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This manuscript deals with the Fourth-order Boussinesq water wave equation, 
which is integrable and possesses soliton solutions. Boussinesq water wave 
equation is a vital tool for investigating nonlinear phenomena in various waves 
and shallow water phenomena in fluid dynamics, such as diffraction, refraction, 
weak nonlinearity, and shoaling. Along with fluid dynamics, it is essential 
in many disciplines of physics, including the transmission of long waves in 
shallow waters, vibrations in a nonlinear string, acoustics, laser optics, and one-
dimensional nonlinear lattice waves. The Generalized Arnous approach, the 
new Kudryashov method, and the Modified Sub-equation method are applied 
to this objective. The resultant diverse solutions consist of trigonometric and 
hyperbolic functions. These approaches generate accurate analytical curves 
for soliton waves, which comprise kink, bright, and dark waves. The graphical 
aspects of the produced solutions are investigated using 3D-surface graphs, 2D-
line graphs, and contour and polar plots, in addition to theoretical derivations. 
This work is novel in its integrated use of three symbolic methods to derive 
a broad spectrum of exact soliton solutions for the fourth-order Integrated 
Boussinesq water wave equation, including compound and hybrid waveforms. 
The inclusion of the graphical visualization, stability analysis, and open source 
code resources further strengthens its contribution to nonlinear wave modeling.
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fourth-order boussinesq water wave equation, modified sub-equation method, new 
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 1 Introduction

The water wave equation (WWE) was introduced by Boussinesq in 1871 [1]. 

Utt −Uxx − σ(U2)xx − μUxxxx = 0. (1.1)

This classic Boussinesq equation (BE) defines the shallow-water wave (SWW) 
solution interaction process. This equation incorporates various waves and shallow water 
phenomena in fluid dynamics, including shoaling, diffraction, refraction, and weak non-
linearity. In addition to fluid dynamics, it is essential in many disciplines of physics, 
like ions found in waves in plasma, vibrations in non-linear strings, one-dimensional 
non-linear lattice waves, and the propagation of long waves in shallow water [2]. 
This study demonstrates the intricate process of how rogue waves are formed and
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spread in higher dimensions. In addition, we have created a 
new BE that can be integrated and has varied dimensions 
[3]. These equations provide a wide range of soliton solutions, 
contributing to our understanding of wave processes in many 
physical environments [4]. The focus will be on the fourth-order 
nonlinear BE.

Utt − σ(U2)xx − μUxxxx + νUxt −Uxx = 0. (1.2)

Here, U(x, t) represents the surface tension of the water wave, 
σ denotes the nonlinearity coefficient,μ, and ν are the dispersion 
coefficients. We see Equation 1.2, originally proposed by Wazwaz 
and Kaur [4], as completely solvable. Several researchers have 
investigated different outcomes for nonlinear WWE. For instance, 
Wang et al. [5] developed advanced Boussinesq-type equations 
that accurately represent wave dynamics in porous media and 
apply them to wave propagation in deep water. Fan et al. [6] 
conducted a study on the use of the widely used G′

G
-expansion 

method to analyze the unique solutions of non-linear evolution 
problems, including the sine-Gordon, Klein–Gordon equation, 
and BE. Numerous travel solutions were introduced by Kumari 
cite kumari2020abundant. Jun et al. [7] derived the Backlund 
transformation and Painleve expansion of Equation 2.1 to employ 
various solutions. Kumar et al. [8] derived the Lie point symmetry 
along with the lump and breather solution of Equation 2.1. 
Understanding wave propagation in shallow seas requires an 
understanding of the fourth-order nonlinear Boussinesq water wave 
equation model, which incorporates higher-order nonlinear and 
dispersive features. This increase enhances the accuracy of wave 
predictions, making the model particularly helpful for evaluating 
waves with larger amplitudes and longer wavelengths [9]. This 
field’s applications include coastal engineering and environmental 
science [10], giving essential insights for coastal development 
[11], navigation, and disaster prevention [12], including tsunamis 
and storm surges. The model’s complex features allow more 
realistic modeling of complicated wave interactions, assisting both 
theoretical research and practical coastal management.

The nonlinear Integrable Boussinesq Water Wave Equation 
(IBWWE) has emerged as a significant model in various physical 
phenomena due to its ability to incorporate both nonlinear and 
dispersive effects with high order accuracy. Its applications span 
multiple disciplines, including shallow water wave theory [13], 
nonlinear lattice wave theory [14], coastal engineering [15], and 
ion-acoustic wave dynamics in plasmas [16]. Due to its high-order 
structure, the IBWWE provides a refined representation of wave 
behavior in optical solitons in fiber media and related photonic 
systems. Given its broad applicability, continued investigation of 
the IBWWE’s soliton structures and analytical properties remains 
a subject of substantial interest.

Solitary waves [17], or solitons, are self-reinforcing waves that 
retain their shape while moving at a constant speed. These waves 
occur in certain nonlinear systems and are solutions to specific 
nonlinear partial differential equations. A key characteristic of 
solitary waves is that they do not dissipate or spread out as 
they travel, unlike typical wave packets that tend to disperse and 
lose their form over time. Recent developments in mathematical 
modeling reflect a growing emphasis on accurately characterizing 
the complex behaviors observed in nature and physical systems. In 

this context, nonlinear partial differential equations (NLPDEs) offer 
a robust framework for describing diverse dynamical systems. The 
development of advanced analytical and computational techniques 
has facilitated the derivation of exact solutions, enabling the deeper 
understanding of soliton dynamics, nonlinear wave propagation, 
and pattern formation. Solitary waves play a key role in several 
scientific and technical sectors owing to their unusual ability to 
keep their form and speed across vast distances and via interactions. 
In physics [18] and engineering [19], solitons are used to simulate 
stable wave phenomena in nonlinear optics [20], fluid dynamics 
[21], and plasma physics [22, 23], such as optical pulses in fiber-
optic [24] and ion-acoustic waves in space plasmas. They are also 
significant in biological [25] systems for understanding nerve signal 
transmission and pattern generation, and in chemistry [26] for 
characterizing reaction-diffusion processes. In mathematics [27], 
solitons give insight into nonlinear dynamics [28], chaos theory 
[29, 30], and integrable systems.

NLPDEs develop as especially significant assets in this 
scientific quest. Many academics have devoted their efforts to 
examining distinct NLPDEs to increase their comprehension of 
the demonstrated behavior in the researched natural phenomena. 
Recent assessments have involved inquiries into the nonlinear 
Helmholtz equation [31], complex cubic Nonlinear Schrodinger 
equation [32], Klein-Fock-Gordon equation [33], Kaup–Newell 
Model [34], Caudrey–Dodd–Gibbon equation [35]. Studying the 
single-wave solutions of NLPDEs is crucial for generating improved 
insights and knowledge of the underlying mechanism and its 
valuable usage. Therefore, various academics have established novel 
approaches to investigate these NLPDE replies. Plenty of strong 
techniques such as EHF technique [36], Darboux transformation 
[37], exp-function method [38], generalized Kudryashov method 
[39], extended trial equation method [40], Hirota bilinear method 
[41], extended Jacobian method [42], extended direct algebraic 
method [43], NAE method [44], improved extended fan-sub 
equation method [45], multivariate generalized exponential rational 
integral function method [46].

Although significant advancements have been made in the 
computational and symbolic treatment of NLPDEs, analytical 
exploration of the fourth-order IBWWE, especially in its general 
form involving dispersive and mixed derivative terms, remains 
limited. Many of the available methods are limited in scope, 
only producing restricted forms of solutions. There is a need for 
comprehensive methods that can produce a border class of exact 
soliton solutions, including dark, bright, periodic, and compound 
solitons, while also analyzing the qualitative behavior of stability.

This paper proposes an integrated application of the three 
advanced solution methods: the Generalized Arnous method 
[47], the Modified Sub-Equation method [48], and the New 
Kudryashov method [49], to derive the border spectrum of soliton 
solutions to the fourth-order IBWWE. Furthermore, a linear 
stability conducted to assess the robustness of the obtained wave 
structures. To our knowledge, the combined effects of these three 
techniques on Equation 1.2, along with he detailed graphical and 
stability analysis, have not been comprehensively reported in the 
exciting literature. The Generalized Arnous method is an effective 
technique for obtaining rational-logarithmic solutions characterized 
by intricate nonlinear behaviors. The Modified Sub-Equation 
method utilizes the Riccati type transformations, is particularly 
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suited for the construction of periodic and singular waveforms. 
The Kudryashov method, recognized for its symbolic strength, 
is for formulating exact solutions in polynomial-exponential 
form. Collectively, these methods offer a comprehensive analytical 
framework to yield a richer and more diverse set of analytical 
solutions, including mixed and compound solutions.

The article is summarized as follows: Section 2 outlines 
the mathematical analysis required to transform the nonlinear 
partial differential problem into an ordinary differential equation. 
Section 3 examines the Generalized Arnous method, its 
applications, and includes graphical representations. Section 4 
highlights the application of the Modified Sub-Equation 
method. Section 5 delves into the mathematical framework 
and applications of the New Kudryashov method. Section 6 
focuses on the stability analysis. Section 7 discusses the 
graphical representation of solutions, and finally, Section 8
concludes the study. 

2 Formulation of governing model

Consider a general NLPDE has the following form [27, 50]:

Y(U ,Ut,Ux,Uxt,Uxx,…) = 0. (2.1)

Its NODE will be

P(Ξ,Ξ′,Ξ′′,…) = 0. (2.2)

Consider the traveling wave ansatz solution to simplify the 
NLPDEs into NLODEs [51, 52].

U (x, t) = Ξ (ξ) ;ξ = ωx− ηt. (2.3)

Here, ω represents the wave number, and η denotes the 
wave speed.

The fourth-order nonlinear differential Boussinesq water wave 
equation is given as [53]:

Ξtt − σ(Ξ2)xx − μΞxxxx + νΞxt −Ξxx = 0 (2.4)

Now by using Equation 2.3 in Equation 2.4 we get:

μω4Ξ(4) −Ξ′′ (−νωη−ω2 + η2) + 2σω2ΞΞ′′ + 2σω2(Ξ′)2 = 0. (2.5)

After integrating Equation 2.5 twice w. r.t ξ we get [54, 55]:

σω2Ξ2 + μω4Ξ′′ −Ξ(−νωη−ω2 + η2) = 0. (2.6)
 

3 The Generalized Arnous methods

The basic steps of the generalized Arnous (GA) method are as 
follows [47]. 

Step 1: The (GA) method provides the solution of Equation 2.3 as
follows:

Ξ (ξ) = α0 +
N

∑
1=1

αi + βig
′(ξ)i

g(ξ)i
. (3.1)

where α0, αi, βi (for i = 1, 2, …, N) are real constants with 
condition α2

N + β2
N ≠ 0, and the function g(ξ) verified the relation

[g′ (ξ)]2 = [g(ξ)2 − ρ] ln [γ] . (3.2)

with,

g(n) (ξ) = {
g (ξ) ln (γ)n, if n is even,
g′ (ξ) ln (γ)n−1, if n is odd,

(3.3)

where n ≥ 2, and 0 < γ ≠ 1. Equation 3.2 has solutions of the form:

g (ξ) = A ln (γ)γξ +
ρ

4A ln
(γ)γξ. (3.4)

Here ρ, A, and γ are real constants. 

Step 2: By balancing the non-linear term with the highest order 
derivative in Equation 2.6, the positive integer N is 
determined for Equation 3.1.

Step 3: After inserting Equations 3.1-3.3 in Equation 2.6 and since 
gi(ξ) ≠ 0, as a result of this substitution we get a polynomial 
of 1

g(ξ)
( g′(ξ)

g(ξ)
). Equivalently, setting all terms with the same 

power equal to zero. Then, by solving this set of non-
linear algebraic systems and with the help of Equation 3.2 
and Equation 2.3, the solutions of Equation 1.2 may be 
determined.

3.1 Solutions by Generalized Arnous 
Method

To find the exact solution of Equation 2.6, first we find the 
value of positive integer N = 2 and plug the value of N into 
Equation 3.1 then Equation 3.1 will become as follows:

Ξ (ξ) = α0 +
α1

g (ξ)
+

β1g′ (ξ)
g (ξ)
+

α2

g(ξ)2
+

β2(g
′′ (ξ))2

g(ξ)2
. (3.5)

By inserting Equation 3.5 into Equation 2.6 together with 
Equation 3.2 and Equation 2.3, we have a polynomial in terms of 

1
g(ξ)
( g′(ξ)

g(ξ)
). This creates a system of algebraic equations when we 

aggregate all terms of the same power and put them equal to zero. 
The values of unknown constants are obtained. 

Set 1.

α0 = β2 (−ln
2 (γ)) ,α1 = 0,β1 = 0,

η = 1
2
(−√ω2 (−16μω2 ln2 (γ) + ν2 + 4) − νω),

α2 =
ρ ln2 (γ) (β2σ+ 6μω2)

σ
.

(3.6)

By putting set 1 in Equation 3.5 we obtained the exact solution
as follows:

Ξ1 (ξ) =
[[[

[

ρ ln2 (γ)(β2λ+ 6μω2)

λ( ργ−ξ

4A ln(γ) +Aγξ ln (γ))
2 +

β2(Aγξ ln2 (γ) − ργ−ξ

4A )
2

( ργ−ξ

4A ln(γ)+Aγξ ln
(γ))

2 − β2 ln2 (γ)
]]]

]

.

(3.7)
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Set 2.

α0 = −
ln2 (γ) (β2λ+ 4μω2)

λ
,α1 = 0,β1 = 0,α2 =

ρ ln2 (γ) (β2λ+ 6μω2)
λ

,

ν =
4μω4 ln2 (γ) − η2 +ω2

ηω
.

(3.8)

By putting set 1 in Equation 3.5 we obtained the exact 
solution as follows:

Ξ2 (ξ)=
[[[

[

ρ ln2 (γ) (β2λ+ 6μω2)

λ( ργ−ξ

4A ln
(γ) +Aγξ ln (γ))

2 +
β2(Aγξ ln2 (γ) − ργ−ξ

4A
)

2

( ργ−ξ

4A ln
(γ) +Aγξ ln (γ))

2

−
ln2 (γ) (β2λ+ 4μω2)

λ
]]

]

. (3.9)
 

4 The modified sub-equation methods

The basic steps of the Modified sub-equation (MSE) method are 
as follows [56]. 

Step 1: The (MSE) method provides the solution of
Equation 2.3 as follows:

Ξ (ξ) = c0 +
N

∑
j=1

cjgj (ξ) . (4.1)

c0,cj (for j = 1, 2, …, N) are non zero constants, with the 
condition cN ≠ 0, and the function g(ξ) in Equation 4.1 satisfied 
the relation:

g′ (ξ) = √λ2g4 (ξ) + λ1g2 (ξ) + λ0. (4.2)

Here λ0,λ1, and λ2 ≠ 0 are real constants. The answer to Equation 4.2 
as follows. 

Case 1: When λ0 = 0,λ1 > 0, and λ2 ≠ 0 then,

g01 (ξ) = ±√−
λ1

λ2
sech[√λ1ξ+ ρ] . (4.3)

g02 (ξ) = ±√
λ1

λ2
csch[√λ1ξ+ ρ] . (4.4)

Case 2: In case of constants A1and A2 λ0 = 0,λ1 > 0, and λ2 = ±
4A1A2 then,

g03 (ξ) = ±
4√λ1A1

(4A2
1 − λ2)cosh(√λ1 (ξ+ ρ)) + (4A2

1 + λ2) sinh(√λ1 (ξ+ ρ))
.

(4.5)

Case 3: Consider λ0 =
λ2

1
4λ2
,λ1 < 0, and λ2 > 0 then,

g04 (ξ) = ±√−
λ1

2λ2
tanh[

[

√−λ1

2
ξ+ ρ]

]
. (4.6)

g05 (ξ) = ±√−
λ1

2λ2
coth[

[

√−λ1

2
ξ+ ρ]

]
. (4.7)

g06 (ξ) = ±√−
λ1

2λ2
[tanh(√−2λ1ξ+ ρ)+ ιsech(√−2λ1ξ+ ρ)].

(4.8)

g07 (ξ) = ±√−
λ1

2λ2
[tanh(√−2λ1ξ+ ρ)+ ιsech(√−2λ1ξ+ ρ)]

−1
.

(4.9)

Case 4: When λ0 = 0,λ1 < 0, and λ2 ≠ 0 then,

g08 (ξ) = ±√−
λ1

2λ2
sec[√−λ1ξ+ ρ] . (4.10)

g09 (ξ) = ±√−
λ1

2λ2
csc[√−λ1ξ+ ρ] . (4.11)

Case 5: Consider λ0 =
λ2

1
4λ2
,λ1 > 0, and λ2 > 0 then,

g10 (ξ) = ±√
λ1

2λ2
tan[

[

√λ1

2
ξ+ ρ]

]
. (4.12)

g11 (ξ) = ±√
λ1

2λ2
cot[

[

√λ1

2
ξ+ ρ]

]
. (4.13)

g12 (ξ) = ±√
λ1

2λ2
[tan(√2λ1ξ+ ρ)+ sec(√2λ1ξ+ ρ)]. (4.14)

g13 (ξ) = ±√
λ1

2λ2
[tan(√2λ1ξ+ ρ)+ sec(√2λ1ξ+ ρ)]

−1
. (4.15)

Case 6: If λ0 = 0,λ1 > 0 then,

g14 (ξ) = ±
4λ1e√λ1ξ+ρ

e2√λ1ξ+ρ − 4λ1λ2

. (4.16)

g15 (ξ) = ±
4λ1e√λ1ξ+ρ

1− 4λ1λ2e2√λ1ξ+ρ
. (4.17)

Case 7: When λ0 = λ1 = 0,λ2 > 0 then,

g16 (ξ) = ± 1

√λ2ξ+ ρ
. (4.18)
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FIGURE 1
Graphical visualization of derived solution of Equation 3.7 gives bright soliton such as (a) 3D surface, (b) 2D surface, (c) Streamline Plot (d) Polar Polt, of 
Ξ01(x, t): ρ = 1, θ = 0.2, μ = 1, ω = 0.3, β2 = 1, σ = 1, η = 1, A = 0.5.

Case 8: If λ0 = λ1 = 0,λ2 > 0 then,

g17 (ξ) = ± ι

√−λ2ξ+ ρ
. (4.19)

Step 2: By balancing the non-linear term with the highest order 
derivative in Equation 2.6, the positive integer N is 
determined for Equation 4.1.

Step 3: After inserting Equations 4.1–4.2 in Equation 2.6 and 
since gi(ξ) ≠ 0, for (i = 1,2,3,…, N), as a result of this 
substitution we get a polynomial of gi(ξ). Equivalently, 
setting all terms with the same power equal to zero. 
Then by solving this set of non-linear algebraic systems 

and with the help of Equation 4.2 and Equation 2.3, the 
solutions of Equation 1.2 may be determined.

4.1 Solution by the modified sub-equation 
method

To find the exact solution of Equation 2.6, first we find value 
of positive integer N = 2 and plugging the value of N in to 
Equation 4.1 then Equation 4.1 will become as follows:

Ξ (ξ) = c0 + c1g (ξ) + c2g(ξ)2. (4.20)

By inserting Equation 4.20 into Equation 1.2 together with 
Equation 2.3 and Equation 4.2, we have a polynomial in terms of 
gj(ξ). This creates a system of algebraic equations when we aggregate 
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FIGURE 2
Graphical visualization of derived solution of Equation 3.9 gives dark soliton such as (a) 3D surface, (b) 2D surface, (c) Streamline Plot (d) Polar Polt, of 
Ξ02(x, t): ρ = 1, θ = 0.2, μ = 1, ω = 0.3, β2 = 1, σ = 1, η = 1, A = 0.5.

all terms of the same power and put them equal to zero. The values 
of unknown constants are obtained. 

Set 1:

ν =
−(4μω4λ1 + 4ω4(−λ1 +√−3λ0λ2 + λ2

1)μ− η2 +ω2)

ηω
,

c0 =
2(−λ1 +√−3λ0λ2 + λ2

1)ω
2 μ

λ

c1 = 0,c2 = −
6μω2λ2

λ
.

(4.21)

By putting Set 1 in Equation 4.20 we get the exact solutions 
as follows. 

Case 1: When λ0 = 0,λ1 > 0, and λ2 ≠ 0 then,

Ξ01 (x, t) =
2(−λ1 +√−3λ0λ2 + λ2

1)ω
2μ

σ
+

6μω2λ1sech(√λ1 ξ+ ρ)
2

σ
.

(4.22)

Ξ02 (x, t) =
2(−λ1 +√−3λ0λ2 + λ2

1)ω
2μ

σ
−

6μω2λ1csch(√λ1 ξ+ ρ)
2

σ
.

(4.23)

Case 2: In case of constants A1and A2,λ0 = 0,λ1 > 0, and λ2 = ± 4A1
A2 then,
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FIGURE 3
Graphical visualization of derived solution of Equation 4.22 gives bright soliton such as (a) 3D surface, (b) 2D surface, (c) Streamline Plot (d) Polar Plot, 
of Ξ01(x, t): λ0 = 0, λ1 = 1, λ2 = 2, μ = 2, σ = 1, ρ = 0.8, η = 0.5, ω = 1, ν = −8.

Ξ03 (x, t) = −
96μω2λ2λ1A2

1

σ((4A2
1 − λ2)cosh(√λ1 (ξ+ ρ)) + (4A2

1 + λ2) sinh(√λ1 (ξ+ ρ)))
2

+
2(−λ1 +√−3λ0λ2 + λ2

1)ω
2μ

σ
.

(4.24)

Case 3: Consider λ0 =
λ2

1
4λ2
,λ1 < 0, and λ2 > 0 then,

Ξ04 (x, t) =
2(−λ1 +√−3λ0λ2 + λ2

1)ω
2μ

σ
+

3μω2λ1 tanh(
√−2λ1 ξ

2 + ρ)
2

σ
.

(4.25)

Ξ05 (x, t) =
2(−λ1 +√−3λ0λ2 + λ2

1)ω
2μ

σ
+

3μω2λ1 coth(
√−2λ1 ξ

2 + ρ)
2

σ
.

(4.26)

Ξ06 (x, t) =
2(−λ1 +√−3λ0λ2 + λ2

1)ω
2μ

σ
+

3μω2λ1(tanh(√−2λ1 ξ+ ρ)+ I sech(√−2λ1 ξ+ ρ))
2

σ
.

(4.27)

Ξ07 (x, t) =
2(−λ1 +√−3λ0λ2 + λ2

1)ω
2μ

σ
+

3μω2λ1

σ(tanh(√−2λ1 ξ+ ρ)+ I sech(√−2λ1 ξ+ ρ))
2 .

(4.28)
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FIGURE 4
Graphical visualization of derived solution of Equation 4.25 gives dark-bright soliton such as (a) 3D surface, (b) 2D surface, (c) Streamline Plot (d) Polar 
Plot, of |Ξ04(x, t)|: λ0 = 0.005, λ1 = −0.1, λ2 = 0.5, μ = 2, σ = −2.5, ρ = 1, η = 0.5, ω = 0.5, ν = 0.56.

Case 4: When λ0 = 0,λ1 < 0, and λ2 ≠ 0 then,

Ξ08 (x, t) =
2(−λ1 +√−3λ0λ2 + λ2

1)ω
2μ

σ
+

3μω2λ1 sec(√−λ1 ξ+ ρ)
2

σ
.

(4.29)

Ξ09 (x, t) =
2(−λ1 +√−3λ0λ2 + λ2

1)ω
2μ

σ
+

3μω2λ1 csc(√−λ1 ξ+ ρ)
2

σ
.

(4.30)

Case 5: Consider λ0 =
λ2

1
4λ2
,λ1 > 0, and λ2 > 0 then,

Ξ10 (x, t) =
2(−λ1 +√−3λ0λ2 + λ2

1)ω
2μ

σ
−

3μω2λ1 tan(
√2√λ1 ξ

2 + ρ)
2

σ
.

(4.31)

Ξ11 (x, t) =
2(−λ1 +√−3λ0λ2 + λ2

1)ω
2μ

σ
−

3μω2λ1 cot(
√2√λ1 ξ

2 + ρ)
2

σ
.

(4.32)

Ξ12 (x, t) =
2(−λ1 +√−3λ0λ2 + λ2

1)ω
2μ

σ
−

3μω2λ1(tan(√2√λ1 ξ+ ρ)+ sec(√2√λ1 ξ+ ρ))
2

σ
.

(4.33)
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FIGURE 5
Graphical visualization of derived solution of Equation 4.27 gives bright-dark soliton such as (a) 3D surface, (b) 2D surface, (c) Streamline Plot (d) Polar 
Plot, of |Ξ06(x, t)|: λ0 = 0.001, λ1 = −0.08, λ2 = 1.2, μ = 2, σ = −2.5, ρ = 2, η = 2, ω = 1.4, ν = 0.72−0.65I.

Ξ13 (x, t) =
2(−λ1 +√−3λ0λ2 + λ2

1)ω
2μ

σ
−

3μω2λ1

σ(tan(√2√λ1 ξ+ ρ)+ sec(√2√λ1 ξ+ ρ))
2 .

(4.34)

Case 6: If λ0 = 0,λ1 > 0 then,

Ξ14 (x, t) = ±
4λ1e√λ1ξ+ρ

e2√λ1ξ+ρ − 4λ1λ2

. (4.35)

Ξ15 (x, t) = ±
4λ1e√λ1ξ+ρ

1− 4λ1λ2e2√λ1ξ+ρ
. (4.36)

Case 7: When λ0 = λ1 = 0,λ2 > 0 then,

Ξ16 (x, t) =
2(−λ1 +√−3λ0λ2 + λ2

1)ω
2μ

σ
−

6μω2λ2

σ(√λ2 ξ+ ρ)
2 . (4.37)

Case 8: If λ0 = λ1 = 0,λ2 > 0 then,

Ξ17 (x, t) =
2(−λ1 +√−3λ0λ2 + λ2

1)ω
2μ

σ
+

6μω2λ2

σ(√−λ2 ξ+ ρ)
2 . (4.38)
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FIGURE 6
Graphical visualization of derived solution of Equation 4.28 gives periodic soliton such as (a) 3D surface, (b) 2D surface, (c) Streamline Plot (d) Polar 
Plot, of |Ξ07(x, t)|: λ0 = 0.0006, λ1 = 0.05, λ2 = 1, μ = 1, σ = 1, ρ = 1, η = 2, ω = 1.4, ν = 0.72−0.19I.

5 The New Kudryashov methods

Here are some important steps of the new Kudryashov 
method (NK). 

Step 1: The NK method provides the solution of Equation 2.6 as:

Ξ (ξ) = c0 +
N

∑
i=1
[ligi (ξ)] . (5.1)

where the coefficients li for i = 0, 1, 2,…, N are constants to 
be determined such that lN ≠ 0, and g(ξ) = 1

aBδξ+bB−δξ  is the solution 
of the following non-linear ODE:

g′(ξ)2 = (δ ln (B)g (ξ))2 (1− 4abg2 (ξ)) . (5.2)

g′′ (ξ) = (δ2 ln (B)2g (ξ))(1− 8abg2 (ξ)) . (5.3)

here constants a, b, δ, and B are all non-zero, with B > 0 and
B ≠ 1. 

Step 2: Using the homogeneous balance principle, we may get the 
positive integer N by balancing the highest-order derivative 
and nonlinear variables in Equation 2.3.

Step 3: After inserting Equation 5.1 into Equation 2.6 and 
recognizing that g(ξ) ≠ 0 we set all coefficients of gi(ξ)
to zero. After that, we get particular values for a, b, 
and the c′i s by solving the resultant non-linear algebraic 
system. By plugging the values back into Equation 5.1 and 
applying the transformation of Equation 2.3, we may get a 
solution for Equation 1.2.
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FIGURE 7
Graphical visualization of derived solution of Equation 4.38 gives dark soliton such as (a) 3D surface, (b) 2D surface, (c) Streamline Plot (d) Polar Plot, of 
Ξ15(x, t): λ0 = 0, λ1 = 0.9, λ2 = −0.1, μ = 1, σ = − 1, ρ = − 1, η = 1, ω = 0.5, ν = 1.05.

5.1 Solution by New Kudryashov method

To find the exact solution of Equation 2.6, first we 
find value of positive integer N = 2 and plugging the value 
of N in to Equation 5.1 then Equation 5.1 will become
as follows:

Ξ (ξ) = l0 + l1g (ξ) + l2g(ξ)2. (5.4)

By putting the value of Equation 5.4 and Equation 5.1 in
Equation 2.6, we obtain the following set of algebraic equations by 
equating the coefficients of different power of g(ξ) is equal to zero. 
The values of unknown constants are obtained.

Set 1:

μ = −
−νωη+ η2 −ω2

4 ln
(B)2δ2ω4, l0 =

−νωη+ η2 −ω2

σω2 , l1 = 0,

l2 = −
6ab(−νωη+ η2 −ω2)

σω2 .

(5.5)

By putting Set 1 in Equation 5.5, we get the exact solutions as
follows:

Ξ1 (ξ) =
−νωη+ η2 −ω2

σω2 −
6ab(−νωη+ η2 −ω2)

σω2(aBδξ + bB−δξ)2
. (5.6)
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FIGURE 8
Graphical visualization of the derived solution of Equation 5.6 gives bright soliton such as (a) 3D surface, (b) 2D surface, (c) Streamline Plot (d) Polar 
Plot, of Ξ1(x, t): λ0 = 0, λ1 = 0.9, λ2 = −0.1, μ = 1, σ = − 1, ρ = − 1, η = 1, ω = 0.5, ν = 1.05.

Set 2:

ν =
4 ln(B)2δ2μω4 + η2 −ω2

ηω
, l0 = −

4δ2μ ln(B)2ω2

σ
, l1 = 0,

l2 =
24 ln(B)2abδ2μω2

σ
(5.7)

By putting Set 2 in Equation 5.7, we get the exact solutions as
follows:

Ξ2 (ξ) =
4δ2μ ln
(B)2ω2σ+

24 ln(B)2abδ2μω2

σ(aBδξ + bB−δξ)2
. (5.8)

6 Stability analysis

In this section, we will discuss the stability of Equation 1.2. 
Consider a perturbed solution of Equation 1.2 has the form [57, 58].

Ξ (x, t) = P+ λU (x, t) . (6.1)

For any constant value of P, it is obvious that 
Equation 1.2 possesses a stable solution. U is the 
function of x,t, and λ is a real constant. By Inserting 
Equation 6.1 in Equation 1.2, we obtain the following result

λUtt − σλ2U2
xx − μλUxxxx − νλUxt − λUxx = 0. (6.2)
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FIGURE 9
Graphical visualization of the derived solution of Equation 5.8 gives dark soliton such as (a) 3D surface, (b) 2D surface, (c) Streamline Plot (d) Polar Plot, 
of Ξ2(x, t): λ0 = 0, λ1 = 0.9, λ2 = −0.1, μ = 1, σ = − 1, ρ = − 1, η = 1, ω = 0.5, ν = 1.05.

Linearized Equation 6.2.

λUtt − μλUxxxx − νλUxt − λUxx = 0. (6.3)

Suppose that Equation 6.3 has the solution of the from

U (x, t) = eι(mx−st). (6.4)

Here, m represents the normalized wave numbers, 
and s represents the dispersion relation. By inserting 
Equation 6.4 into Equation 6.3, the following result is obtained

s (m) = μm4 −m2.
s (m) = −mθ− μm4 +m2.

} (6.5)

Now we’ll look at the dispersed characteristics shown 
in Equation 6.5. The dispersion is stable if the real 
component of Equation 6.5 is negative for all m values. If it is 

positive, the dispersion is unstable. If it is zero, the dispersion 
is minimal. 

7 Graphical representation and 
discussion

The graphical solutions produced using the Modified Sub-
Equation, Generalized Arnous, and Kudryashov method to illustrate 
the presence of a wide range of soliton solutions within the 
framework of IBWWE. These visualizations also demonstrate how 
key parameters affect the wave behavior. Specifically, increasing the 
dispersion coefficient μ leads to sharper and narrower wave fronts, 
reflecting the intensification of dispersive mechanisms. Similarly, 
a higher nonlinearity parameter σ yields increased amplitude 
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FIGURE 10
Stability analysis of system (6.5) with μ = 0.5, m = −10,10, θ = −20,20. (a) 2D curve; (b) 3D surface.

and steepness, highlighting enhanced nonlinear interactions. The 
parameter ν plays a critical role in shaping the symmetry and phase 
behavior of the solutions the solution, sometimes introducing 
asymmetry or a deformed wave shape. These findings suggest 
that adjusting the model parameters allows control over wave 
localization, structural properties, and stability, offering practical 
insight into physical systems modeled by the IBWWE. The pictorial 
appearance of the solutions produced is investigated in this section. 
Specific values are supplied to the unknown constants to construct 
3D and 2D graphs of the resulting solutions. The figures depicted in 
part (a) reflect a 3D plot, while part (b) represents the 2D line graph 
of the solutions, part (c) displays the Contour graph, and part (d) 
depicts the Polar plot. In Figure 1, the wave solution is visualized 
through 3D surfaces, 2D profiles, and contour maps under the 
parameter configuration Ξ01(x, t):ρ = 1,θ = 0.2,μ = 1,ω = 0.3,β2 =
1,σ = 1,η = 1,A = 0.5, with the phase variable defined as ξ = ωx− ηt. 
The plots are generated for time slices t = − 1,0,1. Figure 2 presents 
the wave evolution corresponding to a dark solitary structure under 
the same parameter configuration Ξ02(x, t), where the solution is 
illustrated through 3D plots, 2D line profiles, and contour maps for 
t = − 3,0,3. In Figure 3, the bright solitary wave behavior is captured 
using the parameters Ξ01(x, t):λ0 = 0,λ1 = 1,λ2 = 2,μ = 2,σ =
1,ρ = 0.8,η = 0.5,ω = 1,ν = − 8, with ξ = ωx− ηt, and evaluated
over the time domain t = − 5,0,5. Figure 4 displays a dark-bright
solitary wave structure governed by the constants Ξ04(x, t): λ0 =
0.005,λ1 = − 0.1, λ2 = 0.5, μ = 2, σ = − 2.5, ρ = 1,η = 0.5,ω = 0.5,ν =
0.56 , with ξ = ωx− ηt. The visual representation is provided for t =
− 5,0,5. In Figure 5, the anti-kink solitary wave is visualized using
Ξ06(x, t):λ0 = 0.001,λ1 = − 0.08,λ2 = 1.2,μ = 2,σ = − 2.5,ρ = 2,η = 2,
ω = 1.4, ν = 0.72− 0.65i, with ξ = ωx− ηt. The plots correspond 
to time levels t = − 3,0,3. Figure 6 illustrates the bright solitary 

wave pattern for Ξ14(x, t):λ0 = 0,λ1 = 0.5,λ2 = − 0.5,μ = 2,σ = 1,ρ =
− 1.5,η = 1,ω = 0.5,ν = 1, with the phase ξ = ωx− ηt and plots 
evaluated for t = − 3,0,3. In Figure 7, the solution evolves under 
the parametric structure Ξ15(x, t):λ0 = 0,λ1 = 0.9,λ2 = − 0.1,μ =
1,σ = − 1,ρ = − 1,η = 1,ω = 0.5,ν = 1.05, with ξ = ωx− ηt. The 
visualization is provided for time slices t = − 1,0,1. Figure 8 depicts 
a bright solitary wave structure governed by Ξ1(x, t):λ0 = 0,λ1 =
0.9,λ2 = − 0.1,μ = 1,σ = − 1,ρ = − 1,η = 1,ω = 0.5,ν = 1.05, with 
ξ = ωx− ηt, and evaluated at t = − 3,0,3. In Figure 9, the dark 
solitary wave pattern is illustrated for Ξ2(x, t):λ0 = 0,λ1 = 0.9,λ2 =
− 0.1,μ = 1,σ = − 1,ρ = − 1,η = 1,ω = 0.5,ν = 1.05, using the same 
phase ξ = ωx− ηt. The solution behavior is shown for time levels 
t = − 3,0,7. Finally, Figure 10 provides the 3D surface and 2D 
projection visualizations reflecting the stability features of the system 
described by Equation 6.5, evaluated under the parameters μ = 0.5, 
m ∈ [−10,10], and θ ∈ [−20,20].

The bright soliton solution depicted in Figure 2 aligns well with 
theoretical expectations described in earlier studies of Boussinesq-
type equations [53, 59]. As observed, increasing the dispersion 
parameter μ results in a narrowing of the soliton width and a 
sharper peak, which is consistent with the classical behavior of 
higher-order dispersive wave models [51]. Moreover, a rise in the 
nonlinear coefficient σ amplifies the soliton amplitude, supporting 
the expected balance between nonlinearity and dispersion.

In summary, the soliton profiles obtained in this work exhibit 
a broad range of wave behaviors, including bright, dark, anti-
kink, periodic, and compound forms, which can be effectively 
modulated by tuning the model parameters. In contrast to 
conventional approaches such as the Hirota bilinear method, Exp-
function method, or Lie symmetry techniques, which tend to yield 
classical solutions, the combined application of the Generalized 
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Arnous Method, Modified Sub-Equation Method, and Kudryashov 
Method facilitates the systematic construction of more intricate and 
previously unreported wave structures. Furthermore, the inclusion 
of graphical visualization and linear stability analysis provides 
further validation of the physical relevance and reliability of the 
solutions. These outcomes emphasize the utility of the proposed 
framework as a powerful analytical framework for solving higher-
order nonlinear dispersive equations pertinent to fluid dynamics, 
coastal engineering, and nonlinear optics.

The proposed symbolic techniques, the Generalized Arnous 
Method, Modified Sub-Equation Method, and New Kudryashov 
Method, offer a computationally efficient framework for solving 
nonlinear PDEs. These methods transform the original equation into 
a solvable algebraic system using traveling wave transformations and 
a closed-form ansatz. The resulting complexity is polynomial in terms 
of symbolic manipulation steps, making them significantly faster 
and more tractable than numerical methods such as finite difference 
or spectral schemes, which require iterative time-stepping and grid 
refinement. In comparison with symbolic methods like the Hirota 
bilinear method or Riccati/ϕ6 expansions, the proposed techniques 
provide greater generality in solution form, reduced reliance on 
fixed trial functions, and easier implementation in platforms such as 
Maple or Mathematica. These features collectively make the proposed 
methods both analytically powerful and computationally lightweight. 

8 Conclusion

In this research, we applied the Generalized Arnous technique, 
plus the Novel Kudryashov and Modified Sub-Equation methods, 
to achieve accurate solutions for the fourth-order Boussinesq water 
wave equation which is an important tool for the investigation 
of nonlinear phenomena in various waves and shallow water 
phenomena in fluid dynamics, such as diffraction, refraction, weak 
non-linearity, and shoaling. It was important to apply a special wave 
transformation method to change the original NLPDE into a NODE 
to accomplish this aim. Notably, these methodologies produced a 
diverse variety of soliton solutions, including periodic (repeating 
waveforms that maintain their shape and speed while traveling, 
combining features of both solitary and periodic waves), bright 
(localized areas of elevated intensity, when the wave amplitude 
attains its zenith, resulting in peaks or humps within the wave 
profile.), dark (low-intensity areas inside a high-intensity backdrop. 
In these places, the wave amplitude falls below the background 
level, resulting in troughs or depressions in the wave profile.), 
dark-bright, bright-dark solitons. For a thorough comprehension 
of the physical processes inherent in the fourth-order BE, we 
graphically portrayed chosen solutions by assigning parameter 
values in 3D-surface graphs, 2D-line graphs, and contour and 
Polar plots, according to particular limitations. These graphical 
representations aid in deepening our knowledge of the various 
soliton structures originating from the equation. Additionally, 
we underlined the usefulness and potency of the Generalized 
Arnous method, the New Kudryashov, and the Modified Sub-
Equation strategies in discovering soliton solutions for NLPDEs. 
The discovered solutions contribute greatly to expanding our grasp 
of the nonlinear dynamics regulating the propagation of water 

solitons in engineering and physical sciences. This paper tries to 
give helpful insights for scientists and researchers aiming to enhance 
their experimental activities. Moreover, there exists a possibility for 
widening the scope of this study by including concerns of lump 
interactions, researching multi-soliton situations, and analyzing 
the dynamics of rogue wave breathers. Such additions might 
improve the practical application and relevance of the research. 
The distinctiveness of this study lies in the unified application of 
three analytical techniques to systematically investigate the complex 
soliton dynamics in the IBWWE, yielding new solutions such as 
bright-dark and anti-kink solitons. The detailed stability analysis 
and graphical illustrations, supported by reproducible resources, 
extend the application of this work to both theoretical studies and 
practical applications in fluid dynamics, in coastal, optical, and
plasma environments.
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