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Introduction: As an artificial two-dimensional material, metasurfaces are
essential for modifying the fundamental characteristics of electromagnetic
(EM) waves. Numerous researchers have created and validated metasurface
uses, including anomalous reflection, polarization rotation, and absorption. The
development of chiral metasurfaces that exhibit spin-selective transmission
or reflection offers a novel method of manipulating circularly polarized (CP)
waves. Because of their enormous chiroptical responses, which are orders of
magnitude larger than those of natural chiral materials, chiral metasurfaces have
also garnered a lot of interest in the field of spin photonics.

Methods: This paper proposes a novel chiral metasurface for dual-band THz
circularly polarized anomalous reflecting and absorbing. The co-polarized
reflection for incident right-handed and lefthanded circularly polarized waves
is achieved via the metasurface structure, which is made up of two
chiral structures. The corresponding absorption rates are 96.3% and 90.9%,
respectively. The full 360° coverage is realized by rotating the chiral metasurface
unit using Pancharatnam-Berry phase principle.

Results and Discussion: Simulation results show that the proposed metasurface
has multi-function beam control capability and can be deployed in chiral
sensing, electromagnetic energy harvesting, polarization converters, radar and
other applications.

KEYWORDS

metasurface, THz waves, metamaterial absorber, dual-polarized beam control, circular
polarization

1 Introduction

Electronic waves with a frequency range of 0.1∼10 THz are known as terahertz
(THz) waves. These waves have a wide range of potential uses in non-destructive
testing, security monitoring, 6G communications, and space situational awareness [1].
THz waves fall in between photonics and electronics. There is a “terahertz gap” in the
electromagnetic spectrum as a result of the limited development of THz functional
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FIGURE 1
Schematic diagram of the function and unit structure of chiral metasurface array. (a) Metasurface array function (b) Metasurface unit structure.

devices caused by the difficulty of producing efficient THz
responses in natural materials [2, 3]. Metasurfaces are two-
dimensional metamaterials that are made by arranging sub-
wavelength artificial electromagnetic structural units in a certain
pattern. They have unique electromagnetic property control
capabilities for electromagnetic waves [4] and can achieve a variety
of electromagnetic control functions such as wave absorption [5–7],
superlenses [8, 9], asymmetric transmission [10, 11], polarization
conversion [12], vortex waves [13]. The cross-integration of
metamaterials and THz frequency provides an important way to
solve the bottleneck of conventional THz technology. A common
geometric feature found in structures like proteins and DNA
double helix molecules is chirality [14]. In the electromagnetic
environment, chiral structures can generate circular dichroism
(CD) [15] and circular birefringence optical rotation effects [16],
as well as distinct reactions to left-handed circularly polarized
(LCP) and right-handed circularly polarized (RCP) electromagnetic
waves. Artificially designed metamaterials/metasurfaces can
achieve chiral effects far greater than those of natural materials
[17]. Chiral metamaterials/metasurfaces have been applied
in electromagnetic wave amplitude and phase regulation and

TABLE 1 Metasurface unit parameters.

Parameter Value

p 33.5 μ m

w 1.2 μ m

l 21 μ m

k1 9 μ m

k2 5.5 μ m

k3 10 μ m

k4 10 μ m

r 9 μ m

α 30°

β 5°

t 10.5 μ m
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FIGURE 2
Simulation results of unit reflectance, absorptivity and circular dichroism. (a) Meta-atom I reflection coefficient (b) Meta-atom I absorption and circular
dichoism (c) Meta-atom II reflection coefficient (d) Meta-atom II absorption and circular dichoism (e) Meta-molecule reflection coefficient (f)
Meta-molecule absorption and circular dichoism.
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FIGURE 3
Current distribution on the surface of meta-molecular unit. (a) 2.53 THz LCP normal incidence (b) 2.53 THz RCP normal incidence (c) 3.43 THz LCP
normal incidence (d) 3.43 THz RCP normal incidence.

polarization conversion. Some scholars have proposed using chiral
metasurfaces to absorb circularly polarized waves [18]. When
LCP/RCP waves are incident on chiral metasurfaces, only one
type of electromagnetic wave is efficiently absorbed. Reflecting
or transmitting orthogonally polarized electromagnetic waves
exhibits circular dichroism [19–22]. The authors in [23] proposed
the generalized Snell’s law, which laid a theoretical foundation for
the design of phase-controlled metasurfaces. Through resonant
phase units [24] and geometric (Pancharatnam-Berry) phase
units [25], electromagnetic control of abnormal reflection and
abnormal refraction of electromagnetic waves can be achieved.
Among them, geometric phase is an important means for
metasurfaces to control THz circularly polarized waves. By rotating
the unit, the reflected or transmitted circularly polarized wave
can produce a phase difference of two times the rotation angle,
thereby achieving abnormal reflection or transmission of circularly
polarized waves [26, 27].

The authors in [28] proposed using a V-shaped unit structure
to form a single-layer new artificial electromagnetic surface. By
changing the angle of the V-shaped unit structure, the phase
wavefront of the electromagnetic wave can be controlled to generate
a vortex beam. The authors in [29] proposed a metasurface based
on graphene materials. By changing the chemical potential of the
graphene unit, a modally tunable OAM beam can be achieved in the
range of 4.2–5.6 THz. The authors in [30] proposed a metasurface
based on VO2 materials. By driving the change from the insulating
state to the metallic state of VO2 by temperature change, an OAM
beam with reconfigurable modes and beam steering angle can
be achieved in the range of 0.69–0.79 THz. In [31], the research
group further proposed to use VO2 to convert THz incident waves
into outgoing beams with different modes or frequencies in a
tunable THz operating frequency band. The authors in [32] used

the temperature control properties of InSb materials and based on
the geometric phase principle to produce a modally reconfigurable
metasurface in the frequency range of 1.8–4.5 THz.

At present, the design of THz chiral metasurfaces is mainly
for a single function or a single frequency band, and the research
on THz multi-band multifunctional chiral metasurfaces needs to
be deepened.

This paper proposes a novel dual-frequencyTHzwave absorbing
and anomalous reflecting circular-polarized chiral metasurface. The
main contributions are as follows.

1) This metasurface can adjust the amplitude and phase of
circularly polarizedwaves according to their rotation direction,
and realize the dual-function integration of circularly polarized
wave absorbing and abnormal reflection.

2) It can absorb the incident wave of LCP at a low frequency of
2.53 THz, and abnormally reflect the incident wave of RCP at
an angle of −26° and maintain its chirality.

3) It absorbs the incident wave of RCP at high frequency of
3.43 THz, and abnormally reflects the incident wave of LCP at
an angle of +19° and maintains its chirality.

4) The metasurface array designed in this paper has a simple
structure and is easy to integrate.

5) It has great application potential in the fields of THz
electromagnetic energy collection, polarization converters,
chiral sensing, radar, etc.

The remainder of this paper is organized as follows. In
Section 2, the theoretical analysis of themetasurface is performed. In
Section 3, the absorption performance is evaluated. In Section 4, the
metasurface array design andperformance is discussed. In Section 5,
the conclusion is discussed.
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FIGURE 4
Impact of the structural parameters of meta-molecule units on
dual-frequency circular dichroism. (a) Variation of low-frequency
circular dichroism with k1 (b) Variation of low-frequency circular
dichroism with β.

2 Metasurface theoretical analysis

The dual-frequency THz circularly polarized wave absorption
and abnormal reflection chiral metasurface array proposed in
this paper can realize the control of the amplitude, phase,
and polarization of circularly polarized waves in dual frequency
bands [33–35]. The function is shown in Figure 1a. It absorbs
the incident waves of LCP and RCP at the low frequency of
2.53 THz and high frequency of 3.43 THz, and realizes the chiral
anomalous reflection of −26° and +19° for the orthogonal circularly
polarized waves (low frequency and high frequency) in the 2 THz
frequency bands. Figure 1b shows the top view and side view of the
metasurface unit structure.

The unit is a metal-dielectric-metal “sandwich” structure
[36–38]. The top pattern and the floor material are made of gold
with a conductivity of 4.56 × 107 S/m and a thickness of 200 nm.

The middle dielectric layer is made of polyimide with a dielectric
constant of 3.5 and a loss tangent of 0.0027 [28]. The unit can be
regarded as ameta-molecule composed of ameta-atom I and ameta-
atom II with a period of p. Among them, the meta-atom I is a chiral
rectangular resonant ring with asymmetric openings on the top and
bottom [37, 38]. The Meta-atom II is a chiral circular resonant ring
with openings at different angles on the top and bottom. The nested
meta-molecule is a two-dimensional chiral structure with neither
rotational symmetry nor mirror symmetry.

The specific values of the unit size parameters
are shown in Table 1.

According to the theory of rotation-selective absorption and
reflection [29], the Jones matrix is used to evaluate the circular
dichroism of a two-dimensional chiral metasurface unit [39–41].
The connection between a linearly polarized electromagnetic wave’s
incident and reflected electric fields in the Cartesian coordinate
system can be written as in Equation 1:

[

[

ExR
EyR
]

]
= [

[

rxx
ryx
 

rxy
ryy
]

]

[

[

ExI
EyI
]

]
= R[

[

ExI
EyI
]

]
(1)

Among them, the reflected and incident electric fields are
denoted by the letters ER and EI, respectively. The reflection
coefficient is denoted by r, and the linear polarization direction
is denoted by its superscript and subscript, x and y [42–44].
The reflection coefficient makes up the reflection matrix R. The
circular polarization basis reflection matrix Rcirc is created by
transforming the linear polarization basis reflection matrix R via
matrix transformation which is expressed by Equation 2:

Rcirc = [

[

rLR
rRR
 

rLL
rRL
]

]

= Λ−1RΛ

= 1
2
[

[

rxx + ryy + i(rxy − ryx)

rxx − ryy + i(rxy + ryx)
 

rxx − ryy − i(rxy + ryx)

rxx + ryy − i(rxy − ryx)
]

]
(2)

Among them, Λ = 1/√2[

[

1

i
 

1

−i
]

]
denotes the transformation

matrix, rLL and rRR are the coefficients of the co-polarization
reflection; rRL and rLR represents the coefficients of cross-
polarization reflection [45–47].The subscripts “L” and “R” represent
left-hand circular polarization (LCP) and right-hand circular
polarization (RCP) in the direction of the wave, respectively.

Due to the presence of the underlying metal, the absorption
performance of the unit is only related to the reflected field [48–50].
Considering the cross-polarization of the chiral unit, the left-handed
absorption coefficient ALCP and the right-handed absorption
coefficient ARCP of the unit can be expressed as in Equations 3, 4:

ALCP = 1− |rLL|2 − |rRL|2 (3)

ARCP = 1− |rRR|
2 − |rLR|

2 (4)

Equations 3, 4 show that the key to achieving efficient wave
absorption is to make the co-polarization and cross-polarization
reflection coefficients close to 0 at the same time.
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FIGURE 5
Absorption rate of the unit under two different azimuth oblique incidence. (a) LCP in xOz plane (b) RCP in xOz plane (c) LCP in yOz plane (d) RCP in
yOz plane.

FIGURE 6
Circular dichroism of a metasurface unit cell under two different azimuth oblique incidence conditions. (a) CD in xOz plane (b) CD in yOz plane.

The difference between left-handed and right-handed wave
absorption by a metasurface unit is measured by the circular
dichroism (CD), which is defined in Equation 5:

CD = ALCP −ARCP (5)

The value of CD can be positive or negative, indicating
the selective absorption of the rotation direction of LCP waves
or RCP waves.

3 Performance evaluation of unit
circular polarization absorption

The CST Microwave Studio simulator is used to analyze
meta-atom I, meta-atom II and meta-molecule. These chiral unit
structures’ distinctive properties, including their circular dichroism,
wave absorption rate, and reflection coefficient, are primarily
determined [51–53]. Using vertically incident LCP and RCP waves
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FIGURE 7
Effect of rotating unit pattern on circular dichroism.

as excitation, Figure 2 illustrates the simulation results of the
reflection coefficient, wave absorption rate, and circular dichroismof
the three structures. The results of Figures 2a,b show that, the meta-
atom I can efficiently absorb LCPwaves at 2.59 THz, while reflecting
RCP waves and keeping their chirality unchanged. The absorption
rate of LCP waves reaches 99.3%, while the absorption rate of RCP
waves is only 8.6%, and the circular dichroism reaches 0.9 [54–56].
This is becausemeta-atom I can achieve cross-polarization reflection
below 0.3 and co-polarization reflection above 0.9 in the frequency
band of 2.4∼3.8 THz, and resonate at 2.59 THz, making rLL close to
0. The results of Figures 2c,d show that at 3.49 THz, the absorption
rate of the meta-atom II for RCP wave is 54.6%, the absorption rate
for LCP wave is 17.1%, and the circular dichroism is −0.37.

The excellent cross-polarization suppression performance of
meta-atom I in a wide frequency band provides space for expanding
the second chiral resonance point. The characteristic size of meta-
atom II can be reasonably optimized to make its chiral resonance
frequency just near the frequency point with the strongest cross-
polarization suppression of meta-atom I, thereby realizing dual-
frequency circular dichroism recombination [57–59]. Figures 2e, f
show the performance of the meta-molecule after recombination.
At the two frequencies of 2.53 THz and 3.43 THz, the meta-
molecule has strong chiral absorption for LCP waves and RCP
waves, respectively, and can achieve efficient chiral reflection for
circularly polarized waves of the other hand direction. At 2.53 THz,
the absorption rate of the meta-molecule for LCP waves is 96.3%,
and the absorption rate for RCP waves is only 11.2%, and the
circular dichroism reaches 0.85. The absorption rate of the meta-
molecule for LCP waves is 14.1% at 3.43 THz. The absorption rate
for RCP waves is 90.9%. The circular dichroism is −0.77. That is to
say, the meta-molecule achieves opposite strong circular dichroism
in two frequency bands [60–62]. It is possible to determine
from observation that the meta-molecule’s two chiral resonance
frequency points are near to those of meta-atoms I and II.

The simulation results in Figure 2 show that the design
scheme integrating two chiral resonant rings can improve the
high-frequency chiral resonant response of meta-atom II while

inheriting the low-frequency strong circular dichroism of meta-
atom I. The reason is that the introduction of a chiral rectangular
ring outside the chiral circular ring can significantly enhance the
chiral characteristics of the structure and strengthen the coupling
effect between adjacent metal structures.

To further evaluate the physical mechanism of chiral wave
absorption of meta-molecular units, the surface current distribution
of metamolecular units at 2.53 THz and 3.43 THz is simulated
[63–65]. Figure 3 shows the surface current distribution of the unit
at two resonance points when the LCP/RCP wave is incident.

As shown in Figures 3a,b, the LCP wave will excite a pair of
antiparallel currents with approximately equal amplitudes on both
sides of the rectangular ring at 2.53 THz. A magnetic moment
perpendicular to the metasurface unit is produced by the circular
magnetic dipole formed by these two current oscillations. To achieve
the absorption of the LCPwave, thismagnetic dipolemode will bind
electromagnetic energy on the unit surface. The electromagnetic
energy will then be dissipated by the metal’s ohmic loss effect and
the polyimide medium’s absorption effect. The RCP wave can be
effectively reflected since it stimulates a weak current [66–68]. The
results of Figures 3c,d show that at 3.43 THz, the RCP wave will
excite a pair of strong currents flowing in opposite directions on the
right side of the rectangular and circular rings.The circularmagnetic
dipole formed by it can also achieve strong absorption of the RCP
wave, while the LCP wave can only excite a weak surface current, so
it is efficiently reflected.

The impact of the geometric parameters of the metasurface
unit on the circular dichroism is shown in Figure 4. According to
the analysis of the results of Figures 2, 3, the characteristic sizes
of meta-atom I and meta-atom II can be adjusted respectively
to achieve independent manipulation of the low-frequency and
high-frequency circular dichroism working frequencies [69–71].
The results of Figure 4a show that when the size parameter k1
changes in the range of 8∼10 μm, the low-frequency circular
dichroism of the meta-molecule always maintains a strong circular
dichroism characteristic higher than 0.6, and the low-frequency
chiral resonance frequency can be adjusted in the range of
2.48∼2.58 THz. The high-frequency circular dichroism of the unit is
almost unaffected by the size parameter k1. The results in Figure 4b
show that when the size parameter β increases from 5° to 17°, the
high-frequency of chiral meta-molecule can be adjusted between
3.43 and 3.76 THz, and alwaysmaintains a strong circular dichroism
higher than −0.7, and the low-frequency circular dichroism of the
unit is almost unaffected by the size parameter β. Furthermore, the
scaling method may be used to modify the structural size of the
unit while controlling the two chiral resonance spots to broaden the
spectrum, in accordance with the scalability of Maxwell’s equations.

Figure 5 shows the absorption rates of LCP and RCP of the
metasurface unit under different incident angles θ [72]. Because the
designed metasurface unit is an anisotropic structure, the situation
will be different at different azimuth angles of oblique incidence.
Therefore, this paper studies the two oblique incidence situations
when the wave vector is restricted to the xOz plane and the yOz
plane. When the wave vector is restricted to the xOz plane, it can
be seen from Figure 5a that as the incident angle θ increases to 45°,
the LCP absorption rate remains at 74.4%, accompanied by a slight
blue shift phenomenon [73]. In Figure 5b, the RCP absorption peak
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FIGURE 8
Phase and amplitude of co-polarization reflection coefficient of geometric phase metasurface encoding unit. (a) Four unit rLL phase and amplitude (b)
Four unit rRR phase and amplitude.

FIGURE 9
Schematic diagram of the coding arrangement of circular polarization absorption and anomalous reflection chiral metasurface array. (a) Gradient
phase encoding strategy (b) 16 × 16 metasurface array.

hardly changes with the increase of the incident angle θ, and still has
an RCP absorption rate of 83.9% when θ increases to 45°.

When the wave vector is limited to the yOz plane, the results of
Figure 5c show that when θ is increased to 45°, the absorption rate
of the unit to LCP waves is 76.1%. The results of Figure 5d show that

when the RCP absorption peak increases with the incident angle θ
to 45°, the absorption rate of the unit to RCP is greater than 80.1%.

It should be noted that when the wave vector is limited to the x-z
plane, the unit will produce anRCP absorption band of approximately
28% near 2.6 THz when θ is close to 45°. The frequency of this RCP
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FIGURE 10
Normalized far-field pattern of coded chiral metasurface array. (a)
2.53 THz (b) 3.43 THz.

absorption band is close to the frequency of the LCP absorption
band, which will affect the CD of the unit considering this oblique
incidence condition. Figure 6a intuitively shows this influence. As the
incident angle θ in the x-z plane increases, the circular dichroism of
the unit at 2.53 THz is weakened and blue-shifted. When θ = 45°,
the circular dichroism will be reduced to 0.45. The circular dichroism
of the unit near 3.43 THz is less affected by the incident angle, the
operating frequency is almost not shifted, and it still has a strong
circular dichroism of −0.72 when θ = 45° [74]. When the wave vector
is confined to the yOz plane, the asymmetry of the unit structure is
more reduced compared with the first oblique incidence case, so the
performance of circular dichroism deteriorates more seriously. The
results in Figure 6b show that when the incident angle θ in the yOz
plane increases to 45°, the dual-frequency circular dichroism of the
unit will drop to 0.42 and −0.51 respectively. Therefore, the hand-
selective absorption performance of the structure under this oblique
incidence is not stable, and this problem needs to be paid attention to
in practical applications.

Figure 7 shows the relationship between the circular dichroism of
the unit and the simulation frequency, and the inset is an illustration

of the rotation angle φ of the pattern. As φ increases, the unit can
still maintain the characteristics of having opposite strong circular
dichroism at two frequency points [75]. The outer rectangular ring
structure responsible for low-frequency circular dichroism has a
strong coupling with the adjacent unit, and the working frequency
of positive circular dichroism fluctuates periodically with φ in the
range of 2.53∼2.65 THz.The inner ring structure responsible for high-
frequency negative circular dichroismhas very little couplingwith the
adjacent unit, so for any rotation angle φ, the unit can maintain a
strong circular dichroism of −0.77 at 3.43 THz.

4 Metasurface array design and
performance evaluation

Only the unit rotation angle can govern the extra phase shift
produced by the metasurface. According to theory, this phase control
technique has a broad bandwidth [30], allowing the total rotation unit
pattern to simultaneously control the dual-frequency reflection phase.
In order to overcome the periodic change of the working frequency
of the circular dichroism when the unit rotates, this paper selects four
units with φ of 22.5°, 67.5°, 112.5° and 157.5° for separate simulation
verification.Thephase and amplitude of the co-polarization reflection
coefficientof the fourunits are shown inFigure 8.At the tworesonance
points of 2.53 THz and 3.43 THz, as the rotation angle increases, the
reflection phase of the four units appears to be faulted.This is because
the chiral wave absorption characteristics of the unit at the resonance
point blur the phase change.

The LCP wave’s reflection phase progressively diminishes as the
rotation angle grows at the non-resonant frequency, whereas the
RCP wave’s reflection phase gradually increases as the rotation angle
increases [76–78]. The phase change trends are exactly opposite,
and both can achieve a phase coverage of nearly 360°. Further
observation also shows that the absolute value of the reflection phase
difference between adjacent units is about 90°, which is exactly
twice the rotation angle increment of 45°, and this phase change
is dispersion-free, which conforms to the geometric phase theory.
The co-polarization reflection amplitude of the four units is constant
over the broad frequency range of 2.2∼3.8 THz, and it has a greater
reflection amplitude at the non-resonant point, according to the
reflection coefficient’s amplitude. Based on this excellent reflection
coefficient dispersion-free performance, these four meta-molecular
units can be used to design circularly polarized wave absorbing and
abnormal reflection metasurface arrays.

For the above four meta-molecular units with a reflection phase
difference of 90°, digital coding can be used to represent their
phase response to design a reasonable coding strategy [31, 32]. This
paper uses the numbers “0”, “1”, “2” and “3” to represent these
four units, and uses the coding strategy of reflection phase gradient
arrangement to construct a 2-bit strong circular dichroism circular
polarization amplitude-phase control metasurface, in order to
simultaneously realize the three functions of dual-frequency circular
polarization chiral absorption, circular polarization conversion and
abnormal reflection. The metasurface coding arrangement strategy
is shown in Figure 9a. In the x direction, the four units form a
superstructure unit cell with a period of L = 8 × p in the encoding
mode of “00112233”, and extend with a period of L in the x
direction. In the y direction, the superstructure unit cell extends
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FIGURE 11
Variation of LCP and RCP phase angle with rotation angle.

FIGURE 12
Simulated and measured gain comparison vs. rotation angle.

FIGURE 13
Surface current of LCP and RCP waves.

FIGURE 14
Comparison of simulated and measured comparison of mode purity
(l = 0).

with a period of p. The final constructed 16 × 16 supersurface array
is shown in Figure 9b.

The metasurface with gradient phase can change the reflection
direction of electromagnetic waves, that is, realize the abnormal
reflection of electromagnetic waves [79, 80]. The reflection angle
θr of the abnormal reflection is obtained by the generalized form
of Snell’s law:

θr = ± sin−1[sin θi + λ0/L] (6)

where θi represents the angle of incidence, λ0 is the wavelength of
the signal, and L denotes the period length of the metastructure unit
cell. In the proposed metasurface array, θi is fixed to 0° and L =
268 μm.The sign of the reflection angle is specified as follows: “+” for
LCPwaves and “−” for RCPwaves. Using Equation 6, the theoretical
LCP/RCP reflection angles at the two resonance points of 2.53 THz
and 3.43 THz are calculated to be −26° and +19° respectively.

The full-wave simulation was performed by using LCP/RCP
plane waves to excite themetasurface at vertical incidence. Figure 10
displays the metasurface array’s one-dimensional normalized far-
field pattern, with the three-dimensional far-field pattern inset. The
RCPwave experiences hand-preserving anomalous reflection with a
reflection angle of −26° at 2.53 THz, whereas the LCPwave is heavily
absorbed. The LCP wave experiences hand-preserving anomalous
reflection with a reflection angle of +19° at 3.43 THz, while the RCP
wave is heavily absorbed. The experimental results are consistent
with the theoretical analysis. The simulation results show that the
metasurface array has two functions of circularly polarized chiral
absorption and chiral anomalous reflection in two frequency bands,
it is able to control the amplitude and phase of the CP waves at
the same time.

The further validate the effectiveness of the proposed
metasurface, Figure 11 compares the performance of the LCP and
RCP wave in terms of phase angle. As can be seen from Figure 11,
the phase angle variation is considerable for covering the
desired spectrum.

Figure 12 compares the simulated and measured gain of the
metasurface under increasing rotation angle.

As can be seen that, the simulated and measured gain are
consistent and effective.
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TABLE 2 Comparison of the proposed and existing metasurface performance.

Reference Operating frequency Absorption (%) Circular dichroism
peak

Function

[38] Terahertz (single frequency) 97 0.87 Circular polarization absorber

[39] Microwave (dual frequency) 95.18 (Low frequency)
91.77 (High frequency)

0.78 (Low frequency)
0.69 (High frequency)

Circular polarization absorber

[40] Microwave (dual frequency) 92 (Low frequency)
94 (High frequency)

−0.79 (Low frequency)
0.75 (High frequency)

Circular polarization
absorption +

Abnormal reflection

[41] Mid-infrared (dual frequency) 64 (Low frequency)
89 (High frequency)

0.40 (Low frequency)
0.58 (High frequency)

Circular polarization absorber

[42] Microwave (dual-frequency) 91.45 (Low frequency)
89.74 (High frequency)

0.71 (Low frequency)
0.63 (High frequency)

Circular polarization absorber

[43] Terahertz (single frequency) 92.86 (Low frequency)
88.76 (High frequency)

0.69 (Low frequency)
0.76 (High frequency)

Circular polarization absorber

[44] Microwave (dual-frequency) 64.13 (Low frequency)
85.13 (High frequency)

0.52 (Low frequency)
0.65 (High frequency)

Circular polarization
absorption +

Abnormal reflection

Proposed THz (dual frequency) 96.3 (Low frequency)
90.9 (High frequency)

0.85 (Low frequency)
−0.77 (High frequency)

Circular polarization
absorption +

Abnormal reflection

Figure 13 evaluates the surface current of the RCP and
LCP waves with different values of phase angles. As can
be seen from Figure 13, asymmetric electric field is created to
generate resonant phase delay betweenboth sides of themetasurface.

Figure 14 compares the OAM mode purity performance. It can
be seen from Figure 14, the mode purity level at desired mode
number is higher which is desirable for designing the metasuface
generating OAM waves. This also enables to generates waves at
specific mode.

Table 2 lists the comparison between the proposed metasurface
design the existing works. Currently, most THz chiral metasurfaces
with strong circular dichroism can usually only work in a single
frequency band. From Table 2, it is evident that the suggested
metasurface offers benefits in dual-frequency circular dichroism
peak and multifunctional integration in addition to extending the
operating frequency range to two.

5 Conclusion

This paper uses Jonesmatrix theory and geometric phase control
principle to design a dual-frequency THz circularly polarized
wave absorption and abnormal reflection chiral metasurface array.
The metasurface realizes opposite circular dichroism in 2 THz
frequency bands. Compared with ordinary metal plates, it can
perform hand-preserving reflection of circularly polarized waves
of specific rotation direction and has good circular polarization
conversion ability. At the same time, the proposed metaruface has
the ability of geometric phase control, and can realize the abnormal
reflection of circularly polarized waves at a given angle through

gradient phase arrangement. It explains the circular polarization
absorption mechanism of chiral metasurface units by analyzing the
surface current distribution of metasurface units. Through phase
gradient arrangement, a chiral metasurface integrated array with
chiral absorption, polarization conversion and abnormal reflection
functions is designed, which realizes the absorption of circularly
polarized waves of specific rotation direction at two working
frequencies, and makes the orthogonal circularly polarized waves
have chiral-preserving abnormal reflections at −26° and +19°
respectively. In the future, it will promote its application in THz
energy collection, polarization conversion, sensing, imaging and
other fields.
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