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The rise of deep learning challenges the longstanding scientific ideal of 
insight—the human ability to understand phenomena by uncovering underlying 
mechanisms. From a physics perspective, we examine this tension through 
a case study: a physics-informed neural network (PINN) trained on rarefied 
gas dynamics governed by the Boltzmann equation. Despite strong physical 
constraints and a system with clear mechanistic structure, the trained network’s 
weight distributions remain close to Gaussian, showing no coarse-grained 
signature of the underlying physics. This result contrasts with theoretical 
expectations that such networks might retain structural features akin to discrete 
dynamical systems. We argue that high predictive accuracy does not imply 
interpretable internal representations and that explainability in physics-informed 
AI may not always be achievable—or necessary. These findings highlight 
a growing divergence between models that predict well and those that 
offer insight.
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 1 Introduction

Recent advances in machine learning (ML), particularly through large language models 
(LLMs), have dramatically reshaped both science and society. These models now routinely 
tackle problems previously thought to be beyond reach, ranging from natural language 
understanding and protein folding to autonomous systems and symbolic reasoning [1–3]. 
Such progress introduces a fundamentally different approach to scientific discovery—one 
based not on physical insight into underlying mechanisms, but on data-driven optimization 
through a dense web of parameters. While physics-informed constraints can improve 
convergence [4], the learning process itself often remains opaque.

It no longer appears tenable to dismiss ML as a “glorified interpolator” or LLMs as 
“stochastic parrots” [5]. Instead, ML is beginning to challenge the very role of mechanistic 
understanding—or what has traditionally been called Insight—in scientific modeling. This 
tension raises the possibility of an ”End of Insight” (EoI), a term coined by Strogatz [6], 
referring to the notion that certain scientific challenges may resist explanation in terms 
of simple governing principles, especially when they involve multiple interacting processes 
across vastly different scales in space and time.

This prospect is sad and perilous but plausible. Insight, as shaped by centuries of theory-
driven physics, may not scale gracefully to problems such as epidemics, climate dynamics, 
or non-equilibrium statistical systems. ML, unconcerned with interpretability, may allow us 
to push the frontiers of knowledge in such domains—but without the perk of Insight and the 
intimate pleasure of ”finding things out”. This should not distract us from the fact that ML is 
still subject to a number of major limitations, especially when paired with the rising energy
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cost of training ever-larger models, a trajectory that raises concerns 
about sustainability and rapidly diminishing returns [7].

In this paper, we contribute to this discussion through a focused 
case study: a physics-informed neural network (PINN) trained 
on a rarefied gas flow governed by the Boltzmann equation. The 
problem is highly structured, well understood, and modeled using 
both mechanistic equations and direct numerical simulation. Given 
these features—and the close connection between machine learning 
and discrete dynamical systems—we explore whether the network’s 
parameters retain coarse signatures of the underlying physics. 
Rather than aiming to resolve interpretability, we use this controlled 
setting to test assumptions about what structured learning might 
look like when physical constraints are strongly present. 

2 The basic ML procedure

The basic idea of ML lies in approximating a D-dimensional 
output y through recursive application of a nonlinear map [8]. For 
a neural network (NN) with input x, L hidden layers z1…zL, each 
containing N neurons, and an output layer y, the update chain reads 
as in Equations 1–3:

z0 = x (1)

z1 = f(W1x− b1), …, zL = f(WLzL−1 − bL), (2)

y = zL+1 = f(WL+1zl − bL+1) (3)

where Wl are N×N weight matrices, bl are N-dimensional arrays 
of biases, and f is a nonlinear activation function. At each 
layer, the output is often normalized ‖z‖ = 1. The weights are 
updated via backpropagation, typically via a steepest descent as 
presented in Equation 4:

W′ =W− α ∂E
∂W

(4)

where E[W] = ‖yT − y‖2 is the loss function, W′ are the updated 
weights and α is the learning rate. 

2.1 Taming complexity

It is often claimed that, with enough data, ML can approximate 
virtually any target, whence the alleged demise of the scientific 
method [9, 10]. Put down in such bombastic terms, the idea 
is readily debunked by general considerations on the physics 
of complex systems, see for instance [11, 12]. Yet, ML does 
show remarkable proficiency in handling problems resistant to 
conventional modeling.

To understand why, we briefly examine the three main 
boosters of Complexity: Nonlinearity, Nonlocality and Hyper-
Dimensionality. 

2.1.1 Nonlinearity
Nonlinear systems exhibit two distinguishing and far-reaching 

features: i) they do not respond proportionally to input, and 
ii) they transfer energy (information) across scales. This makes 

them erratic and hard to predict, but also capable of emergent 
phenomena—complex behavior arising from simple rules, biology 
being a goldmine of such instances. While physics has developed 
mathematical tools to handle nonlinearity, these are often 
overwhelmed when couplings become too strong across vast 
scales, with weather forecasting being a prominent example. ML 
can definitely help such methods stretch their limits. However, 
at present, there is no clear evidence that it can systematically 
outperform them, especially when precision is in high demand, 
as is usually the case for scientific applications [13]. 

2.1.2 Nonlocality
In nonlocal systems, local behavior depends on distant states, 

often via long-range couplings. Although this interaction usually 
decays with the distance between the two regions, it cannot be 
ignored, no matter how far the interacting components are. A typical 
example from physics is classical gravitation, which is controlled 
by a potential decaying with the inverse power of the distance. 
The peculiarity of these systems is that they hardly reach a state 
of dynamic order known as ”local equilibrium”, usually controlled 
by a subset of ”slow” variables living in a lower-dimensional 
manifold. Local equilibrium is the result of a neat scale separation 
between slow and fast variables, a feature which greatly simplifies 
the dynamics. Dynamics is notoriously much harder to capture 
than statistics and this is the reason why statistical physics is so 
effective in describing complex systems. With nonlocality in play, 
even statistical mechanics may remain hard to capture because 
of the aforementioned lack of scale separation between fast and 
slow modes. ML has shown promise in capturing such structures, 
particularly in identifying latent manifolds, though it remains an 
empirical rather than systematic approach [14]. 

2.1.3 Hyper-dimensionality
High-dimensional systems often suffer from the so-called curse 

of dimensionality (CoD), where the state space grows exponentially 
with the number of variables. Yet the real difficulty is subtler: due 
to nonlinearities, heterogeneities, and other structural constraints, 
important phenomena typically occur in sparse, low-volume regions 
of this vast space—what we might call the ”golden nuggets”. Locating 
these nuggets is exponentially hard, and this is where ML excels [15].

A deep neural network (DNN) with width N = 103 and depth L =
102 contains 108 weights and supports 1030 distinct computational 
paths between input and output. Through backpropagation, the 
training process effectively searches this massive space to adjust 
weights so as to populate those sparse regions where meaningful 
correlations live. As Geoffrey Hinton put it: “Boltzmann machines 
are nice, but the real thing is the backpropagation algorithm.”

Modern ML applications such as DeepFold and LLMs now use 
up to 100 billion parameters—roughly the number of neurons in 
the human brain. But unlike our 20 W cerebral hardware, these 
models can require gigawatt-scale resources. It is estimated that 
next-generation chatbots will approach the gigawatt power demand, 
more than most existing power plants. This unveils the fundamental 
tension: ML systems trade Insight for brute-force optimization, 
and with it comes massive energy cost. The question is whether 
the End of Insight also implies the end of the energetic resources 
of planet Earth, in which case one has probably to think twice 
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before endorsing the ”bigger is better” route undertaken by Big Tech 
companies [16].

The academic community is exploring ways to mitigate this, 
often with limited means. In the next section, we offer one such 
contribution: reframing ML as a class of discrete dynamical systems, 
namely, generalized diffusion-advection processes. This analogy 
allows weights to acquire physical meaning, potentially enabling 
more interpretable and energy-efficient learning strategies [17].

Let us describe the idea in more detail. 

3 Machine learning and discrete 
dynamical systems

In a recent paper [17], the ML procedure was formally 
reinterpreted as a discrete dynamical system in relaxation form: 
more precisely, as a time-discretized neural integro-equation 
(NIDE) of the form shown in Equation 5:

∂tz = −γ(z− zeq) (5)

where z = z(q, t) is the physical signal in spatial parameter q, and the 
local equilibrium defined in Equation 6:

zeq = f(Z) (6)

The mapping Z is a shorthand for the shifted linear 
convolution shown in Equation 7:

Z(q, t) = ∫W(q,q′)z(q′)dq′ − b(q) (7)

where b(q) is the bias function.
The procedure is quite transparent, both conceptually and 

mathematically: the solution z(q, t) is attracted to a local equilibrium 
zeq(q, t), the target of the procedure, which is the result of a nonlinear 
deformation, via the activation functional, of the convoluted signal 
Z(q, t). The former is linear and non-local; hence, it implies 
scale mixing while leaving amplitudes untouched. The nonlinear 
deformation responds to a criterion of amplitude selection but leaves 
scales untouched. For instance, tanh(Z) leaves small amplitudes 
unaffected and saturates the large ones on both sides. Rectified 
Linear Unit (ReLU), on the other hand, leaves positive signals 
unchanged and sets negative ones to zero. Hence, the signal is first 
non-locally linearly convoluted and then locally and nonlinearly 
deformed in amplitude. This sequence is key for ML schemes as 
universal interpolators, especially in high-dimensional spaces. Once 
again, the three boosters of complexity are fully accounted for.

A simple Euler time marching of the Equation 5, as combined 
with a suitable discretization of the ”space” variable q into a set of N
discrete nodes, delivers Equation 8:

zi(t+ 1) = (1−ω)zi(t) +ωzeq
i (t) (8)

where ω = γΔt. Direct comparison with (5) shows that, with
ω = 1, this is precisely the forward step of the ML procedure with 
L = T/Δt layers and N neurons per layer, with the initial condition 
z(0) = x and output y = z(T), T being the time span of the evolution.

Clearly, the result is highly dependent on the structure of 
the convolution kernel W(q,q′), whose discrete version is nothing 

but the weight matrix Wij. In [17] it was noted that each kernel 
gives rise to a corresponding PDE and perhaps even low-order 
PDEs, such as advection-diffusion-reaction, with inhomogeneous, 
possibly time-dependent or even nonlinear coefficients, can give 
rise to pretty complex spatio-temporal patterns. Clearly, most 
common PDEs would lead to highly structured kernels, hence it was 
(naively) argued that inspection of real-life ML applications might 
show signatures of underlying structure. For instance, a simple 
advection-diffusion-equation in one spatial dimension would give 
rise to a tridiagonal-dominant weight matrix. The detection of such 
structural regularity in the weight matrices would offer a very 
valuable inroad to their explainability in the first place, let alone the 
energy savings resulting from a reduced set of weights.

The argument can be easily extended to more general PDEs, 
including strong inhomogeneities and nonlinearities, which could 
easily be implemented by convoluting local nonlinear combinations 
of the signal, as shown in Equation 9:

Z(q, t) = ∫W(q,q′)g(z(q′))dq′ − b(q) (9)

where g(z) is a local activation function, independent of f.
For instance, by truncating the integral to the second 

moment, we would obtain Z(q) =W0(q)g(z) +W1(q)∂xg(z) +
W2(q)∂xxg(z). In the above, the moments are defined as Wk(q) =
∫W(q,q′)(q′ − q)kdq′, and one may inspect their decay with 
increasing order to retain only a finite number in the sequence 
without seriously affecting the accuracy of the solution. The link 
between deep learning and PDEs is an active topic of research in 
the field [18]. 

4 Inspecting the weights of a PINN 
application to rarefied gas dynamics

The preceding considerations suggest that analyzing the weights 
of a trained network might offer insight into its internal logic, 
particularly when the problem is governed by a well-understood 
physical model. Let us test the idea by means of a concrete 
application. Recently, we trained a physics-informed neural network 
(PINN) on a body-force-driven rarefied gas flow through a 2D 
periodic array of cylinders in the laminar, isothermal and weakly 
compressible limit [19]. This problem has a well-defined structure 
governed by the Boltzmann equation (BE).

A key parameter in rarefied gas dynamics is the Knudsen 
number Kn = λ/D, defined as the ratio of the molecular mean 
free path λ to a characteristic length scale of the problem - in 
this case, the cylinder diameter D. The Knudsen number thus 
serves as a measure of rarefaction, characterizing the importance 
of non-equilibrium effects. In the continuum regime (Kn≪ 1), the 
Navier-Stokes equations provide an accurate description of the flow. 
However, as Kn increases, non-local effects due to the finite mean 
free path of molecules predominate, and momentum transfer is no 
longer only influenced by local velocity gradients. This nonlocal 
coupling is particularly evident in flows around curved surfaces.

Motivated by these challenges, we designed a neural 
network that takes as input the spatial coordinates (xi,yi), i, j =
[1,256] and the Knudsen number Kn, and outputs the velocity 
components ux, uy, pressure p and deviatoric components of 
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FIGURE 1
Normalized macroscopic fields predicted by the PINN for Kn = 1. Each output variable was standardized across the full training domain in x, y and Kn, 
resulting in zero mean and unit variance. This normalization, used to aid convergence, explains the presence of negative values in vx despite the 
imposed positive body force in the x-direction. See Ref. [19] for details.

the stress tensors τxy, τxx, τyy, which are presented in Figure 1. 
This formulation captures the key physical quantities that 
characterize rarefied gas flows of industrial interest. While the 
input space is low-dimensional, the underlying physics is high-
dimensional due to its dependence on the full velocity distribution
function.

The network consists of a Fourier layer to impose periodic 
boundary conditions [20, 21], followed by nine hidden layers of 100 
neurons with tanh as an activation function. To guide the network 
towards physical fidelity, the loss functions includes three terms: (1) 
the mean squared error with respect to DSMC data, normalized via 
Z-score scaling; (2) a no-penetration boundary condition; and (3) 
the continuum equation and the Cauchy momentum equations. The 
physics terms are collectively weighted at 10% relative to the data 
fidelity loss.

Additional pre-processing was required to ensure convergence. 
Pressure fields were debiased across the Knudsen range due to 
their artificial variation stemming from how Kn was numerically 
set. Likewise, velocity vectors lost orientation under normalization, 
which was necessary to stabilize training but severs their physical 
directional meaning. Finally, L1L2 regularization was applied to 
promote smoothness and broad participation across weights rather 
than sparse activation.

These design choices—though effective for learning—blur 
direct links between physical content and internal network 
representations. The basic question we pursue is whether, despite 
these compromises, the trained network retains any recognizable 
physical structure. Before discussing the results, let us first show that 
our problem does exhibit the three key properties we described as 
where neural networks should excel. To this purpose, let us recall 
basic facts about the Boltzmann equation (BE). 

4.1 The Boltzmann equation

This equation describes the dynamics of the probability density 
function f(x,v; t), encoding the probability of finding a particle 
(atom, molecule) around position x in space at time t with molecular 
velocity v. In one dimension, and neglecting external forces: the BE 
reads as in Equation 10

∂t f + v∂x f = Q( f, f) (10)

The left hand side represents the free streaming of the molecules, 
while the right hand encodes molecular collisions via a quadratic 
integral in velocity space involving the product f(v) f(v′) of two 
colliding particles with velocities v and v′ at (x, t). Equation 11 shows 
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it in full splendor:

Q( f, f) = ∫P(v,w|v′,w′)[ f(v) f(w) − f(v′) f(w′)]dwdv′dw′ (11)

where (v,w) and (v′,w′) are the pre- and post-collisional velocities, 
and P(v,w|v′,w′) is the probability of such collision; by micro-
reversibility this is the same as the probability of the inverse collision 
from (v′,w′) to (v,w). In a way, P can be interpreted as the weight 
kernel of the ”kinetic Boltzmann machine”, one which needs zero 
training since the physics supplies all the information it takes. In 
particular, the collision term is subject to mass-momentum-energy 
conservation laws, as shown in Equation 12:

∫Q( f, f){1,v,v2}dv = 0 (12)

This structure embeds all three complexity boosters: 
nonlinearity via the quadratic collision term, nonlocality through 
the transport of information across space and velocity scales, and 
high dimensionality due to its formulation in six-dimensional 
phase space (plus time). While Q is local in physical space, it is 
nonlocal in velocity space, and its competition with the streaming 
term drives the system toward or away from local equilibrium feq, 
depending on the Knudsen number Kn. In the hydrodynamic limit 
(Kn→0), equilibrium dominates and the BE reduces to the Navier-
Stokes equations. As Kn increases, non-equilibrium effects emerge, 
and molecular-scale information propagates over macroscopic 
distances.

Even more relevant to macroscopic observables, integration 
of the BE over velocities yields transport equations that are 
simultaneously nonlinear and nonlocal in physical space, such as the 
familiar convective term u∂xu, with u(x, t) = ∫v f(x,v, t)dv/∫ fdv. 
This emergent structure underpins the complexity of fluid 
turbulence and forms the basis for the powerful lattice formulations 
of the BE [22–25]. 

5 Learning the Boltzmann solutions 
via PINNs

The PINN described above is trained on numerical data 
from Direct Simulation Monte Carlo of the Boltzmann equation 
[26]. Given the problem’s high physical structure and the 
inclusion of physics-informed loss terms, one might expect this 
to manifest in structured, interpretable weight patterns. However, 
as shown in Figure 2, the distribution of weights in the deepest layer 
closely resembles a zero-mean Gaussian. While small but statistically 
significant departures from normality are detected—excess kurtosis 
between −0.65 and −0.5, Kolmogorov–Smirnov (KS) distances 
between 0.015 and 0.03—these deviations do not amount to the 
emergence of any discernible physical structure. No clear trace of 
the governing equations appears to persist in the weight statistics.

One possible explanation for this mismatch lies in the 
conceptual assumptions behind the analogy between machine 
learning and discrete dynamical systems. Such analogies typically 
rely on the presence of an ordered metric structure among 
discrete coordinates qi, with the weight matrices Wij mediating 
local interactions, much like in finite-difference approximations 
to PDEs. In generic ML settings, where input nodes are abstract 

FIGURE 2
Distribution of weights in the deepest layer. The PDF is overlaid with a 
standard Gaussian. The excess kurtosis and KS statistical analysis 
indicates a weak, but statistically significant departure from normality.

and unordered, this assumption rarely holds. But in our case, the 
input space (xi,yi,Kn) is spatially structured and sampled on a 
regular grid, making the presence of such order more plausible. If 
the network were reflecting the structure of a discrete Boltzmann 
operator, one might expect Wij to develop a block-tridiagonal 
structure, at least in configuration space. The blocks themselves 
might remain irregular, owing to the stochastic nature of the DSMC 
in velocity space, but some coarse trace of this structure might 
reasonably be expected. Instead, our findings suggest that the
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training process scrambles the underlying order, leading to a diffuse, 
near-Gaussian parameter distribution that bears little resemblance 
to the physics it approximates. This supports the broader thesis 
that physics-informed ML and traditional simulation can arrive 
at the same predictive outputs via fundamentally distinct internal 
representations. 

7 Tentative conclusions and outlook

The analysis of a PINN trained on a rarefied gas flow problem 
reveals a striking disconnect between the physical structure of the 
governing Boltzmann equation and the internal organization of 
the network. Despite being constrained by physics-informed losses, 
the network’s weights resemble near-Gaussian distributions with 
no evident trace of the underlying integro-differential operator. 
This supports the view that machine learning and traditional 
simulation can offer functionally equivalent yet epistemologically 
distinct routes to the same solution.

That such a disconnect emerges even for a moderately complex 
and well-understood problem raises a deeper question: beyond 
a certain threshold of complexity, might Insight—as traditionally 
pursued in physics—become practically inaccessible? If so, the role 
of explainability must be rethought, not as a universal standard, but 
as a domain-dependent aspiration.

This need not be cause for alarm. A lack of interpretable 
structure at the parameter level does not imply that ML is 
unscientific—but it does suggest that physical knowledge and 
machine-learned representations follow fundamentally different 
logics. Bridging them may require new tools, not just to improve 
interpretability, but to reframe what interpretability itself should 
mean in AI-augmented science.
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