27)

Solving Equation 27 yields the critical offloading probability:

αc =
γ

Δ+ γ− 1
(28)

where,

Δ = (1− ρ0) ⋅
kmax

∑
ki=kmin

kiP(ki)
⟨k⟩
⋅
dε(ki,∞)
dθ (∞)

|
θ(∞)=θc(∞)

(29)

From the results of Equation 28 and Equation 29, it can be seen
that the critical offloading propagation probability αc is not only
directly related to dynamic parameters such as the initial proportion
of R state UT ρ0, the healing rate of R state UT γ, and the maximum
number of R state UT Tq that a single A state UT can serve, but
also depends on network structural parameters such as the average
network degree ⟨k⟩ and the network degree distribution P(k).

4 Simulation results and analysis

4.1 Simulation settings

Considering a large number of nodes and the complex topology
in 6G edge synergistic computing networks, extensive simulation
and numerical analysis were conducted on both Erdos-Renyi (ER)
networks [36] and Scale-Free (SF) networks [37] to verify the
universality and applicability of the theoretical analysis. In ER
random networks, node degrees follow a Poisson distribution,
i.e., P(k) = e−⟨k⟩⟨k⟩/k!, where random connections are generated
based on a probability mechanism, reflecting the characteristic of
random node distribution. In SF networks, the degree distribution
follows a power-law, i.e., P(k) k̃−v, where the scale-free property
highlights the phenomenon where a few nodes take on a large
number of connections, which corresponds to the importance of
certain key nodes in 6G edge synergistic computing networks. The
parameter v represents the degree distribution exponent of the SF
network, where the degree distribution is negatively correlated with
v; the smaller the value of v, the more heterogeneous the network,
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leading to stronger network heterogeneity. The fixed parameters,
including network size, offloading propagation probability, and
the healing rate of R state UT, are set as N = 104, α ∈ [0,1] and
γ = 1.0, respectively. The network size of 104 refers to 10,000
independent dynamic entities within the mobile edge network,
including UT and ES. Based on the system model and the
characteristics of practical mobile edge communication systems,
it can be concluded that each R state UT will ultimately be
able to process its accumulated computational tasks through edge
synergistic computing offloading, cloud computing offloading, or
other offloading methods, thereby transitioning back to the idle
state. However, due to prior experiences of task overload, for safety
considerations and the inherent selfishness of UT, these terminals
are no longer willing to provide computational task-offloading
services and instead transition into theH state.Therefore, this study
assumes the healing rate of state UT as γ = 1.0.

H(∞) represents the proportion of H state UT in the
network when the entire network reaches a stable state after a
sufficiently long period. It indirectly reflects the total number of
R state nodes that experienced task overload and computation
offloading requests throughout the entire synergistic task-offloading
propagation process. A sudden surge in H(∞) at a certain moment
indicates a large number of devices experiencing task overload
within a short period, signifying a network paralysis scenario.

The parameters influencing the offloading propagation process
can be categorized into dynamic parameters and network structural
parameters. The dynamic parameters include the initial proportion
of R state UT ρ0, the maximum number of R state UT that a single
A state UT can serve Tq, the initial proportion of A state UT q,
and the maximum number of R state UT that a single S state ES
can serve Tp.The network structural parameters include the average
degree of ER networks ⟨k⟩ and the degree distribution exponent v
for SF networks. The following sections will discuss the impact of
these dynamic and network structural parameters on the offloading
propagation process.

4.2 Results and discussion

Figure 4 explores the variation of the proportion of UT in the
final H state, H(∞), with the offloading propagation probability, α,
as the initial proportion of R state UT, ρ0, changes in ER networks.
The other parameters are set as N = 104, α ∈ [0,1], γ = 1.0, ⟨k⟩ =
10, Tq = 2, Tp = 50 and q = 0.95. As observed in the figure, when
the initial proportion of R state UT is relatively small ρ0 = 0.02,
the proportion of UT in the final H state, H(∞), shows almost
no increase as the offloading propagation probability, α, gradually
increases.This indicates that the task-offloading process only affects
a very small portion of A state terminals that transition to R
state terminals, implying that the computational resources and
capacity provided by the 6G edge synergistic computing network
can handle the task-offloading of a certain proportion of R state
UT. However, when the initial proportion of R state UT increases
to a certain level ρ0 = 0.05,0.10, the proportion of UT in the final
H state, H(∞), initially increases slowly within a certain range as
the offloading propagation probability, α, gradually increases.When
α reaches a certain value, H(∞) experiences a sudden increase,
reaching a significantly higher proportion. This phenomenon is

referred to as a first-order discontinuous phase transition in the
field of propagation dynamics [38], and the offloading propagation
probability at which this sudden surge in H(∞) occurs is known
as the critical offloading probability, αc. When such a first-order
discontinuous phase transition occurs during the offloading process
in the network, it indicates that a large number of A state terminals
in the network have quickly experienced task overload and resource
shortages, transitioning to R state terminals, which ultimately leads
to network paralysis. It is worth noting that the larger the proportion
of R state UT selecting the D2D-assisted MEC synergistic task-
offloading method α, the more likely network paralysis will occur.
A higher initial proportion of R state UT ρ0 indicates a greater
volume of computational tasks that need to be offloaded in a
short period at the initial stage, thus requiring a smaller α to
cause network paralysis. Comparing the variation of H(∞) with
α for ρ0 = 0.05, ρ0 = 0.10, and ρ0 = 0.15 in Figure 5, it can be
observed that the larger the initial proportion of R state UT ρ0, the
smaller the critical offloading probability corresponding to network
paralysis caused by task overload on a large number of A UT. This
demonstrates that the theoretical analysis results are consistent with
the simulation outcomes.

Figure 5 shows the variation pattern of the proportion of UT in
the finalH state,H(∞), with the offloading propagation probability,
α, as the maximum number of R state UT that a single A state
UT can serve, Tq, changes. The other parameters are set as N =
104, α ∈ [0,1], γ = 1.0, ⟨k⟩ = 10, ρ0 = 0.10, Tp = 50 and q = 0.98. As
observed in Figure 5, when a single A state terminal can only serve
one R state terminal Tq = 1, H(∞) gradually increases in a small
range before reaching the critical offloading propagation probability,
αc, at which point a discontinuous phase transition occurs, leading
to network paralysis. As the maximum number of R state terminals
that a single A state terminal can serve increases Tq = 2 and Tq =
3, the critical offloading propagation probability at which task
overload causes a large number of A state terminals to fail, resulting
in network paralysis, also increases. Additionally, by comparing
the variation trends of H(∞) with the offloading propagation
probability α for Tq = 1, Tq = 2 and Tq = 3, it can be observed
that the stronger the task-offloading service capacity of a single
A state terminal, the greater the increase in the proportion of H
state terminals when the network stabilizes at the critical offloading
propagation probability. However, when Tq = 4, H(∞) increases
slowly within a small range as α increases, and nomatter how large α
becomes, H(∞) will not undergo a discontinuous phase transition,
meaning that network paralysis does not occur. From this, it can
be inferred that the stronger the service capacity of a single A state
terminal, the larger the proportion of R state terminals allowed
to select mobile edge synergistic task-offloading before network
paralysis occurs. If the service capacity of a single A state terminal
is sufficiently strong, the task-offloading capacity of the mobile edge
synergistic computing network will be able to handle the task load,
keeping the network in a stable state without the risk of paralysis.
Simulation results indicate that if the proportion of user terminals
opting for D2D-assisted MEC synergistic task-offloading remains
below the critical offloading propagation probability, network
paralysis can be avoided. Therefore, controlling the proportion
of user terminals selecting D2D-assisted MEC synergistic task-
offloading is essential to ensuring the stability and efficiency of the
synergistic task-offloading network.
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FIGURE 4
The impact of the initial proportion of R state user terminals ρ0 on the variation of the proportion of final H state user terminals H(∞) with the
offloading propagation probability α in ER networks.

FIGURE 5
The impact of the maximum number of R state user terminals that a single A state terminal can serve, Tq, on the variation of the proportion of terminal
users in the final H state, H(∞), with the offloading propagation probability, α, in ER networks.

Figure 6 illustrates the growth trend and pattern of the
proportion of terminal users in the final H state, H(∞), with
the offloading propagation probability, α, as the network topology
of the ER network changes. The other parameters are set as

N = 104, α ∈ [0,1], γ = 1.0, Tq = 2, ρ0 = 0.08, Tp = 50 and q = 0.95.
As shown in Figure 6, when the average degree is relatively low
(⟨k⟩ = 5), the connections between the network nodes are sparse,
and H(∞) shows almost no increase with increasing offloading
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FIGURE 6
The variation curve of the proportion of users terminal in the final H state, H(∞), with the offloading propagation probability, α, under different average
degree ⟨k⟩ values in ER networks.

propagation probability, α, and no phase transition is observed.
As the average degree increases (⟨k⟩ = 8, ⟨k⟩ = 10, and ⟨k⟩ =
15), H(∞) increases continuously within a small range as α
increases, until a discontinuous phase transition occurs at the
critical offloading propagation probability. Moreover, the larger
the ⟨k⟩, the smaller the critical offloading propagation probability
at which the first-order discontinuous phase transition of H(∞)
occurs. In practical mobile communication networks, the average
degree ⟨k⟩ represents the average number of communication links
established by each dynamic entity (UT or ES) with ⟨k⟩ other
UT (or ES), enabling the transmission of offloaded computational
tasks. A larger average degree ⟨k⟩ means that, on average, each
UT (or ES) has more communication links with neighboring
devices, resulting in a more tightly connected network, which is
more conducive to task offloading propagation. Under constant
conditions of other parameters, a larger network average degree
⟨k⟩ leads to faster and earlier global diffusion of task offloading,
while reducing the maximum proportion of R state UT allowed
to choose mobile edge synergistic task-offloading. Therefore,
controlling the average number of communication links (i.e., the
network connectivity density) among devices (UT and ES) can help
prevent network paralysis caused by task overloads from a large
number of UT.

Figure 7 illustrates the impact of the degree distribution
heterogeneity of the SF network on the variation trend of the
proportion of UT in the final H state, H(∞), for the offloading
propagation probability, α. The other parameters are set as N =
104, α ∈ [0,1], γ = 1.0, Tq = 2, ρ0 = 0.08, Tp = 100 and q = 0.95. It
can be observed from the figure that when the degree distribution
exponents, v, are 2.0, 3.0, and 3.9, there are two trends in the
growth of H(∞) as α increases: when the probability of R state

UT opting for D2D-assisted MEC synergistic task-offloading is
relatively low, H(∞) decreases as v increases; conversely, when
the probability is relatively high, H(∞) increases with the growth
of v. This is because, for scale-free networks with a power-law
degree distribution (such as SF networks), the smaller the degree
distribution exponent v, the stronger the heterogeneity of the
network’s degree distribution. In such networks, there is a large
number of nodes with very small degrees and a few nodes with
very large degrees. When the propagation probability is relatively
low, the nodes with smaller degrees, which are more numerous,
play a major role in information dissemination and are more
likely to receive information fragments exceeding the threshold,
thereby undergoing state transitions. However, as the propagation
probability increases, the influence of high-degree nodes on the
dissemination process gradually becomesmore significant, reducing
the probability of smaller-degree nodes adopting the behavior,
ultimately resulting in a smaller propagation scale [39]. Additionally,
it can be observed from the figure that as the degree distribution
exponent v increases, the variation trend of H(∞) with the
offloading propagation probability α transitions from a second-
order continuous phase transition to a first-order discontinuous
phase transition. Through extensive simulations, a critical degree
distribution exponent, vc = 3.9, was identified. When v < vc, H(∞)
exhibits continuous growth, while when v > vc, H(∞) shows
discontinuous growth. These two phenomena indicate that as the
network becomes more uneven, deploying high-degree nodes as S
state devices can prevent the network fromcrashing prematurely due
to task overload in a large number of UT. The higher the maximum
proportion of R state UT allowed to request D2D-assisted MEC
synergistic task-offloading, the greater the network’s stability and
efficiency.
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FIGURE 7
The variation pattern of the proportion of terminal users in the final H state, H(∞), with respect to the offloading propagation probability, α, for different
degree distribution exponents v in SF networks.

FIGURE 8
The impact of offloading propagation probability α and the maximum number of R state user terminals Tq that can be served by a single A state user
terminal on the proportion of final H state user terminals H(∞) in a SF network with heterogeneous degree distribution.

As shown in Figure 8, this paper further investigates the
impact of the maximum number of R state UT, Tq, that can be
served by a single A state UT on the proportion of final H state
UT, H(∞), as it changes with the task offloading propagation

probability, α, in a SF network with a power-law degree distribution.
When Tq = 1, Tq = 2, and Tq = 3, H(∞) increases continuously
with α within a small range, and starts to increase sharply
at the critical offloading propagation probability. Moreover, as
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Tq increases, the growth trend of H(∞) with α shifts from
continuous to discontinuous, and the critical offloading propagation
probability, at whichH(∞) increases sharply, becomes larger. When
Tq = 4, H(∞) only increases continuously within a small range
without a sudden increase as α rises. By comparing Figures 5, 8,
it can be seen that the effect of Tq on the variation of H(∞)
with α in an SF network is generally consistent with its effect in
an ER network. This demonstrates that, regardless of whether the
network structure is ER or SF, the stronger the service capability of
a singleA state UT, the more stable the network becomes.Therefore,
improving the task-offloading service capability of UT is an effective
method to enhance the efficiency and stability of 6G edge synergistic
computing networks.

5 Conclusion

This paper investigates the dynamics, evolutionarymechanisms,
and influencing factors involved in task-offloading propagation
within the context of a 6G edge synergistic computing network.
Based on propagation dynamics theory, a SARH task offloading
propagation model is established. Furthermore, two types of state
transition linear threshold functions are proposed to characterize
the differences in task processing capabilities and capacities between
UT and ES. Through mathematical methods, the saddle point of
the dynamic equations is derived, and critical conditions leading to
network paralysis in 6G edge synergistic computing networks are
obtained.These findings provide theoretical insights into preventing
paralysis in edge networks, contributing to the stable deployment
of edge communication networks. Simulation results demonstrate
that the proposed task-offloading propagation dynamics model
effectively describes the behavior and characteristics of task-
offloading in 6G edge synergistic computing networks. Additionally,
through the analysis of simulation outcomes, several conclusions
are drawn that help to avoid network paralysis, thereby enhancing
network efficiency and stability. In future work, we aim to
further improve the task-offloading propagation dynamics model
based on this research, incorporating factors such as terminal
selfishness and heterogeneous user behaviors to better align
the model with real-world scenarios and accommodate more
complex conditions.
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