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Interfacial stability control of
MHD Bingham fluids in
micro-porous MEMS structures
via fractal analysis
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1Department of Mathematics, Faculty of Education, Ain Shams University, Cairo, Egypt, 2Department
of Physics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

This study investigates Magnetohydrodynamics (MHD) interfacial stability in
Bingham fluids moving in micro-porous MEMS structures with fractal space
characteristics. The study uses nonlinear boundary conditions to study motion
equations, resulting in a nonlinear partial differential equation for interface
displacement with complex coefficients. The study also uses a modified
Lindstedt-Poincaré transformation to express the elevation amplitude equation
in fractal space, which is converted to a linear form using the harmonic
equivalent linearization approach (HELA). The study presents diagrams to
illustrate and interpret the resulting stability characteristics, providing valuable
insights into interface stability under nonlinear and fractal effects. These
results have direct application to fluid interface stability in microporous MEMS
(microelectromechanical systems) devices, such as sensors, actuators, and
microfluidic systems.
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1 Introduction

For a wide range of miniature devices, including sensors, actuators, and microfluidic
systems, the performance and dependability of controlling the interfacial balance of fluids
within micro-porous MEMS systems is crucial. In such restricted spaces, fluid conduct is
dominated by capillary forces, floor tension, and viscous interactions because of the high
floor-area-to-volume ratio. Complex interfacial dynamics are introduced by the presence of
microporous materials, especially whenmultiple immiscible fluids or viscoelastic media are
involved. Avoiding interruptions like fingering instabilities, bubble entrapment, or channel
blockage—which can impair device performance or lead to failure—requires maintaining a
stable interface. According to research, controlling fluid interface behavior and decreasing
instabilities in micro-structured domains may be possible by adjusting elements such as
pore geometry, surface wettability, electric fields, and external vibrations [1–6]. The use
of electrowetting, surface patterning, and dielectrophoretic control to dynamically tune
interfacial anxiety and enhance stability in MEMS-based completely microfluidic channels
has been investigated in recent research [7, 8]. These discoveries are critical to developing
precision fluidmanipulation inMEMS technologies used in powermicrostructures, lab-on-
a-chip devices, and biological diagnostics.
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Tian and colleagues were the first to incorporate fractal
geometry into MEMS design, creating fractally modified models
including graphene-based parallel plate systems. Their research
demonstrated that the fractal dimension of porous media affects
pull-in stability and can be adjusted, establishing a strong basis
for fractal analysis in micro porous MEMS fluid and electro-
mechanical interactions [9]. The min-review article explores
periodic properties of micro-electro-mechanical systems using
various methods, introduces fractal MEMS systems, and discusses
future prospects, focusing on recent developments [10]. The
examines the static and dynamic behavior of graphene cantilever
beam resonators under electrostatic actuation. It presents a
nonlinear static problem solution and calculates the generalized
stiffness coefficient for a lumped cantilever model under tip loading.
The study focuses on the dynamic pull-in phenomenon and the
influence of excitation frequency on the system’s dynamic response,
emphasizing the importance of frequency selection in designing
stable graphene-based MEMS resonators [11].

Bingham fluids (BF), a class of viscoelastic materials, exhibit
yield stress behavior, meaning they behave as solids until a
critical stress is exceeded, and flow like viscous fluids [12, 13].
The Bingham model is characterized by two main factors: yield
shear stress and viscosity. When the yield stress is exceeded,
the material shows quasi-Newtonian flow; nevertheless, when
the deviatoric stress tensor magnitude is smaller than the yield
stress, the material remains rigid. The yield stress minus the
applied shear stress dictates the deformation rate in thin-film flow.
Bird et al. [14] categorized materials exhibiting yield stress and
provided preliminary characterizations in fundamental flow fields.
Bingham fluids are widely used in engineering and geophysical
applications because of their specific properties, including drilling
muds, suspensions, and biological fluids [15].

Bingham fluid flow stability, particularly in porous media, is
crucial for industrial operations such as enhanced oil recovery
and groundwater remediation [16, 17]. External influences, such as
magnetic fields or pressure gradients, can destabilize the interface
of immiscible Bingham fluids, resulting in complex interfacial
dynamics [18]. The combination of viscoelasticity, porosity, and
surface tension significantly impacts the initiation and evolution of
instabilities in these fluids [19]. Integrating Bingham fluid dynamics
with magnetohydrodynamics (MHD) yields new insights into the
behavior of viscoelastic fluids under magnetic fields, with important
implications for industrial and biological applications [20]. Bingham
fluids have been extensively studied in particle physics due to their
unique viscoelastic character, which is beneficial in both natural
and industrial applications. Real-world fluids include blood, filth,
ice, lubricating oil, fresh concrete, polymers, and paint. They are
further classified into two types: Bingham plastic and Bingham
pseudoplastic fluids, which are non-Newtonian but exhibit differing
yield stress features.

A physically consistent particle-based BF simulation method
was developed to understand BF dynamics better [21]. In addition,
mathematical modeling has been applied to study BF flow in porous
media using a multi-membrane pumping mechanism [22]. More
research investigated the ion-slip effects in MHD events when
Bingham fluids flowed between two porous plates under suction
conditions [23].

The stability of Bingham fluid flow has been investigated
in several scenarios. For example, stability criteria in laminar
Bingham-Poiseuille flows have been examined, notably in the case
of fluid sheets descending sloping planes [24]. Studies on oblique
channel flows have demonstrated that the Bingham parameter has a
stabilizing influence on liquidmotion. Furthermore, amathematical
model was developed to characterize different BF inputs within
a channel [25].

Yield stress fluids interact with porous media, increasing
complexity due to nonlinear rheology and medium heterogeneity
[26]. Avalanches were triggered at one end of the system to examine
the statistical properties of non-flowing surfaces, emphasizing the
yield stress and plastic viscosity of Bingham fluids. Furthermore,
numerical solutions have been developed to calculate velocity
and temperature fields in time-varying Couette-Poiseuille flows of
Bingham fluids [27, 28].

Electromagnetic effects have also been investigated in BF
research, specifically the role of the Hall current, which is influenced
by electron transitions between Landau levels induced by an
electromagnetic wave’s electric andmagnetic fields [29]. Researchers
have also looked at the transport of viscoelastic liquids across
uneven microchannels, considering viscosity changes and porous
media [30]. Further study has focused on viscoelastic liquids’ energy
transport characteristics and inflowbehavior, providing insights into
their complex dynamics in constrained spaces [31].

Fractal analysis in fluid mechanics has been utilized to
understand and study various natural systems, including fluid
mechanics and geophysical geometrical formations [32]. Because
of the complex and frequently aberrant behaviors found in such
environments, research into fluid features inside fractal spaces has
received a lot of attention [33]. Fractal spaces, with non-integer
dimensions and self-similar features, have different fluid dynamics
than regular Euclidean spaces [34]. Fractal geometries exhibit
anomalous diffusion, which occurs when particles’ mean squared
displacement (MSD) deviates from the linear dependence observed
in normal diffusion. Fractals’ complicated and convoluted paths
impede or facilitate fluid movement in non-uniform ways. Studies
have shown that the medium’s fractal structure in percolation
clusters significantly impacts diffusion rates, resulting in sub-
diffusive behavior. Restricted spatial characteristics in fractal
environments reduce molecular mobility, resulting in lower MSD
values compared to unconstrained situations. This behavior is
commonly observed in several systems, including biological cell
plasma membranes, where anomalous diffusion is used to study
membrane architecture [35].

Furthermore, fractal dimensionality affects energy dissipation
rates in fluid flows, influencing stability and turbulence
characteristics. Research on the thermodynamics and pair
correlations of fractal liquids shows that the non-Euclidean structure
necessitates new theoretical approaches for accurate exploration.
These findings are essential in disciplines like porous media
flow, where fractal geometry influences transport and mechanical
properties. Recent studies have investigated engineered fractal
fluid transport systems for several applications [36, 37]. Feng’s
study develops a two-scale fractal-fractional oscillator model for
porous media vibration systems, using He’s frequency formula
and Ma’s modification. The model reveals the fractal dimension
significantly influences attenuation behavior, demonstrating the
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versatility of fractal-based analytical techniques in dynamic and
structural systems [38].

The two-scale fractal theory to calculate the fractal dimensions
of porous concrete, focusing on the effects of porosity and pore size
on strength. It proposes mathematically reliable formulations and
dimensionless models for concrete properties. The theory also uses
nano/micro particles’ size and distribution for strength prediction,
providing new insights into optimal concrete design [39].

A fractal pore-scale model is used to study fluid flow,
heat conduction, and gas diffusion through saturated porous
material. The results show strong correlations between conductivity
properties and pore structure changes. This method provides
insights into transport processes, oil and gas resources, energy
storage, carbon dioxide sequestration, and fuel cell applications
[40]. Using box-counting techniques to analyze aggregate size
distributions and determine fractal gradation, Gao et al. [41]
showed that the fractal dimension of recycled concrete aggregate
significantly influences key mechanical properties—such as
workability, strength, and durability.

Experimental two-phase invasion percolation flowpatternswere
observed in hydrophobicmicro-porous networks designed tomodel
fuel cell-specific porous media. The inlet channels were invaded
homogeneously, and fractal breakthrough patterns were analyzed
to quantify flooding density and geometrical diversity. Fractal
analysis confirmed that the experiments fall within the flow regime
of invasion percolation with trapping. The fractal dimension, D,
was proposed as a parameter for modeling liquid water transport
in the GDL [42].

A modified Lindstedt-Poincaré transformation is used in this
study to evaluate the interfacial stability of MHD Bingham fluids
in fractal space. This study expands on standard stability analysis
by using fractal behavior to comprehend better the complex
dynamics of fluids in porous and irregular media. The study
focuses on developing a nonlinear governing equation for interfacial
displacement and translating it to a more manageable form
using advanced linearization techniques. The modified Lindstedt-
Poincaré transformation is employed in this study to create the
system’s fractal behavior and to offer a more explicit specification of
the stability conditions that govern the interface.The effect of fractal
parameters, magnetic fields, and viscoelastic properties on stability
and frequency dynamics is thoroughly studied. This technique
advances our theoretical understanding of interfacial dynamics in
MHDBinghamfluidswhile also providing insights into engineering,
geophysics, and industrial processes in which non-Newtonian fluids
interact with electromagnetic fields in complex situations.

2 Problem structure

A planar contact separating two immiscible Bingham fluids in
a permeable medium will be investigated to understand our study’s
physical model better. The fluids are entirely saturated in a fractal
porous structure and inhabit the regions y < 0 and y > 0.These fluids
are subjected to external magnetic fields, as illustrated in Figure 1.
A uniform magnetic field is applied perpendicular to the interface,
expressed as B(j) = (0,ε(j)H(j)0 ), where j = 1,2, and ε represents
the magnetic permeability, B is the magnetic induction vector,
and H0 represents the magnetic field. Given the assumption of

a small magnetic Reynolds number, the induced magnetic field
(MF) is neglected, indicating that fluid movement has minimal
influence on the applied MF. The Bingham BF exhibit yield stress
behavior, meaning they behave as solids under low stress and
transition to viscous flow once the applied stress surpasses a critical
threshold. The porous medium follows a fractal geometry, where
porosity and permeability depend on scale. The upper and lower
fluids may possess distinct rheological and magnetic properties,
which directly impact system stability. Fluid movement in the
porous medium is governed by Darcy’s law, which is particularly
relevant in slow, creeping flow conditions. This empirical law
establishes a relationship between the liquid’s viscosity, themedium’s
permeability, and the flow rate. Physically, Darcy’s law serves as a
crucial link between liquid dynamics and physiological processes,
where gravitational acceleration influences the system, represented
as g = − gey, with ey being the unit vector along the vertical -axis.

Interfacial instability can occur due to a variety of variables,
including shear effects produced by velocity differences, magnetic
field fluctuations that alter pressure distribution, and fractal effects
that influence wave propagation. Capillary action and biological
systems with fluid movement determined by viscosity and medium
permeability are examples of such instabilities. In these instances,
permeability is usually assumed to be constant for both non-
Newtonian fluids, making the mathematical analysis easier. The
study employs a two-dimensional Cartesian coordinate system (x,y),
with the x-axis horizontally aligned between the two fluid layers and
the y-axis vertically orientated.The fluids in the lower and top layers
have different densities ρ(1) and ρ(2) andmagnetic permeabilities μ(1)

and μ(2). The liquid layers are propelled in a positive x-direction
stream by μ(1) and μ(2), respectively.

Because of the minor disturbance for the equilibrium state, a
little elevation for the flat interface in the direction of the vertical
orientation is described by Equation 1, where t is the time and x
represents the horizontal spatial coordinate along the interface.

y = ζ(x, t), (1)

Surface deflection refers to the rise or displacement of a contact
from its initial equilibrium position.This function provides insights
into the system’s stability by quantifying how an external disturbance
affects the interface, causing it to deviate from its flat, undisturbed
state. One approach to defining the increment function as in
Equation 2 [33]:

ζ(x; t) = η(t) cos kx. (2)

The arbitrary function η(t) governs the amplitude of the
interface disturbance, while k determines the spatial frequency of
the disturbance (wavenumber). Studying this relationship enables
an examination of the system’s response to perturbations, which
is highly valuable for predicting interfacial behaviors in fluid
dynamics and material science applications. Assume that the
Dirichlet boundary condition stated below Equation 3:

ζ(0, t) = η(t), (3)

Considering there are two initial conditions (see Equation 4) for
the function η(t)

η(0) = A and η̇(0) = 0 (4)
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FIGURE 1
Sketch the physical model of the structure.

where A refers to the magnitude of the original disturbance. The
normal mode technique displays the increase of a disturbance at the
contact as Equation 5:

ζ(x, t) = η(t)eikx + c.c. (5)

The complex conjugate terms (c.c) are utilized in mathematical
analysis to facilitate the study of interfacial responses in two-phase
systems. They enable the use of complex exponentials to represent
temporal and spatial variations in interface increments, simplifying
differentiation and integration in stability analysis. This notation
is commonly applied in fluid dynamics, wave phenomena, and
stability analysis [33].

The formula S(x,y; t) = y− ζ(x; t) represents the interface
equation. The unit outward normal perpendicular to the surface
interface can be described as Equation 6 [43]:

n = ∇S
|∇S|
= (−ikζex + ey)(1− k

2ζ2)−1l2, (6)

Bingham fluids move according to the Bingham plastic model,
which describes the connection between shear stress and shear rate
in viscoplastic materials. According to this model, a Bingham fluid
acts like a rigid body at low shear stresses but becomes a viscous
fluid when the applied shear stress surpasses a particular yield
stress. The constitutive equation for a Bingham fluid is written as
Equation 7 [44]:

ς = ς0 + μpγ̇, (7)

where ς is the shear stress, ς0 yield stress, μp plastic viscosity, and γ̇
shear rate. This equation states that the fluid will not deform (i.e.,
γ̇ = 0) unless the applied shear stress ς exceeds the yield stress ς0.
When this threshold is exceeded, the fluid flows with viscosity μp.
Materials that exhibit this tendency include toothpaste, mayonnaise,
and certain drilling muds.

2.1 Governing equations of motion

The Bingham plastic idea has been demonstrated to
appropriately reflect numerous fluids found in porous media [44].
As a result, Bingham fluid motion can be described using Cauchy’s
mass and momentum conservation equations:

ρ[
∂V
∂t
+ (V.∇)V] = −∇P+∇.σ− ρgey + J∧B−

μp
β
V, (8)

and the continuity Equation 9

∇.Vj = 0, (9)

where V is the velocity vector, σ is the fluid stress tensor, P is the
hydrodynamic pressure and J is the electric current density.

The total, hydrodynamic, and magnetic stress tensors can be
expressed as Equations 10, 11:

σij = σ
hydro
ij + σ

mag
ij (10)

σhydroij = −P
(j)δij + (ς

(j)
0 + μ
(j)
p γ̇),  and σmag

ij = −HiBj −
1
2
εH2

j δij. (11)

Newtonian fluids are widely known for having a constant
viscosity that does not change with applied stress or shear rate,
resulting in a linear relationship between stress and strain rate
that passes through the origin. In contrast, Bingham fluids have
a yield stress, which means that a specific level of stress must be
exceeded before flow occurs. Other non-Newtonian fluids include
dilatant (shear-thickening) fluids, in which viscosity increases as
shear rates climb (e.g., cornstarch in water), and pseudoplastic
(shear-thinning) fluids, in which viscosity falls with rising shear
rate. The Bingham fluid model is unique in that it encompasses the
concept of yield stress, unlikemany other non-Newtonian fluids that
have a continuous relationship between stress and strain rate but no
defined yield point.

The fundamental theory of motion is developed using the
viscous potential theory (VPT), which incorporates the Brinkman-
Darcy equation as well as fluid flow in porous media. Fluids are
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regarded as irrotational in VPT, and the derivations presented in this
study are consistent with VPT concepts. The viscoelastic effects are
analyzed through the application of Brownian motions, along with
the primary governing equations for typical fluid phases exhibiting
viscoelastic behavior.

The generalizedOhm’s law equations are expressed by Equations
12, 13 [45]:

J = εH(E+V∧B), (12)

and
∇.B = 0,and ∇∧E = 0, (13)

where εH is the electrical conductivity and E represents the
intensity of the electric field. We ignore the effects of ionized
gas polarization and assume that the electric field vector (EF) is
zero. This assumption simplifies the research by removing external
influences and ionization-related issues. When the EF vector is
set to zero, the governing equations only explain the travel and
behavior of charged particles through internal mechanisms. This
strategy is frequently used in theoretical studies to reduce system
complexity and focus on certain phenomena without interference
from other sources.

It is generally known that a quasi-static approximation can
be used in MHD. This approximation assumes that dynamic
magnetic forces have negligible influence, resulting in an irrotational
magnetic field (MF) that lacks curl. The MF can be represented
as a gradually varying magnetic scalar potential χ(x, y, t). The
magnetic scalar potentials must meet Laplace’s equation, which
determines their spatial distribution within the system, to satisfy the
bulk equations (∇∧H(j)0 = 0). Thus, when the separation surface is
disturbed, the MF is stated in Equations 14, 15 [46]:

B(j) = B(j)0 ey −∇χ
(j)(x,y; t), (14)

∇2 χ(j)(x,y; t) = 0. (15)

The distribution of the magnetic potential χ(j)(x,y; t) may be
exhibited as:

χ(1)(x,y; t) = q(1)(t)ek(ix+y),−∞ ≤ y ≤ ζ, (16)

χ(2)(x,y; t) = q(2)ek(ix−y),  ζ ≤ y ≤∞, (17)

where q(j)(t) must be determined using the applicable
boundary criteria.

The expression for the equilibrium state is given in
Equations 18, 19

P(j)0 = −ρ
(j)gy−(

μ(j)p
β
+ ε(j)H B(j)20 )U

(j)
0 x+C(j)0 , (18)

where

C(1)0 −C
(2)
0 = ς
(1)
0 − ς
(2)
0 − (ρ

(1) − ρ(2))g y− 1
2
(ε(1)H(1)20 − ε

(2)H(2)20 )

−((
μ(1)p
β
+ ε(1)H B(1)20 )U

(1)
0 −(

μ(2)p
β
+ ε(2)H B(2)20 )U

(2)
0 )x.

(19)

Because of the slight disturbance, the full velocity can
be represented as a potential ψ function of x, y, and t by

Equations 20, 21:

V(j) = U(j)0 ex +∇ψ
(j) = (U(j)0 + ikψ

(j))ex +
∂ψ(j)

∂y
ey. (20)

The potential ψ must meet the following Laplace equation:
∇2ψ(j)(x,y; t) = 0. (21)

The distribution of the potential velocity function ψ(j)(x,y; t) can
be expressed as

ψ(1)(x,y; t) = Λ(1)(t)ek(ix+y),−∞ ≤ y ≤ ζ, (22)

ψ(2)(x,y; t) = Λ(2)(t)ek(ix−y),  ζ ≤ y ≤∞, (23)

where Λ(j)(t) is determined with the required boundary condition.
The pressure function P(j)(x,y; t) can be expressed as follows,

based on the equation of motion (2) and the velocity potential
ψ(j)(x,y; t):

P(j)(x,y; t) = −ρ(j)g y− ρ(j) ∂
∂t
ψ(j)(x,y; t) −(

μ(j)p
β
+ εHB
(j)2
0 )ψ

(j)(x,y; t). (24)

2.2 Boundary conditions

To accurately analyze liquid inflow and its interactions with
the magnetic field (MF), it is essential to determine both the
hydrodynamic and magnetic stresses precisely. The boundary
conditions (BCs) necessary for this computation are derived from
well-established formulations [33, 44–46] and play a crucial role
in defining the system’s behavior at its limits. Equations 25–27
representes BCs ensure that the physical laws regulating the
interaction between the liquid and the MF are correctly applied
by imposing the required limits on the system’s stress distribution.
Consequently,

ζt + ik(U
(j)
0 + ikψ

(j))ζ =
∂ψ(j)

∂y
,  at y = ζ, (25)

n∧ (H(1)0 −H
(2)
0 ),  at y = ζ, (26)

and
n . (ε(1)H(1)0 − ε

(2)H(2)0 ) = 0,  at y = ζ. (27)

Applying these conditions to the solutions Equations 16, 17, 22,
23 results in Equations 28–31

χ(1)(x,y; t) =
kε(2)(H(1)0 −H

(2)
0 )ζe

k(y−ζ)

k(1+ kζ)(ε(1) + ε(2))
, (28)

χ(2)(x,y; t) = −
kε(1)(H(1)0 −H

(2)
0 )ζe

k(ζ−y)

k(1− kζ)(ε(1) + ε(2))
, (29)

ψ(1)(x,y; t) =
(ζt + ikU

(1)
0 ζ)

k(1+ kζ)
ek(y−ζ), (30)

ψ(2)(x,y; t) = −
(ζt + ikU

(2)
0 ζ)

k(1− kζ)
ek(ζ−y). (31)
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As a consequence, the pressure distribution given in Equation 24
results in Equations 32, 33

P1 ⁢ (x,y; t) = −ρ1 ⁢g y− ek(y−ζ)

k (1+ kζ)

⁢(ρ1 ⁢ ( ζtt + ikU1
0 ⁢ζt) +(

μ1p
β
+ εH ⁢B
(1)2
0 ) ⁢( ζt + ikU

1
0 ⁢ζ)),

(32)

P2 ⁢ (x,y; t) = −ρ2 ⁢g y+ ek(ζ−y)

k (1− kζ)

⁢(ρ2 ⁢ ( ζtt + ikU2
0 ⁢ζt) +(

μ2p
β
+ εH ⁢B
(2)2
0 ) ⁢( ζt + ikU

2
0 ⁢ζ)) .

(33)

The boundary condition indicates that surface tension σT
induces a discontinuity in the perpendicular component of the stress
tensor at the interface, resulting from differential strains across
the contact [43]. This discontinuity arises due to the equilibrium
between fluid forces and surface tension at the interface.

k2 ⁢ζ2 ⁢ (σ111 − σ
2
11) + 2ikζ (σ

1
21 − σ

2
21) − (σ

1
22 − σ

2
22)

= −k2 ⁢σT ⁢ζ(1− k
2ζ2)−1/2,y = ζ. (34)

The preceding solutions, along with condition Equation 34, can
be used to derive the nonlinear discriminant equation after some
straightforward computations.

To simplify and handle the problem, a non-dimensional analysis
may be applied. Several dimensionless physical parameters are
derived and listed below:

TheWeber numeral:We = ρ1U
2
1L/σT,

The Darcy numeral: Da = β/L2,
The Bond numeral: Bd = ρ1gL

2/σT,
The Bingham parameter: Bg = ς

(1)
0 L(μ(1)p U(1)0 )

−1
,

TheHartman numeral: Ha2 = εHL
2B(1)0 B(2)0 /μ

(1)
p ,

The Ohnesorge numeral: Z = μ(1)p /√ρ(1)σTL,

TheMagnetic Bond numeral: H = √Lε(1)H(1)0 H(2)0 /σT.
Further, some helpful physical ratios are listed below:

ρ = ρ2/ρ1,  ε = ε2/ε1,U = U2
0/U

1
0,

μ = μ2p/μ
1
p and ς0 = ς20/ς

1
0,ρ
∗ = (

ρ− 1
ρ+ 1
).

3 The nonlinear discriminant equation

The objective at this stage is to analyze the system’s
nonlinear characteristic equation, which provides insight into its
stability and dynamic behavior. This characteristic equation is
derived from Equation 34 and is expressed as:
(1+ kρ∗ ⁢ζ+ k2 ⁢ζ2) ⁢ζtt + ((a1 + ib1) ⁢ (1+ k2 ⁢ζ2) + (a2 + ib2) ⁢ζ) ⁢ζt
+ (a3 + ib3) ⁢ζ+ (a4 + ib4) ⁢ζ2 + (a5 + ib5) ⁢ζ3 = 0, (35)

The coefficients aj andbj have been expressed in non-
dimensional form and are listed in the Appendix.

Rewriting complex coefficients in polar form provides a more
intuitive framework for analyzing oscillations, phase correlations,
and stability in systems like those described in Equation 35.
Consequently, the complex coefficients in Equation 35 can be

expressed in polar form as represents in Equations 36, 37
aj + ibj = rj e

iθj , (36)

where the phase θj and amplitude aj are defined as

rj = √a2j + b
2
j  and θj = tan

−1(
bj
aj
) (37)

Thus, it becomes essential to represent the complex
coefficients in Equation 35 in a more descriptive form. This allows
for a clearer understanding of their behavior and facilitates the
analysis of their contribution to the system’s dynamics:

(1+ kρ∗ ⁢ζ+ k2 ⁢ζ2) ⁢ξtt + ((1+ k2 ⁢ζ2) ⁢r1 ei θ1

+ r2 e
i θ2 ⁢ζ) ⁢ζt + r3 ⁢e

iθ3 ⁢ζ+ r4 e
i θ4 ⁢ζ2 + r5 e

iθ5 ⁢ζ3 = 0. (38)

When the complex conjugate of Equation 38 is added to the
equation itself, the real part of the coefficients is preserved, while
the imaginary part is eliminated. This process ensures that the
coefficients become purely real, thereby simplifying the equation’s
structure andmaking it more straightforward to interpret and solve.

(1+ kρ∗ ⁢ζ+ k2 ⁢ζ2) ⁢ζtt + ((1+ k2 ⁢ζ2) ⁢r1 cosθ1
+ζr2 cosθ2) ⁢ζt + (r3 cosθ3) ⁢ζ+ (r4 cosθ4) ⁢ζ2

+ (r5 cosθ5) ⁢ζ3 = 0. (39)

Because this equation is a partial differential equation involving
two independent variables, x, and t, but contains derivatives only
concerning t, it is advantageous to rewrite Equation 39 using
the boundary condition (3). This reformulation simplifies the
equation as follows:

(1+ kρ∗ ⁢η+ k2 ⁢η2) ⁢η̈+ ((1+ k2 ⁢η2) ⁢r1 cosθ1
+ ηr2 cosθ2) ⁢η̇+ (r3 cosθ3) ⁢η+ (r4 cosθ4) ⁢η2

+ (r5 cosθ5) ⁢η3 = 0. (40)

The simplified Equation 40 is a nonlinear ordinary differential
equation involving a single variable. Its structure resembles that of a
Van der Pol equation, characterized by its nonlinearity.

To adapt this nonlinear equation to fractal space characteristics,
we assume that Equation 40 possesses a total frequency Ω.
Utilizing this assumption, we employ the following definition in
Equation 41 [47]:

τα =Ωt, (41)

where α is a fraction power defined as 0 < α ≤ 1. For the specific case
of α→ 1 the classical Lindstedt-Poincaré transformation arises. As
a result, the following transformations are necessary:

Accordingly, the definition of the fraction power (α), the
following transformations are required.

η̇(t) =
∂η
∂τα

∂τα

∂t
→Ω

dη
dτα
, (42)

Consequently, we have

η̈(t) →Ω2 d
2η

dτ2α
. (43)

In the situation of α→1, the classical Lindstedt-Poincaré
transformation is applicable. Assuming that the derivative
concerning the new variable τα follows He’s fractal derivative
formulation [46, 48, 49], this generalization extends the classical
derivative to incorporate non-local or fractal-like characteristics.
He’s fractal derivative approach allows the fractional derivative
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of order α\alphaα to capture complex multi-scale processes, such
as memory effects or anomalous diffusion, which cannot be
adequately described using classical calculus. As a specialized form
of fractional derivative, He’s fractal derivative is frequently applied
to dynamic systems exhibiting fractal properties. The derivative
can take on non-integer orders (α), providing a framework that
bridges the gap between purely local (integer-order) and non-local
(fractional-order) dynamics.

As a result of transformations Equations 42, 43, Equation 40
takes on the fractal derivative form as

Ω2(1+ kρ∗η+ k2η2)
d2η
dτ2α
+Ω(r1 cosθ1(1+ k2η2) + ηr2 cosθ2)

dη
dτα

+ (r3 cosθ3)η+ (r4 cosθ4)η
2 + (r5 cosθ5)η

3 = 0 .
(44)

When the transformation in Equation 42 is applied to the initial
conditions given by Equation 8, the corresponding fractal initial
conditions can be expressed as

η(0) = A and 
dη(0)
dτα
= 0. (45)

Fractal derivatives offer a versatile mathematical framework
applicable to a wide range of real-world phenomena, including
astronomical events, geophysical fluxes, plasma physics, and
industrial processes like inertial confinement fusion. These
derivatives are particularly valuable for modeling systems that
exhibit memory effects, anomalous diffusion, or multi-scale
behaviors—dynamics that traditional integer-order derivatives fail
to capture effectively.

3.1 The process of converting the fractal
into a cubic nonlinear equation

The nonlinear frequency of the system is primarily determined
by the cubic nonlinearity of the restoring components, meaning
that the quadratic nonlinearity does not contribute directly to
the frequency structure. To address this limitation, a novel
representation has been developed to reconfigure the quadratic
nonlinearity while preserving the fundamental dynamics of the
original nonlinear system [50]. This strategy provides a more
practical way to comprehend the system’s behavior. El-Dib [51,
52] previously introduced a quadratic stiffness factor into the
restoring force to compute the system’s frequency and create a
solution that considers the effects of quadratic nonlinearity During
variable integration, a cubic term was used to replace the quadratic
component.Which enabled the systemdynamics to better reflect the
effect of quadratic nonlinearity. Consequently, Equation 44 can be
rewritten as in Equation 46 to reflect the restoring force regulated by
the quadratic nonlinearity:

Ω2 ⁢ (1+(k2 + 1
2
⁢kρ∗) ⁢η2) ⁢

d2η
dτ2α

+ Ω (r1 cosθ1 ⁢ (1+ k2 ⁢η2) +
1
2
⁢η2 ⁢r2 cosθ2)⁢

dη
dτα

+(r3 cosθ3) ⁢η+
1
3
⁢ (r4 cosθ4 + 3r5 cosθ5) ⁢η

3 = 0 .

(46)

This modification helps to comprehend the nonlinear
Equation 44. The quadratic nonlinearities that contribute to the
restoring force are transformed into an equivalent cubic effect

or strategically controlled. This reconfiguration creates a more
dynamically correct and analytically manageable model of the
system, allowing for a better understanding of its oscillatory
behavior. The above nonlinear equation can be converted into
its corresponding linearized form using the method described
in El-Dib’s review paper [53]. The linearized form can be
generated as follows:

Ω2a
d2η
dτ2α
+Ωb

dη
dτα
+ cη = 0. (47)

As is typical for the linearization procedure, a trial solution
matching to Equation 47 and its initial conditions Equation 45 can
be obtained as

η0(τ) = A cos Ωτα. (48)

Following the contents of El-Dib’s review work [53] and based
on the trial solution Equation 48, the coefficients in Equation 47 are
computed in Equations 49–51 as:

a =
∫
T

0
(1+ (k2 + 1

2 kρ
∗)η20)η

2
0dτ

α

∫
T

0
η20 dτ

α
= A2( 3

4
+ 5
8
A2k2 + 5

16
A2kρ∗); T = 2π

Ω
,

(49)

b =
∫
T

0
(r1 cosθ1 (1+ k2η20) +

1
2
η20r2 cosθ2)(

dη0
dτα
)
2
dτα

∫
T

0
( dη0
dτα
)
2
dτα

= (1+ 1
4
⁢A2 ⁢k2) ⁢r1 cosθ1 +

1
8
⁢A2 ⁢r2 cosθ2, (50)

c =
∫
T

0
((r3 cosθ3) +

1
3
(r4 cosθ4 + 3r5 cosθ5)η20)η

2
0 dτ

α

∫
T

0
η20 dτα

= r3 cos θ3 +
1
4
⁢A2 ⁢r4 cos θ4 +

3
4
⁢A2 ⁢r5 cos θ5. (51)

The study of the linearized form presented in Equation 47
assesses the system frequency by Equation 52 as

Ω4 = 4ac− b
2

4a2
. (52)

Incorporating the feedback value ofΩ into Equation 47 provides
a more accurate formulation that considers the system’s altered
frequency response. This phase is crucial for ensuring consistency
with the nonlinear framework, particularly for methods like
the Lindstedt-Poincaré transformation, which aims to improve
solution accuracy. Using the value of Ω makes Equation 47
more understandable, allowing for additional investigation into
system behavior.

d2η
dτ2α
+( b√2a

a(4ac− b2)
1
4

)
dη
dτα
+( 2c

√(4ac− b2)
)η = 0. (53)

A crucial step in the analysis Equation 47 is converting the
fractal model into its continuous-space counterpart. A promising
approach involves leveraging the methods outlined in the recent
work of El-Dib et al. [54, 55]. Building on these findings, the
following solution is proposed to address this challenge effectively:

dη
dτα
= δα−1 sin(1

2
πα)

dη
dτ
+ δα cos(1

2
πα)η. (54)
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Consequently, the second derivative can be expressed as
d2η
dτ2α
= δ2α−2 sin2 ⁢ (1

2
⁢πα) ⁢

d2η
dτ2
+ 2δα sin (1

2
⁢πα)

⁢cos (1
2
⁢πα)⁢

dη
dτ
+ δ2α cos2 ⁢ (1

2
⁢πα) ⁢η. (55)

Substituting (Equations 54, 55) into the Equation 53 reduces it to
d2η
dτ2
+ μeq

dη
dτ
+ω2

eqη = 0. (56)

Equation 56 represents a simplified damped harmonic linear
equation with the following Equation 57 that corresponding initial
conditions:

η(0) = A and 
dη(0)
dτ
= ‐δ cot(1

2
πα)A. (57)

The coefficients appearing in Equation 56 are listed as follows:

μeq =
2δ

√2a(4ac− b2)
1
4 δα sin( 12πα)

(b+√2a(4ac− b2)
1
4 δ cos( 1

2
πα)),

(58)

ω2
eq =

δ2

aδ2α sin2 ( 1
2
πα)
⁢(aδ2α cos2 ⁢ (1

2
⁢πα)

+ b√2a ⁢(4ac− b2)−
1
4 ⁢δα cos (1

2
⁢πα)

+ 2ac(4ac− b2)−
1
2 ) . (59)

The solution to Equation 56 is given in the following form:

η(τ) = Ae−
1
2
μeq τ(cosΩτ+ 1

2Ω
(μeq − 2δ cot(

1
2
πα)) sinΩτ), (60)

where the total frequency Ω, corresponding to the above fractal
solution, is determined as:

Ω2 = ω2
eq −

1
4
μ2eq. (61)

By addingEquations 58, 59 to Equation 61, the system frequency
Ω is formulated in terms of the fractal parameter δ and the fractal
order α. This formulation establishes a direct relationship between
the system’s oscillatory behavior and its fractal characteristics,
enabling a deeper understanding of how fractal properties influence
stability and frequency dynamics.

Ω2 = δ2

aδ2α sin2 ( 1
2
πα)
⁢{a (δ2α − δ2)cos2 ⁢ (1

2
⁢πα)

+ b√2a⁢(4ac− b2)−
1
4 ⁢ (δα − δ) ⁢cos (1

2
⁢πα)

+1
2
⁢(4ac− b2)

1
2 }. (62)

It is important to note that an unknown parameter, δ, remains
present in the above frequency formula. To determine this unknown,
we compare the original characteristic Equation 53, which governs
the system’s state before applying the transformations Equations 54,
55, to the characteristic equation in its standard derivative form, as
represented by Equation 56. This comparison allows us to bridge
the fractal formulation with the conventional approach. To achieve
this, two key comparisons are necessary: one analyzing the damping
behavior and the other comparing the natural frequencies in
Equations 53, 56. The results of these comparisons lead to the
following conclusions:

bδα sin(1
2
πα) = δ(b+√2a(4ac− b2)

1
4 δ cos(1

2
πα)), (63)

δ2α sin2 ⁢ (1
2
⁢πα) =

δ2(4ac− b2)
1
2

2ac
⁢ (aδ2α cos2

⁢ (1
2
⁢πα)+ b√2a ⁢(4ac− b2)−

1
4

⁢δα cos (1
2
⁢πα)+ 2ac(4ac− b2)−

1
2 ). (64)

By eliminating δα between Equations 63, 64, we derive
a characterized equation for the parameter δ. This equation
establishes a fundamental relationship that represents δ in
terms of the system’s fractal properties. The resulting equation
takes the form Equation 65:

δ3 +m2δ
2 +m1δ+m0 = 0, (65)

The third-order polynomial equation encapsulates the nonlinear
influence of fractal parameters on the system’s stability and
frequency dynamics.This formulation provides deeper insights into
how fractal conditions affect the system’s overall behavior. The
coefficients m’s in the equation are defined in Equation 66:

m2 =
2b

√2a(4ac− b2)
1
4 cos( 1

2
πα)
,

m1 = −
1

2a√4ac− b2 cos2 ( 1
2
πα)
⁢

((4ac− b2) − 2b2 sin (1
2
⁢πα)− 4accos2 ⁢ (1

2
⁢πα)),

m0 =
4bc

√2a(4ac− b2)
3
4

⁢ ( b
2

4ac
− sin (1

2
⁢πα)) ⁢

sin( 1
2
πα)

cos3 ( 1
2
πα)
.

(66)

Stability is ensured when the right-hand side of Equation 62
remains positive. This condition guarantees that the system’s
response remains bounded and does not exhibit unbounded
growth, which is crucial formaintaining equilibrium and preventing
instability. The transition curve that separates stable from unstable
states is illustrated as Ω2 = 0, requiring:

a {a (δ2α − δ2)cos2 ⁢ (1
2
⁢πα)+ b√2a ⁢(4ac− b2)−

1
4

⁢ (δα − δ) ⁢cos (1
2
⁢πα)+ 1

2
⁢(4ac− b2)

1
2 } = 0. (67)

4 Numerical illustration

Several graphs are plotted for the transition curve Equation 67
to illustrate the impact of the fractal dimensional parameter α and
other key physical parameters on the system’s stability behavior.The
graphs represent the transition curve that separates the stable state
from the unstable one. These visual representations help analyze
howvariations in these parameters influence stability transitions and
dynamic responses. The dimensionless numbers for this figure were
chosen as follows:

A = 1,ρ = 1.2,μ = 0.1,U = 0.1,ε = 0.01,H = 10,

Ha = 3,Z = 0.01,We = 0.5,Da = 0.01,ς0 = 0.1,

Bd = 0.01,Bg = 0.01

Figure 2 illustrates the stability plane (Ω2 − k) alongwith a graph
of frequency Ω2 versus wavenumber k. The stability behavior varies
with the fractal dimension α, where the stable region is highlighted,
and the unstable region remains unshaded. It is observed that the
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FIGURE 2
Demonstrate the influence of the variation of the fractal order on the
stability plane (Ω2 − k).

stable region lies above the transition curve, while the unstable
region is positioned below it. The graph of frequency Ω2 against k
shows that as k increases, the transition curve shifts higher, taking
the shape of a negative exponential function and expanding the
unstable region. Additionally, a decrease in the fractal order α leads
to a reduction in the stable area. This effect is more pronounced
for very small values of k, where the stability zone significantly
shrinks as α decreases. This behavior indicates that an increase in
the wavenumber k enhances instability, while a decrease in α also
has a destabilizing effect on the system.

Figure 3 illustrates the transition curve Equation 67 in
the stability plane (Ω2 − α) while analyzing variations in the
wavenumber k for the same system considered in Figure 2. It
is observed that as k increases, the unstable region expands,
particularly in areas corresponding to small values of the fractal
parameter alpha. This indicates that higher wavenumbers k
contributes to greater instability, with the effect being more
pronounced when is small. Additionally, larger values of k are
associated with smaller values of alpha, leading to a more unstable
response in the system. However, for higher values of alpha, the
destabilizing influence of increasing k is minimal. This implies that
the fractal parameter has a substantial function in determining
stability, with its significance decreasing as it increases.

Figure 4 depicts an examination of the influence of the
magnetic Bond number H on the stability behavior for the same
system seen in Figure 2, with the wavenumber set to k = 2. The
results show that raising H changes the stability behavior, such as
wavenumber k, resulting in a destabilizing effect in the system.
Specifically, when H increases, the unstable region widens, with the
effect beingmost noticeable for small values of the fractal parameter
α. This shows that the magnetic field has a major destabilizing effect
in regimes with low fractal dimensions. For larger α values, H has
a limited impact on stability, causing only slight destabilization.
This means that, while the magnetic Bond number is important
in stability management, its effects reduce as the fractal parameter
grows, emphasizing the interaction of magnetic forces and fractal
dimension in regulating system behavior.

FIGURE 3
Demonstrate the influence of the variation of the wavenumber k on
the stability plane (Ω2 − α).

FIGURE 4
Demonstrate the influence of the variation of the magnetic Bond
number H on the stability plane (Ω2 − α).

Figure 5 depicts a study of the impact of the Hartmann number
Ha on the stability plane for the identical system as in Figure 4,
with the magnetic Bond number set to H = 10. This evaluation
reveals how changes affect the system’s stability characteristics. An
analysis of the graph shows that increasing leads the transition
curve to shift downward, thereby expanding the stable region. This
downward movement implies a stabilizing impact, allowing more
of the system to remain stable. However, for very small values of
the fractal parameter alpha, the stability region experiences only
a slight reduction in its stabilizing influence. As increases, the
stabilizing effect gradually diminishes, indicating that the impact
of the Hartmann number is more pronounced in low-fractal-
dimension regimes. Furthermore, for higher values of alpha, the
stabilizing effect of Ha becomes minimal, suggesting that at larger
fractal dimensions, the influence of the Hartmann number on
system stability is less significant. This behavior highlights the
complex interaction between magnetic forces and fractal properties
in determining the stability characteristics of the system.

The graph in Figure 6 illustrates the effect of the Ohnesorge
number Z on the stability plane (Ω2 − α). The dimensionless
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FIGURE 5
Demonstrate the influence of the variation of the Hartmann number
Ha on the stability plane (Ω2 − α).

FIGURE 6
Demonstrate the influence of the variation of the Ohnesorge numeral
Z on the stability plane (Ω2 − α).

parameters used for this figure are identical to those in Figure 5,
except that the Hartmann number is fixed at Ha = 30. This analysis
provides insights into how variations in Z influence system stability.
The stability behavior observed in this graph closely resembles the
effects of the Hartmann number presented in Figure 5. Specifically,
an increase in Z leads to a stabilizing effect, similar to what is
observed with increasing Ha. As increases, the transition curve
shifts downward, expanding the stable region and reinforcing
the system’s resistance to perturbations. This suggests that the
Ohnesorge number plays a crucial role in reducing instability
by modifying the fluid’s response to external forces. Overall, the
results indicate that, like the Hartmann number, the Ohnesorge
number enhances stability by suppressing disturbances, making it
an essential parameter in determining the behavior of the system
under varying conditions.

Figure 7 shows the fractal time history, showing the fractal
solution Equation 60 against variations in the fractal dimensional
parameter α. This graph is a schematic representation of the
same system as in Figure 2, providing insight into the system’s
temporal evolution under different fractal settings. The presence of
a dampening feature is one of the most noticeable aspects of this

FIGURE 7
Represents the fractal time history as given by the
analytical solution Equation 60.

image.The damping effect gets increasingly significant as the fractal
parameter increases, showing that the system suppresses oscillatory
instabilitiesmore effectively over time.This shows that greater values
help to improve stability by lowering fluctuations and mitigating
instability. Increasing α has a stabilizing effect, as higher fractal
dimensions result in more regulated and damped system responses.
As a result, it not only reduces instability but also maintains overall
system stability, making it an important parameter in managing the
system’s dynamic behavior throughout time.

Figure 8 displays the fractal time history, demonstrating how
changes in the magnetic Bond number influence system behavior
with the wavenumber set to k = 3. Similarly, Figure 9 shows how
the wavenumber grows while the magnetic Bond number remains
constant at H = 1. These computations are for the same system
as seen in Figure 7, but the fractal parameter is kept constant
at α = 0.1. These results provide an important finding about
the influence of increasing on the system’s dynamic response.
As either value grows, the cycle rate lowers, indicating that the
system is becoming unstable. This implies that higher values of or
contribute to a decrease in oscillation frequency, resulting in more
extreme instability. The decrease in cycle rate demonstrates how
the magnetic Bond number and wavenumber influence the system’s

FIGURE 8
Represents the fractal time history for variation of H.
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FIGURE 9
Represents the fractal time history for variation of k.

temporal evolution, emphasizing their importance in influencing
stable behavior under fractal settings.

5 Conclusion

This study employs sophisticated nonlinear analysis techniques
using Fractal analysis to control Interfacial stability ofMHDBingham
Fluids in Micro-Porous MEMS Structures.The Harmonic Equivalent
Linearization Method (HELM) is an important methodological
tool used in this study. It simplifies the analysis by translating
the nonlinear dynamical characteristic equation into an equivalent
linear form. This transformation improves the analytical analysis
and solution to the stability problem, making it easier to anticipate
system behavior under various parametric conditions.The governing
equations are stated in a fractal framework using the modified
Lindstedt-Poincaré transformation, which is critical for capturing
Bingham fluids’ complicated interfacial stability properties.This work
incorporates fractal adjustments to account for the impacts of non-
integer dimensions, providing a more accurate description of the
physical system, particularly in porous and unevenmedia.The fractal
frameworkprovidesmore insight intohowmicrostructuraldifferences
affect fluid stability, which is critical for real-world applications
involving geometric complexity and diverse structures.

Several major observations emerge from the numerical and
analytical findings:

1. Increasing the fractal dimension α improves system stability by
adding stronger damping effects, minimizing instability, and
maintaining interface stability over time.

2. Wavenumber k has a destabilizing impact, causing the unstable
zone to expand, especially for lower α values.

3. Magnetic Bond NumberH has a destabilizing effect, especially
in low-fractal-dimension regimes, highlighting the importance
of electromagnetic forces in stability modulation.

4. Hartmann Number Ha: Higher values expand the stability
region by pushing the transition curve downward, decreasing
instability and enhancing system stability.

5. Effects of Ohnesorge Number Z:This number has a stabilizing
impact by decreasing oscillatory instabilities and expanding
the stable area.

The fractal timehistory study shows that higher alpha values result
in stronger damping effects, which increase the system’s robustness
to perturbations. The combination of magnetic, hydrodynamic,
and fractal properties facilitates the intricate interplay of forces
that influences stability behavior in MHD Bingham fluids. Overall,
this research advances our understanding of nonlinear stability in
viscoelasticfluidsunderfractaleffectsandmagneticfields.Thefindings
are relevant to industrial and geophysical applications, particularly
those requiring interfacial stability, such as fluid flow in porous
media, enhanced oil recovery, and biomedical engineering. Future
research could extend these findings by looking into parametric
effects and the nonlinear Mathieu equation contributions. Our study
develops nonlinear, fractal, and MHD-based modeling techniques
forMEMS structures, addressing electrostatic interactions, geometric
nonlinearity, and scale-dependent effects. This methodology will be
validated and expanded for microscale technologies.

Data availability statement

Theoriginal contributions presented in the study are included in
the article/supplementarymaterial, further inquiries can be directed
to the corresponding author.

Author contributions

YE-D: Investigation, Software, Writing – review and editing,
Supervision, Writing – original draft, Formal Analysis, Methodology.
AM: Formal Analysis, Writing – original draft, Methodology. HA:
Writing – original draft, Investigation, Validation.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article.

Acknowledgments

The authors express their gratitude to Princess Nourah bint
Abdulrahman University Researchers Supporting Project Number
(PNURSP2025R17), PrincessNourah bintAbdulrahmanUniversity,
Riyadh, Saudi Arabia.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that Generative AI was used in the
creation of this manuscript. We only used AI to improve the
manuscript’s language.

Frontiers in Physics 11 frontiersin.org

https://doi.org/10.3389/fphy.2025.1634769
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


El-Dib et al. 10.3389/fphy.2025.1634769

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

1. Yang D, Krasowska M, Craig P, Popescu MN, Ralston J. Dynamics of capillary-
driven flow in open microchannels. The J Phys Chem C (2011) 115(38):18761–9.
doi:10.1021/jp2065826

2. Lade RK, Hippchen EJ, Macosko CW, Francis L. Dynamics of capillary-
driven flow in 3D printed open microchannels. Langmuir (2017) 33(12):2949–64.
doi:10.1021/acs.langmuir.6b04506

3. Tokihiro JC, Robertson IH, Gregucci D, Shin A, Michelini E, Nicholson TM, et al.
The dynamics of capillary flow in an open-channel system featuring trigger valves. Sci
Rep (2024) 14:31732. doi:10.1038/s41598-024-82329-3

4. Khanjani E, Fergola A, López JA, Nazarnezhad S, Casals-Terré J, Marasso
SL, et al. Capillary microfluidics for diagnostic applications: fundamentals,
mechanisms, and capillarics. Front Lab a Chip Tech (2025) 4. doi:10.3389/frlct.
2025.1502127

5. Saleh TA. Surface Science of Adsorbents and Nanoadsorbents. Properties and
Applications in Environmental Remediation. Cambridge, MA: Academic Press. (2022)
p. 316.

6. Macgregor M, Vasilev K. Questions and answers on the wettability
of nano-engineered surfaces. Adv Mater Inter (2017) 4(16):1700381.
doi:10.1002/admi.201700381

7. Squires TM, Quake SR. Microfluidics: fluid physics at the nanoliter scale. RevMod
Phys (2005) 77:977–1026. doi:10.1103/RevModPhys.77.977

8. Sisó G, Rosell-Mirmi J, Fernández Á, Laguna G, Vilarrubi M, Barrau J,
et al. Thermal analysis of a MEMS-based self-adaptive microfluidic cooling device.
Micromachines (2021) 12:505. doi:10.3390/mi12050505

9. Tian D, He C-H, He J-H. Fractal pull-in stability theory
for microelectromechanical systems. Front Phys (2021) 9:606011.
doi:10.3389/fphy.2021.606011

10. Tian Y, Shao Y (2024). Mini-review on periodic properties of MEMS oscillators.
Front Phys 12:1498185. doi:10.3389/fphy.2024.1498185

11. He J-H, Bai Q, Luo Y-C, Kuangaliyeva D, Ellis G, Yessetov Y, et al.
(2025). Modeling and numerical analysis for MEMS graphene resonator. Front Phys
13:1551969. doi:10.3389/fphy.2025.1551969

12. Bingham EC. An investigation of the laws of plastic flow. Bull Bur Stand (1916)
13(2):309–53. doi:10.6028/bulletin.304

13. Bingham EC. Fluidity and plasticity. New York: McGraw-Hill (1922). p. 219.

14. Bird RB, Dai G, Yarusso BJ. The rheology and flow of viscoplastic materials. Rev
Chem Eng (1983) 1:1–70. doi:10.1515/revce-1983-0102

15. Yang L, Du K. A comprehensive review on the natural, forced, and mixed
convection of non-Newtonian fluids (nanofluids) inside different cavities. JTherm Anal
Calorim (2019) 140(10):2033–54. doi:10.1007/s10973-019-08987-y

16. Peiguang W, Zhendong W. The analysis of stability of Bingham fluid
flowing down an inclined plane. Appl Math Mech (1995) 16:1013–8. doi:10.1007/
BF02538843

17. Chhabra RP, Richardson JF. Non-Newtonian flow and applied rheology:
engineering applications. Elsevier Science (2008).

18. Borrelli A, Giantesio G, Patria MC. Magnetohydrodynamic flow of a
Bingham fluid in a vertical channel: mixed convection. Fluids (2021) 6(4):154.
doi:10.3390/fluids6040154

19. Eslami A, Frigaard IA, Taghavi SM. Viscoplastic fluid displacement flows in
horizontal channels: numerical simulations. J Non-Newtonian Fluid Mech (2017)
249:79–96. doi:10.1016/j.jnnfm.2017.10.001

20. Ullah I, Arif M, Nadeem S, Alzabut J. Numerical computations of
MHD mixed convection flow of Bingham fluid in a porous square chamber
with a wavy cylinder. Int J Thermofluids (2024) 24:100938. doi:10.1016/
j.ijft.2024.100938

21. NegishiH, KondoM,AmakawaH,Obara S, Kurose R. Binghamfluid simulations
using a physically consistent particle method. J Fluid Sci Technology: Bull ASME (2023)
18(4):JFST0035–163718. doi:10.1299/jfst.2023jfst0035

22. Kumar A, Bhardwaj A, Tripathi D. Bingham plastic fluids flow analysis
in multimembranes fitted porous medium. Chin J Phys (2024) 90:446–62.
doi:10.1016/j.cjph.2024.05.040

23. Mollah MT, Rasmussen HK, Poddar S, Islam MM, Parvine M, Alam MM,
et al. Ion-slip effects on Bingham fluid flowing through an oscillatory porous

plate with suction. Math Model Eng. Probl. (2021) 8(5):673–81. doi:10.18280/
mmep.080501

24. Falsaperla P, Giacobbe A, Mulone G. Stability of the plane Bingham-Poiseuille
flow in an inclined channel. Fluids (2020) 5(3):141. doi:10.3390/fluids5030141

25. Gunawan AY, van de Ven AAF. Non-steady pressure-driven flow of a Bingham
fluid through a channel filled with aDarcy Brinkmanmedium. J EngMath (2022) 137:5.
doi:10.1007/s10665-022-10244-5

26. Talon L, Hennig AA, Hansen A, Rosso A. Influence of the imposed flow rate
boundary condition on the flow of Bingham fluid in porous media. Phys Rev Fluids
(2024) 9:063302. doi:10.1103/physrevfluids.9.063302

27. Mollah MT, Poddar S, Islam MM, Alam MM. Non-isothermal Bingham fluid
flow between two horizontal parallel plates with Ion-slip and Hall currents. SN Appl
Sci (2021) 3:115. doi:10.1007/s42452-020-04012-2

28. Mollah MT. EMHD laminar flow of Bingham fluid between two parallel Riga
plates. Int J Heat Technol (2019) 37(2):641–8. doi:10.18280/ijht.370236

29. Shih P-H, Do TN, Gumbs G, HuangD, Lin H, Chang TR. Quantized Hall current
in a topological nodal-line semimetal under electromagnetic waves. Phys Rev B (2024)
110:085427. doi:10.1103/physrevb.110.085427

30. Ali AHH. Impact of varying viscosity with all current on peristaltic flow of
viscoelastic fluid through porous medium in irregular micro channel. Iraqi J Sci (2022)
63(3):1265–76. doi:10.24996/ijs.2022.63.3.31

31. Qiao Y, Xu H, Qi H. Rotating MHD flow and heat transfer of generalized
Maxwell fluid through an infinite plate withHall effect.ActaMech Sin (2024) 40:223274.
doi:10.1007/s10409-023-23274-x

32. de Franciscis S, Pascual-Granado J, Suárez JC, García Hernández A, Garrido R.
Fractal analysis applied to light curves of δ Scuti stars.Monthly Notices R Astronomical
Soc (2018) 481(Issue 4):4637–49. doi:10.1093/mnras/sty2496

33. El-Dib YO. Insights into fractal space features in nonlinear electrohydrodynamic
Rayleigh–Taylor instability of viscous fluids. Phys Fluids (2024) 36:122127.
doi:10.1063/5.0243581

34. Heinen M, Schnyder SK, Brady JF, Löwen H. Classical liquids in fractal
dimension. Phys Rev Lett (2015) 115:097801. doi:10.1103/PhysRevLett.115.097801

35. Gmachowski L. Fractal model of anomalous diffusion. Eur Biophys J (2015)
44(8):613–21. doi:10.1007/s00249-015-1054-5

36. Kearney M. Engineered fractal cascades for fluid control applications. In:
Proceedings, fractals in engineering, INRIA, arcachon, France (1997).

37. Kearney M. Control of fluid dynamics with engineered fractals
– adsorption, process applications. Chem Eng Comm (1999) 173:43–52.
doi:10.1080/00986449908912775

38. FengGQ (2023). A circular sector vibration system in a porousmedium: a fractal-
fractional model and He’s frequency formulation. Facta Universitatis Ser Mech Eng.
doi:10.22190/FUME230428025F

39. He C-H, Liu C. Fractal Dimensions Of A Porous Concrete And Its Effect
On The Concrete’s Strength. Ser Mech Eng (2023) 21:137–50. doi:10.22190/
FUME221215005H

40. Li C, Xu Y, Jiang Z, Yu B, Xu P. Fractal analysis on the mapping
relationship of conductivity properties in porous material. Fractal Fract (2022) 6:527.
doi:10.3390/fractalfract6090527

41. Quan C-Q, Jiao C-J, ChenW-Z, Xue Z-C, Liang R, Chen X-F (2023). The impact
of fractal gradation of aggregate on the mechanical and durable characteristics of
recycled concrete. Fractal Fract. 7, 663. doi:10.3390/fractalfract7090663

42. Viatcheslav B, Aimy B, David S, Ned D (2010). Fractal flow patterns in
hydrophobic microfluidic pore networks: experimental modeling of two-phase flow in
porous electrodes. arXiv:0909. doi:10.48550/arXiv.0909.0758

43. Chandrasekhar S. Hydrodynamic and hydromagnetic stability. Oxford, United
Kingdom: Oxford University Press (2000).

44. Hughes WF, Brighton JA. Fluid dynamics. New York, NY: McGraw-Hill Book
Company (1967).

45. Melcher JR. Field coupled surface waves. Boston, MA: MIT Press (1963).

46. He JH, El-Dib YO. A tutorial introduction to the two-scale fractal calculus and
its application to the fractal Zhiber-Shabat oscillator. Fractals (2021) 29(8):2150268.
doi:10.1142/s0218348x21502686

Frontiers in Physics 12 frontiersin.org

https://doi.org/10.3389/fphy.2025.1634769
https://doi.org/10.1021/jp2065826
https://doi.org/10.1021/acs.langmuir.6b04506
https://doi.org/10.1038/s41598-024-82329-3
https://doi.org/10.3389/frlct.2025.1502127
https://doi.org/10.3389/frlct.2025.1502127
https://doi.org/10.1002/admi.201700381
https://doi.org/10.1103/RevModPhys.77.977
https://doi.org/10.3390/mi12050505
https://doi.org/10.3389/fphy.2021.606011
https://doi.org/10.3389/fphy.2024.1498185
https://doi.org/10.3389/fphy.2025.1551969
https://doi.org/10.6028/bulletin.304
https://doi.org/10.1515/revce-1983-0102
https://doi.org/10.1007/s10973-019-08987-y
https://doi.org/10.1007/BF02538843
https://doi.org/10.1007/BF02538843
https://doi.org/10.3390/fluids6040154
https://doi.org/10.1016/j.jnnfm.2017.10.001
https://doi.org/10.1016/j.ijft.2024.100938
https://doi.org/10.1016/j.ijft.2024.100938
https://doi.org/10.1299/jfst.2023jfst0035
https://doi.org/10.1016/j.cjph.2024.05.040
https://doi.org/10.18280/mmep.080501
https://doi.org/10.18280/mmep.080501
https://doi.org/10.3390/fluids5030141
https://doi.org/10.1007/s10665-022-10244-5
https://doi.org/10.1103/physrevfluids.9.063302
https://doi.org/10.1007/s42452-020-04012-2
https://doi.org/10.18280/ijht.370236
https://doi.org/10.1103/physrevb.110.085427
https://doi.org/10.24996/ijs.2022.63.3.31
https://doi.org/10.1007/s10409-023-23274-x
https://doi.org/10.1093/mnras/sty2496
https://doi.org/10.1063/5.0243581
https://doi.org/10.1103/PhysRevLett.115.097801
https://doi.org/10.1007/s00249-015-1054-5
https://doi.org/10.1080/00986449908912775
https://doi.org/10.22190/FUME230428025F
https://doi.org/10.22190/FUME221215005H
https://doi.org/10.22190/FUME221215005H
https://doi.org/10.3390/fractalfract6090527
https://doi.org/10.3390/fractalfract7090663
https://doi.org/10.48550/arXiv.0909.0758
https://doi.org/10.1142/s0218348x21502686
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


El-Dib et al. 10.3389/fphy.2025.1634769

47. El-Dib YO, Alyousef HA. ModifiedLindstedt-Poincare transformation for fractal
resonance approach in vibration 2-DOF heterogeneous system. J Low Frequency Noise,
Vibration Active Control (2025). doi:10.1177/14613484251335736

48. He JH. A tutorial review on fractal space and fractional calculus. Int J Theor Phys
(2014) 53:3698–718. doi:10.1007/s10773-014-2123-8

49. He JH. Fractal calculus and its geometrical explanation. Results Phys (2018)
10:272–6. doi:10.1016/j.rinp.2018.06.011

50. El-Dib YO. Insights into transferal to fractal space modeling: delayed forced
Helmholtz–Duffingoscillatorwith the non-perturbative approach.CommunTheor Phys
(2024) 77:015002. doi:10.1088/1572-9494/ad7ceb

51. El-Dib YO. Stability analysis of a time-delayed Van der Pol-Helmholtz-Duffing
oscillatorin fractal space with a non-perturbative approach.CommunTheor Phys (2024)
76:045003. doi:10.1088/1572-9494/ad2501

52. El-Dib YO. A review of the frequency-amplitude formula for nonlinear
oscillators and its advancements. J Low Freq Noise Vib Act Control (2024) 43:1032–64.
doi:10.1177/14613484241244992

53. El-Dib YO, Elgazery NS. A novel pattern in a class of fractal models
with the non-perturbative approach. Chaos, Solitons Fractals (2022) 164:112694.
doi:10.1016/j.chaos.2022.112694

54. El-Dib YO, Elgazery NS. An efficient approach to converting the damping
fractal models to the traditional system. Commun Nonlinear Sci Numer Simul (2023)
118:107036. doi:10.1016/j.cnsns.2022.107036

55. El-Dib YO, Elgazery NS, Alyousef HA. The up-grating rank
approach to solve the forced fractal Duffing oscillator by non-perturbative
technique. Facta Univ Mech Eng (2024) 22(2):199–216. doi:10.22190/
fume230605035e

Frontiers in Physics 13 frontiersin.org

https://doi.org/10.3389/fphy.2025.1634769
https://doi.org/10.1177/14613484251335736
https://doi.org/10.1007/s10773-014-2123-8
https://doi.org/10.1016/j.rinp.2018.06.011
https://doi.org/10.1088/1572-9494/ad7ceb
https://doi.org/10.1088/1572-9494/ad2501
https://doi.org/10.1177/14613484241244992
https://doi.org/10.1016/j.chaos.2022.112694
https://doi.org/10.1016/j.cnsns.2022.107036
https://doi.org/10.22190/fume230605035e
https://doi.org/10.22190/fume230605035e
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


El-Dib et al. 10.3389/fphy.2025.1634769

Appendix

The constants that appear in Equation 35 may be listed as:

a1 =
1

k(ρ+ 1)
(2k2Z(1+ μ) + (Z/Da)(1+ μ) + 2ZHa

2),

b1 =
k

ρ+ 1
√We(1+Uρ),

a2 =
k

ρ+ 1
(2Zk2(1− μ) − Z

Da
(1− μ)),

b2 = −k2√We(
1− ρU
ρ+ 1
),

a3 =
1

ρ+ 1
k(Bd(1− ρ) − k2 − 2k3) −

k2

(ρ+ 1)
ε(ε− 1)2

(1+ ε)
H2,

b3 =
k

ρ+ 1
⁢ (2 Z k2 √We

⁢ (1+U μ) + Z
Da
⁢√We ⁢ (1+U μ)

+Z Ha2 ⁢√We ⁢ (1+U )

− 2 Z Bg √We (1− ς0)) ,

a4 = k3 ⁢Z Bg √We (
1− ς0
ρ+ 1
)− k3

2 (ρ+ 1)
⁢ ε
1+ ε

⁢ [(1− ε) ⁢ (3+ 2ε+ 3ε2) + 4 (ε− 1)] ⁢H2,

b4 =
k2

ρ+ 1
⁢ (2k2 Z√We (1− μ U)

−Z Ha2 ⁢√We ⁢ (1−U) −
Z
Da
√We (1− μ U)) ,

a5 = −
3k5

2 (ρ+ 1)
− 3
2

k4

(ρ+ 1)
ε(ε− 1)2

(1+ ε)
H2,

b5 =
k3

ρ+ 1
⁢ (4 Z k2 √We ⁢ (1+U μ) +Z Ha2

⁢√We ⁢ (1+U) +
Z
Da
√We ⁢ (1+U μ)

− 4 Z Bg √We (1− ς0)) .
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