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Introduction: This study investigates the effect of recently implemented quote
limits policy in China’s A-share Main Board market, a mechanism designed to
enhance market stability. We examine whether this policy achieves its goals
uniformly across distinct large-cap (HS300) and mid-to-small cap (CSI500)
market segments.

Methods: Utilizing the Multifractal Detrending Moving Average Cross-
Correlation analysis (MF-X-DMA) and the nonlinear Granger causality test, we
assess the policy’s potential heterogeneous impact on these two indices.

Results: Our findings reveal that the policy decreases market efficiency and
increases cross-market co-movement complexity for HS300, while conversely
improving market efficiency and information flow for CSI500.

Discussion: We offer novel empirical evidence on this policy using nonlinear
methods. Our findings highlight the potentially divergent and unintended
consequences of “one-size-fits-all” financial regulations across varied market
segments, providing valuable insights for policymakers.
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1 Introduction

Global financial markets, while important for capital allocation and economic growth,
are often prone to extreme volatility and market anomalies. To mitigate systemic risks
and safeguard investor interests, regulators worldwide have actively implemented various
market stability mechanisms. For instance, in the United States, key mechanisms include
comprehensive circuit breakers, order protection rule, andmarket-wide trading halts during
periods of intense volatility. Similarly, Japan’s equity markets utilize daily price range limits
(often called “daily price limits”) for individual stocks and futures contracts, alongside circuit
breakers applied to major indices like the Nikkei 225, to ensure orderly price formation.
These measures generally aim to curb excessive speculation, prevent “flash crashes,” and
ensure orderly trading. As the world’s second-largest economy, China’s financial market
regulators have similarly intensified efforts to refine trading mechanisms, particularly in
response to its burgeoning stock market and increasing participation.

A significant development in this regard is the recent introduction of the quote limits
system (also called “price cage”) in China’s A-share Main Board market. This policy,
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detailed in revised trading rules issued by the Shanghai Stock
Exchange and Shenzhen Stock Exchange on 17 February 2023,
became effective on 10 April 2023, coinciding with the listing of
the first batch of registration-based main board stocks. Specifically,
during the continuous auction phase (9:30-11:30 and 13:00-14:57),
buy orders are restricted to a maximum of 102% of the benchmark
selling price, while sell orders cannot be below 98% of the
benchmark buying price. This “refusal mechanism” for invalid
orders is designed to prevent large abnormal quotes, counter
manipulative behaviors, and ultimately enhance market stability.

Despite the recent implementation and significant regulatory
implications of this policy, empirical research on the A-share Main
Board’s quote limits remains limited. While existing literature [1–5]
extensively analyzes the impact of broader price limit policies (e.g.,
daily price limits or circuit breakers) on market quality, few studies
have investigated the effects of the more continuously applied quote
limits, particularly within the unique context of China’s market
and on distinct market segments. This research gap presents an
important opportunity to contribute to a deeper understanding of
real-world policy outcomes.

To understand whether this policy achieves its intended goals
uniformly across diverse market segments, this study specifically
focuses on two pivotal and distinct benchmarks of the Chinese
equity market: the large-cap HS 300 (HS300) and the mid-
to-small cap CSI 500 (CSI500) indices. Given that component
stocks of these two indices differ in market capitalization, investor
composition, and liquidity profiles, the quote limits policy may
exert differential impacts [6–10]. For instance, CSI500 stocks are
often more susceptible to manipulative practices, as their relatively
smaller market size allows for significant price fluctuations with
comparatively less capital. Conversely, extreme price movements
in large-cap stocks (HS300) are less likely to be driven purely
by manipulation and may, instead, more frequently stem from
informed trading activities or the rapid incorporation of significant
news. Therefore, we hypothesize that the quote limits policy might
differentially impact these two market segments: for the HS300, it
could inadvertently restrict the execution of legitimate informed
trades, thereby potentially distorting information processing and
leading to decreased market efficiency. Conversely, for the mid-to-
small cap CSI500, the policy might effectively curb speculative and
manipulative behaviors, thus fostering greater market orderliness
and enhancing overall efficiency.

Understanding financial market dynamics requires moving
beyond traditional linear frameworks, as market returns often
exhibit complex, non-Gaussian, and multi-scale characteristics
[11–19]. For example, Gu and Huang [20] and Zhou et al.
[21] demonstrate that daily stock returns frequently display high
kurtosis (indicating “fat tails”) and non-zero skewness, highlighting
their significant deviations from normality. Such widely observed
features, including leptokurtosis and long-range correlations, are
very common in financial time series [17, 22]. Traditional linear
models are often insufficient to capture these intricate aspects,
such as varying degrees of market efficiency across different
scales and complex nonlinear interdependencies [23]. Therefore,
advanced non-linear and multifractal analysis tools are essential for
comprehensively uncovering the underlyingmechanisms and policy
impacts [12, 21, 24].

A substantial body of literature, grounded in fractal theory
and nonlinear dynamics, provids a suite of powerful tools for such
analyses. Based on the fractal theory, some studies propose various
multifractal analysis techniques, such as Detrended Fluctuation
Analysis (DFA) [25], Multifractal Detrended Fluctuation Analysis
(MF-DFA) [26], Detrended Cross-Correlation Analysis (DCCA)
[27], Multifractal Detrended Cross-Correlation Analysis (MF-
DCCA) [28], and Multifractal Detrending Moving Average Cross-
Correlation Analysis (MF-X-DMA) [29]. These methods are also
widely used to analyze the structure of financial markets and
the cross-correlations among them. For example, Zhou et al.
[21] and Acikgoz [16] utilize MF-DCCA to examine multifractal
characteristics and long-range cross correlations among individual
stocks or financial markets. Among these methods, theMF-X-DMA
is known for its enhanced robustness in removing local trends,
making it particularly well-suited for analyzing non-stationary
financial time series [30]. Following the work of Jiang and Zhou
[29], Li et al. [30] apply the MF-X-DMA method to test exchange
rate regime reform. Mikhaylov et al. [31] use the MF-X-DMA to
examine the factors affecting open innovation. Utilizing MF-X-
DMA, Ruan et al. [1] show that relaxing daily price limits increases
market multifractality. To complement the analysis of complex
market structures, the nonlinear Granger causality test proposed by
Baek and Brock [32] has become a widely-used tool for identifying
directional influence in nonlinear financial systems [1, 15, 33].
For instance, Zhou et al. [34] use it to assess the effect of options
trading. Zhang et al. [24] employ nonlinear Granger causality to
map systemic risk networks. Vogl and Kojić [35] also use nonlinear
Granger causality to test the interplay between cryptocurrencies and
related indices.

Based on the implementation of the quote limits policy in the
Chinese A-share Main Board market, we use MF-X-DMA and
nonlinear Granger causality test to examine the impact of this policy
on the HS300 and CSI500 indices. Our findings, consistent with
the aforementioned hypothesized divergence, show that the policy
reduces the market efficiency of the HS300 index, but improves the
efficiency of the CSI500 index. Furthermore, in the cross-market
context, the policy increases the complexity of co-movement and
strengthens futures-to-spot causality for the HS300, which suggests
potentially less efficient cross-market information transmission. In
contrast, for the CSI500, it simplifies co-movement complexity
and establishes a more integrated bidirectional nonlinear causality,
indicating improved information flow.

This research contributes to the existing literature in several
ways. First, this is among the first empirical studies to investigate
the effects of the recently implemented and more granular quote
limits policy on China’s A-share Main Board. Unlike studies on
broader price limits [1, 4, 5, 36], our focus on this precisemechanism
and its effects on distinct market segments offers a more targeted
understanding of contemporary Chinese market regulation.

Second, by extending the conventional event study framework,
we employ a sophisticated combination of advancedmethodologies,
including MF-X-DMA and nonlinear Granger causality tests. These
methods are uniquely suited to uncover the complex, non-linear,
multifractal characteristics and causal relationships within financial
time series [1, 15, 16, 20–22, 37, 38], which standard linear
models might overlook. This rigorous approach provides a more
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comprehensive assessment of market efficiency and information
transmission dynamics under policy interventions.

Third, our findings offer empirical evidence of the
heterogeneous impact of a single regulatory policy on different
market capitalization segments (large-cap HS300 vs. mid-to-small
cap CSI500). This highlights that a “one-size-fits-all” regulatory
approach may lead to divergent, and possibly unintended,
consequences across varied market ecosystems, offering valuable
insights for policymakers designing tailored and effective
regulations.

The remainder of this paper is organized as follows. Section 2
introduces the methodologies used in this paper. Section 3 details
our data and provides descriptive statistics. Section 4 presents the
analysis of the quote limits’ effect on individual market efficiency,
followed by Section 5, which examines its impact on spot-futures
market cross-correlations and causality. Finally, Section 6 concludes
with a summary of findings, policy implications, and future research
directions.

2 Methodology

Given themultifractal and nonlinear nature of financialmarkets,
this paper follows related literature [11, 13–15, 21, 38] and employs
a combination of methodologies to investigate the multifaceted
impact of China’s Main Board quote limits policy on market
efficiency and inter-market linkages. Specifically, we utilize the MF-
X-DMA to uncover the multifractal characteristics of individual
market returns and their cross-correlations, and the Nonlinear
Granger Causality test to identify the directional causal relationships
between spot and futures markets. This section provides a brief
introduction to these two methods.

2.1 MF-X-DMA

Financial time series often exhibit complex, multi-scale
behaviors that linear models cannot fully capture. The MF-X-DMA,
originally proposed by Jiang and Zhou [29], is a robust technique
well-suited for analyzing such non-stationary and multifractal
properties, particularly in cross-correlated series. Its primary
advantage lies in effectively removing local trends, thereby providing
a more accurate estimation of scaling exponents compared to other
methods likeMF-DFA.Therefore, we also apply this method to both
individual index returns (HS300 and CSI500) and their respective
spot-futures cross-correlations. The core steps of the MF-X-DMA
procedure are as follows:

Step 1: Constructing integrated profiles

For two time series, X = {xt}
N
t=1 and Y = {yt}

N
t=1, with length

N, we first construct their integrated profiles, which represent the
cumulative deviations from their respective means:

X(t) =
t

∑
i=1
(xi − x), t = 1,2,…,N (1)

Y(t) =
t

∑
i=1
(yi − y), t = 1,2,…,N (2)

where x and y denote the average values of the series xt and yt,
respectively.

Step 2: Segmentation of profiles

The integrated profiles X(t) and Y(t) are divided into Ns =
int(N/s) non-overlapping segments, each of length s. To ensure
complete coverage and robust analysis, this segmentation process
is performed from both ends of the series, resulting in a total of
2N s segments. The segment size s influences the scale of correlations
detected, ranging from short-term (smaller s) to long-term (larger
s).

Step 3: Detrending via moving average filtering

For each segment v (where v = 1,2, …,2N s), and for both
integrated profiles X(t) and Y(t), local trends are removed using a
moving average filter. The moving average Z(j) (where Z ∈ {X,Y})
within awindowof size n is calculated based on a position parameter
θ ∈ [0,1] as follows:

Zn(j) =
1
n

⌊(n−1)(1−θ)⌋

∑
k=−⌊(n−1)θ⌋

Z(j− k) (3)

where ⌊g⌋ denotes the largest integer not greater than g. The
parameter θ determines the nature of the moving average: θ = 0
corresponds to a backward moving average, θ = 0.5 to a centered
moving average, and θ = 1 to a forward moving average. This
step effectively detrends the series by subtracting the estimated
local trend.

Step 4: Computing detrended covariance

The detrended covariance for each segment v is then calculated
from the residuals after local trend removal as follows:

F2(s,v) = 1
s

s

∑
j=1
[X(v−1)s+j − X̃v(j)][Y(v−1)s+j − Ỹv(j)] (4)

where, X̃v(j) and Ỹv(j) represent the fitting polynomials (of order
m) for the integrated profiles X(t) and Y(t) within segment v. For
the second set of segments (from the opposite end), a similar
formula applies.

Step 5: Deriving the qth order fluctuation function

The overall qth order fluctuation function Fq(s) is computed by
averaging the detrended covariances across all segments as follows:

For q ≠ 0:

Fq(s) = [
1

2Ns

2Ns

∑
v=1
(F2(s,v))q/2]

1/q

(5)

For q = 0:

F0(s) = exp[
1

2Ns

2Ns

∑
v=1

ln(F2(s,v))] (6)

The parameter q allows for differentiation between small and
large fluctuations: negative q values emphasize small fluctuations,
while positive q values highlight large fluctuations.

Step 6: Determining the scaling exponent
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The relationship between Fq(s) and s typically follows a
power law, i.e.:

Fq(s) ∼ s
Hxy(q) (7)

where Hxy(q) is the generalized cross-correlation exponent. If
Hxy(q) varies with q, it indicates multifractality in the cross-
correlation between X(t) and Y(t). A constantHxy(q) implies mono-
fractal behavior. The persistence of cross-correlation is indicated by
Hxy(q) >0.5, while anti-persistence is suggested by Hxy(q) <0.5. The
series are uncorrelated if Hxy(q) = 0.5.

Step 7: Characterizing multifractality

To further quantify themultifractality, we derive themultifractal
Renyi exponent τxy(q), the singularity strength α(q), and the
multifractal spectrum f(α) using the Legendre transform as follows:

τxy(q) =Hxy(q) − 1 (8)

αxy(q) =Hxy(q) + qH
′
xy(q) (9)

f(α) = q[α(q) −Hxy(q)] + 1 (10)

where H′xy(q) is the derivative of Hxy(q) with respect to q.
The degree of multifractality is typically measured by

(Equation 1) the width of the multifractal spectrum (i.e.,
∆α = max(αxy) −min (αxy)), and (Equation 2) the degree of
multifractality (i.e., ∆h =Hmax(q) −Hmin(q)). For a single time
series, a larger∆α or∆h signifies a stronger degree of multifractality,
implying lowermarket efficiency. In the context of cross-correlations
between two markets, a larger ∆α or ∆h suggests a more complex
and potentially riskier linkage.

2.2 Nonlinear granger causality test

While multifractal analysis reveals the complexity of market
dynamics, understanding the directional influence betweenmarkets
also requires a causality framework. Given the acknowledged
nonlinear characteristics of financial data, traditional linear Granger
causality tests may be insufficient. Therefore, we employ the non-
linear Granger causality test, a non-parametric statistical method
proposed by Baek and Brock [32], to analyze causal relationships,
particularly between spot and futures markets for the HS300 and
CSI500 indices. This method is important for uncovering intricate,
non-linear predictive power that might be obscured by linear
approaches.

The fundamental idea of the non-linear Granger causality test
is to assess whether past values of one time series (Y) improve
the prediction of another time series (X), beyond what can be
predicted by past values of X alone, while considering non-linear
dependencies.

Specifically, the nonlinear Granger causality test is
conducted as follows:

Let {Xt} and {Yt} be two stationary and weakly dependent
time series of length N. We define lagged and lead vectors
for these series. For instance, an α-length lag vector is Xα

t−α =
(Xt−α,Xt−α+1,…,Xt−1), and an m-length lead vector for X at time t
is Xm

t = (Xt,Xt+1,…,Xt+m−1). Similar definitions apply to Y.

The null hypothesis H0 that Y does not non-linearly Granger
cause X is formally expressed by comparing the following
conditional probabilities:

Pr(‖Xm
t −X

m
s ‖ < ε| ‖X

α
t−α −X

α
s−α‖ < ε, ‖Y

β
t−β −Y

β
s−β‖ < ε)

= Pr(‖Xm
t −X

m
s ‖ < ε| ‖X

α
t−α −X

α
s−α‖ < ε)

(11)

where, Pr (⋅) denotes probability, ‖·‖ is the maximum norm, and
ε >0 is a given distance. This equation essentially states that the
probability of twom-length lead vectors ofX being within ε distance
given their respective pasts (both X and Y lags) is the same as given
only X lags.

To operationalize this comparison, the conditional probabilities
are expressed as ratios of joint probabilities, computed using
correlation integral estimators. These estimators count the number
of pairs (t,s) for which the specified vectors are within the distance
ε. For example, a joint probability C(m+ α,β,ε) counts pairs where
the (m+α)-length lead vector of X and the β-length lag vector of Y
are simultaneously within ε distance.

The test statistic is then constructed based on these ratios of
correlation integrals, and under the null hypothesis, it follows an
asymptotically normal distribution as follows:

√N[
C(m+ α,β,ε)
C(α,β,ε)

−
C(m+ α,ε)
C(α,ε)

] ∼ N(0,σ2) (12)

where σ2 is the asymptotic variance. A statistically significant value
of the test statistic leads to the rejection of the null hypothesis,
indicating that Y non-linearly Granger causes X. We perform this
test symmetrically to also examine if X nonlinearly Granger causes
Y. This allows us to comprehensively assess the directionality and
strength of information flowbetween the spot and futuresmarkets of
the HS300 and CSI500 indices before and after the implementation
of quote limits.

3 Data, variables, and descriptive
statistics

3.1 Data and variables

To investigate whether the implementation of quote limits has
diverse impacts across different stock market segments, we select
two prominent and distinct benchmarks of the Chinese equity
market: the large-cap HS 300 Index (HS300) and the small-cap
CSI 500 Index (CSI500). Specifically, the HS300 comprises 300 A-
share stocks with large market capitalization and good liquidity
listed on the Shanghai and Shenzhen stock exchanges, serving as
a key indicator for the overall performance of China’s large-cap,
blue-chip companies. In contrast, the CSI500 includes 500 A-share
stocks with medium and small market capitalization, representing
the performance of mid-to-small cap enterprises and offering
insights into a broader range of market participants and growth-
oriented sectors.

Daily closing prices for both the spot indices (HS300 and
CSI500) are sourced from the China Stock Market and Accounting
Research (CSMAR) database, a widely used financial database
in related literature [39–41]. To ensure stationarity and facilitate
subsequent econometric andmultifractal analyses, these price series
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TABLE 1 Descriptive Statistics of daily returns for HS300 and CSI500.

Period Mean Median Std Kurt Skew

Panel A: HS300

Pre −0.0004 −0.0004 0.0114 4.7300 −0.1061

Post −0.0001 −0.0008 0.0116 15.3243 0.5949

Panel B: CSI500

Pre 0.0001 0.0009 0.0114 6.6390 −0.9014

post −0.0001 −0.0007 0.0150 13.9614 0.7104

Note: This table presents the descriptive statistics for daily logarithmic returns of HS300
and CSI500. “Pre” refers to the sub-period before the implementation of quote limits, and
“Post” refers to the sub-period after. “Mean,” “Median,” “Std.,” “Kurt,” and “Skew” are the
mean, median, standard deviation, Kurtosis, and Skewness of daily returns.

are transformed into daily logarithmic returns, consistent with
related literature [42–44]. Specifically, the daily logarithmic return
(Rt) for an asset at day t is calculated as the difference between the
natural logarithm of the current day’s closing price (Pt) and that of
the previous day’s closing price (Pt−1), expressed as follows:

Rt = ln(Pt)‐ ln(Pt‐1) (13)

For a robust comparative analysis of the policy’s effect, we use
a specific observation window encompassing 2 years prior to and
2 years following the implementation of the quote limits policy.
Specifically, the pre-event period (“Pre”) is defined from 10 April
2021, to 9 April 2023, while the post-event period (“Post”) extends
from 10 April 2023, to 9 April 2025.

3.2 Descriptive statistics

Table 1 presents the descriptive statistics for the daily
logarithmic returns of both the spot indices across these two distinct
periods. As shown, the daily logarithmic returns for bothHS300 and
CSI500 indices consistently show lowmeans, medians, and standard
deviations across both pre- and post-event periods, indicating stable
average returns and relatively consistent overall volatility. However,
pronounced deviations from normality are clear in the higher-
order moments. All series display kurtosis values greater than 3,
indicating strong leptokurtosis or “fat tails.” Notably, during the
post-event period (“Post”), the kurtosis for HS300 and CSI500
returns dramatically increases, suggesting a heightened probability
of extreme price movements. In addition, the skewness values are
consistently non-zero, indicating asymmetry.

These non-normal distributions, particularly their heightened
leptokurtosis and shifts in asymmetry following the implementation
of quote limits, highlight the inherent multifractal nature of
these financial time series. Therefore, it is necessary to employ
sophisticated tools such as the MF-X-DMA approach to capture
complex, scale-dependent correlations.

4 Effect of quote limits on stock
market efficiency

4.1 Analysis of the generalized hurst
exponent

We first use the MF-X-DMA method to calculate the
generalized Hurst exponent, H(q), for the HS300 and CSI500
index returns across for q ranging from −10 to 10. The results
are presented in Table 2. As shown, for the HS300 index, H(q)
shows a noticeable decreasing trend with increasing q before the
implementation of quote limits. This pattern signals persistence
in small fluctuations and a shift towards anti-persistence in large
fluctuations. After the event, persistence in small fluctuations
strengthens, while the tendency for reversals after large price swings
also becomes more pronounced. For instance, H(q) at q = −10 rises
sharply from 0.7978 to 0.8664, indicating strengthened persistence
of small fluctuations. Conversely, the H(q) value at q = 10 drops
dramatically from 0.4029 to 0.1965, suggesting a much stronger
tendency for price reversals following large swings.

In contrast, for the CSI500 index, H(q) also decreases with
increasing q before the event, showing persistence across most
fluctuation sizes. After the implementation of quote limits, the
persistence in small price movements weakens, while the tendency
for reversals after large price swings strengthens, similar to the
behavior of the HS300. For example, H(q) at q = −10 decreases
from 0.9013 to 0.7967, suggesting a weakening of small fluctuation
persistence. Meanwhile,H(q) at q = 10 drops from 0.3122 to 0.2445,
indicating stronger anti-persistence for large fluctuations.

In sum, while both indices are multifractal and experience
a stronger reversal tendency for large price swings post-event,
the behavior of small price movements diverges significantly. The
HS300 shows increased persistence in small fluctuations, whereas
the CSI500 exhibits decreased persistence.

4.2 Change in the degree of multifractality

This section investigates the effect of quote limits on market
efficiency by analyzing the change in the degree of multifractality
in the HS300 and CSI500 index returns around the quote limits
event. Specifically, we first follow related literature [1, 13, 14,
45, 46] and use two measures to proxy market efficiency: 1) the
width of the multifractal spectrum (Δα) and 2) the degree of
multifractality (Δh). Accordingly, Δα measures the range of scaling
exponents present in the data, indicating the heterogeneity of the
fractal properties. Δh quantifies the extent to which a time series
or dataset exhibits multifractal characteristics, implying that its
scaling behavior requires a continuous spectrum of exponents for
description, rather than a single fractal dimension. Consequently,
larger Δα or Δh indicates stronger multifractality and thus lower
market efficiency.

In addition, we follow related literature [47, 48] and use the
Market Deficiency Measure (MDM) to inversely measure market
efficiency. Specifically, MDM is computed as follows:

MDM = 1
2
(|H(−10) − 0.5| + |H(10) − 0.5|) (14)
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TABLE 2 Change in the Hurst exponent behavior of stock index
return series.

q HS300 CSI500

Pre Post Pre Post

−10 0.7978 0.8664 0.9013 0.7967

−9 0.7866 0.8541 0.8893 0.7881

−8 0.7733 0.8393 0.8745 0.7779

−7 0.7570 0.8214 0.8561 0.7654

−6 0.7369 0.7994 0.8331 0.7499

−5 0.7114 0.7724 0.8041 0.7307

−4 0.6794 0.7403 0.7689 0.7072

−3 0.6422 0.7044 0.7287 0.6795

−2 0.6085 0.6687 0.6869 0.6494

−1 0.5866 0.6371 0.6464 0.6195

0 0.5719 0.6083 0.6075 0.5899

1 0.5567 0.5703 0.5685 0.5528

2 0.5376 0.5032 0.5273 0.4967

3 0.5151 0.4174 0.4848 0.4316

4 0.4920 0.3472 0.4447 0.3775

5 0.4704 0.2987 0.4099 0.3379

6 0.4517 0.2652 0.3813 0.3088

7 0.4359 0.2409 0.3583 0.2868

8 0.4228 0.2226 0.3397 0.2696

9 0.4120 0.2082 0.3246 0.2558

10 0.4029 0.1965 0.3122 0.2445

Note: “Pre” refers to the sub-period before the implementation of quote limits, and “Post”
refers to the sub-period after.

where H (-10) and H (10) are generalized Hurst exponents
when q = −10 and q = 10, respectively; and |⋅| denotes the
absolute value function. Similarly, higher MDM suggests stronger
multifractality and potentially lower market efficiency due to
increased predictability based on scale of fluctuations.

Table 3 reports results of changes in these measures for the
HS300 and CSI500 indices. For the HS300 index, all three
multifractal indicators (Δα, Δh, and MDM) show a substantial
increase after the implementation of the quote limits. This
widening of the multifractal spectrum and the higher MDM value
suggest a more pronounced multifractal structure and a greater
disparity in the scaling behavior of different magnitude price
fluctuations.Therefore, the increasedmultifractality implies that the

TABLE 3 Change in multifractal spectra characteristics.

Period αmin αmax △α △h MDM

Panel A: HS300

Pre 0.3119 0.9094 0.5975 0.3949 0.1975

Post 0.0801 0.9896 0.9095 0.6699 0.3349

Panel B: CSI500

Pre 0.1880 1.0219 0.8339 0.5891 0.2946

Post 0.1312 0.8824 0.7512 0.5523 0.2761

Note: “Pre” refers to the sub-period before the implementation of quote limits, and “Post”
refers to the sub-period after.

implementation of quote limits likely led to a decrease in the market
efficiency of the HS300 index.

In contrast, the CSI500 index exhibits a decrease in all
three multifractal indicators (Δα, Δh, and MDM) following the
quote limits event. The narrower multifractal spectrum and
the lower MDM value indicate a reduction in the strength of
multifractality and a more homogeneous scaling behavior across
different fluctuation magnitudes. This suggests that the quote limits
event is associated with an increase in the market efficiency of the
CSI500 index.

Figure 1 illustrates the changes in the multifractal spectrum,
f (α), for both indices around the quote limits event. As depicted, the
multifractal spectrum for the HS300 index becomes wider after the
event, while that for the CSI500 index becomes narrower post-event.
This also indicates that quote limits event strengthensmultifractality
in the HS300 index returns but attenuates multifractality in the
CSI500 index returns.

In conclusion, the implementation of quote limits has a
divergent impact on the market efficiency of the two indices. It
decreases the market efficiency of the HS300 by increasing its
multifractal characteristics, while conversely increasing the market
efficiency of the CSI500 by reducing its multifractal characteristics.

4.3 Change in multifractal sources

This section investigates the potential impact of the quote
limits event on the sources of multifractality in the HS300 and
CSI500 index returns. According to Kantelhardt et al. [26], Zhou
[12], and Kwapień et al. [49] multifractality in financial time series
typically arises from two main sources: 1) a broad, non-Gaussian
probability distribution of returns (e.g., fat tails) and 2) temporal
correlations, which can be linear or nonlinear. Following established
methodologies in related literature [1, 17, 22, 50, 51], we use
surrogate analysis to disentangle these sources. Specifically, shuffling
the original series destroys temporal correlations while preserving
the amplitude distribution. In contrast, creating surrogate series
preserves linear correlations but randomizes nonlinear structures.
Therefore, significantmultifractality remaining in the shuffled series
suggests the importance of the amplitude distribution, while a
reduction inmultifractality in the surrogated series points to the role
of nonlinear temporal correlations.
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FIGURE 1
Change in Multifractal spectra. (A): HS300. (B): CSI500.

Table 4 reports the multifractal spectra characteristics of the
shuffled and surrogated series for both the HS300 and CSI500
indices before and after the event. For both indices, there is
a consistent reduction in multifractality of the shuffled and
surrogated series both before and after the implementation of
quote limits. Specifically, the shuffled series retain a noticeable
level of multifractality, indicating that the non-Gaussian amplitude
distribution remains a significant contributor. Moreover, the
surrogated series exhibit a further decrease in multifractality,
suggesting that nonlinear temporal correlations also play a
significant role in generating the observed multifractal behavior
in both indices across both periods.

Overall, the quote limits event does not fundamentally change
the primary sources of multifractality in the returns of either the
large-cap HS300 or small-cap CSI500 index. For both indices, the
multifractal characteristics consistently stem from a combination
of a non-trivial amplitude distribution and nonlinear temporal
correlations, both before and after the implementation of the quote
limits. These results suggest that the policy primarily influences the
degree of multifractality rather than introducing or eliminating its
fundamental sources.

5 Effect of quote limits on
cross-correlation between spot and
futures market

5.1 Cross-correlation test

Following Kristoufek [52] and Ruan et al. [1], we first employ
theDMAcoefficient to quantify the linear cross-correlation between
two time series at various time scales. Specifically, the DMA

TABLE 4 Change in sources of multifractality for stock index return.

Period αmin αmax △α △h MDM

Panel A: HS300

Pre

Original 0.3119 0.9094 0.5975 0.3949 0.1975

Shuffled 0.3493 0.8318 0.4824 0.3026 0.1513

Surrogated 0.3964 0.7480 0.3516 0.2191 0.1095

Post

Original 0.0801 0.9896 0.9095 0.6699 0.3349

Shuffled 0.1383 0.8135 0.6752 0.4631 0.2315

Surrogated 0.3868 0.7270 0.3410 0.1999 0.0999

Panel B: CSI500

Pre

Original 0.1880 1.0219 0.8339 0.5891 0.2946

Shuffled 0.2609 0.8344 0.5734 0.3759 0.1879

Surrogated 0.4753 0.7433 0.2679 0.1296 0.1047

Post

Original 0.1312 0.8824 0.7512 0.5523 0.2761

Shuffled 0.2222 0.8484 0.6261 0.4389 0.2194

Surrogated 0.3717 0.7922 0.4205 0.2495 0.1247

Note: “Pre” refers to the sub-period before the implementation of quote limits, and “Post”
refers to the sub-period after. “Original”, “Shuffled”, and “Surrogated” denote results for the
original, shuffled, and surrogated spot and futures return series.

coefficient (ρDMA) is computed as follows:

ρDMA =
F2
xy(s)

F2
xx(s)F2

yy(s)
(15)
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TABLE 5 Change in DMA coefficient.

s 4 8 16 32 64 128

Panel A: HS300 spot-futures

Pre 0.9843 0.9903 0.9925 0.9937 0.9940 0.9942

Post 0.9827 0.9890 0.9923 0.9945 0.9946 0.9930

Panel B: CSI500 spot-futures

Pre 0.9814 0.9889 0.9908 0.9911 0.9901 0.9868

Post 0.9824 0.9896 0.9929 0.9947 0.9953 0.9902

Note: “Pre” refers to the sub-period before the implementation of quote limits, and “Post”
refers to the sub-period after.

Accordingly, ρDMA values range from −1 to 1, with values close
to 1 indicating strong positive linear correlation, values near −1
indicating strong negative linear correlation, and values around 0
suggesting weak or no linear correlation.

Table 5 presents the DMA coefficients between spot and futures
returns for the HS300 and CSI500 indices before and after the
implementation of quote limits. As shown, for the HS300 index, the
DMA coefficients between spot and futures returns are consistently
close to 1 before the quote limits event across all scales (s =
4–128). After the event, these coefficients remain high, with only
minor fluctuations observed. Specifically, there is a slight decrease
at shorter time scales (s = 4, 8) and a slight increase at longer
time scales (s = 32, 64), with a small decrease at s = 128. Overall,
the quote limits event appears to have a minimal impact on the
strong positive linear cross-correlation between HS300 spot and
futures returns.

Similarly, for the CSI500 index, the DMA coefficients between
spot and futures returns exhibit strong positive linear correlation
across all time scales before the event. Following the implementation
of quote limits, the DMA coefficients remain high, showing a
slight increase at shorter and intermediate scales (s = 4–64) and
a slight increase followed by a decrease at the longest scale (s =
128). The magnitude of these changes is also small, indicating that
the fundamental strong positive linear cross-correlation between
CSI500 spot and futures returns was largely unaffected by the event.

Overall, the quote limits event does not significantly affect the
strong positive linear relationship between the spot and futures
returns for both the HS300 and CSI500.

5.2 Effect on the multifractality of
spot-futures cross-correlations

Table 6 presents the generalized Hurst exponent H(q),
calculated using the MF-X-DMA method, for the cross-correlation
between spot and futures returns for q ranging from −10 to 10.
As shown, before the implementation of quote limits, the H(q) for
both HS300 and CSI500 spot-future cross-correlations vary with q,
indicating the presence of multifractal characteristics. Specifically,
the decreasing trend of H(q) with increasing q suggests that large
cross-correlation fluctuations scale differently from small ones.

TABLE 6 Change in the Hurst exponent behavior of spot-futures
cross-correlations.

q HS300 spot-futures CSI500 spot-futures

Pre Post Pre Post

−10 0.7684 0.8845 0.9393 0.8249

−9 0.7575 0.8704 0.9269 0.8148

−8 0.7445 0.8533 0.9118 0.8027

−7 0.7287 0.8325 0.8930 0.7882

−6 0.7094 0.8071 0.8693 0.7705

−5 0.6855 0.7768 0.8394 0.7485

−4 0.6564 0.7427 0.8023 0.7215

−3 0.6245 0.7074 0.7590 0.6895

−2 0.5975 0.6739 0.7126 0.6547

−1 0.5816 0.6434 0.6672 0.6208

0 0.5720 0.6124 0.6243 0.5880

1 0.5607 0.5689 0.5818 0.5477

2 0.5444 0.4955 0.5375 0.4890

3 0.5239 0.4071 0.4922 0.4238

4 0.5022 0.3366 0.4499 0.3710

5 0.4817 0.2881 0.4138 0.3328

6 0.4636 0.2545 0.3844 0.3047

7 0.4483 0.2301 0.3609 0.2833

8 0.4355 0.2117 0.3420 0.2665

9 0.4248 0.1972 0.3267 0.2529

10 0.4159 0.1855 0.3141 0.2417

Note: “Pre” refers to the sub-period before the implementation of quote limits, and “Post”
refers to the sub-period after.

After the quote limits event, the behavior of H(q) diverges for the
two respective spot-futures cross-correlations. For HS300 spot-
future cross-correlations, H(q) generally increases for negative q
and decreases for large positive q, implying enhanced persistence in
small cross-correlation fluctuations and stronger anti-persistence in
large ones. Conversely, for CSI500 spot-futures cross-correlations,
H(q) generally decreases across the q range, suggesting a weakening
of persistence for both small and large cross-correlation fluctuations.

To assess the impact of quote limits on themultifractality of spot-
futures cross-correlation, we compute three indicators as in Table 3,
i.e., the width of the multifractal spectrum (Δα), the degree
of the generalized Hurst exponent (Δh), and the Market
Deficiency Measure (MDM). Accordingly, higher values of these
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TABLE 7 Change in multifractal spectra characteristics for spot-futures
cross-correlations.

Period αmin αmax △α △h MDM

Panel A: HS300 spot-futures

Pre 0.3266 0.8774 0.5508 0.3525 0.1762

Post 0.0685 1.0250 0.9565 0.6990 0.3495

Panel B: CSI500 spot-futures

Pre 0.1882 1.0633 0.8751 0.6252 0.3126

Post 0.1295 0.9264 0.7969 0.5833 0.2916

Note: “Pre” refers to the sub-period before the implementation of quote limits, and “Post”
refers to the sub-period after.

indicators signify stronger multifractality, implying more complex
and heterogeneous co-movement across different fluctuation
magnitudes.

Table 7 reports the results for HS300 and CSI500 spot-futures
cross-correlations before ajnd after the event. As shown, post-event
values for Δα, Δh, and MDM for the HS300 spot-futures cross-
correlation all exhibit a substantial increase compared to pre-event
levels. This increase in all three measures suggests that the quote
limits policy leads to a higher degree of multifractality in the
relationship between HS300 spot and futures returns, indicating a
more complex co-movement across varying fluctuationmagnitudes.
In contrast, for the CSI500 spot-futures cross-correlation, the post-
event values for Δα, Δh, and MDM all show a decrease from their
pre-event levels. This consistent decrease in multifractal indicators
suggests that the implementation of quote limits results in a reduced
degree of multifractality in the co-movement between CSI500 spot
and futures returns, potentially indicating a simplification of their
relationship. The multifractal spectrum depicted in Figure 2 also
shows a similar pattern.

In sum, the implementation of quote limits has a heterogeneous
influence on the dynamics between the derivative and underlying
markets for these two key Chinese equity indices. It increases the
complexity of the co-movement of HS300 spot-futures returns,
indicating less efficient cross-market information transmission.
In contrast, it decreases the complexity of the co-movement of
CSI500 spot-futures returns, leading to amore efficient cross-market
information transmission. These results can also help explain our
findings regarding the divergent impact of quote limits on individual
market efficiency, i.e., increased complexity for HS300 spot-futures
cross-correlation aligns with decreased efficiency of the HS300
index, and vice versa for CSI500.

5.3 Change in multifractal sources of
spot-futures cross-correlations

Using the same methodology outlined in Section 4.3, we
then examine whether the sources of multifractality in spot-
futures cross-correlations are affected by the implementation
of quote limits. Table 8 presents the multifractal measures

for the original, shuffled, and surrogated series before and
after the event.

For the HS300 spot-futures cross-correlation, the multifractal
sources exhibit a notable change. Before the event, both the shuffled
and surrogated series show reduced multifractality compared to
the original, indicating contributions from both the non-Gaussian
amplitude distribution and nonlinear temporal dependencies. After
the event, while the original series display stronger multifractality,
the surrogated series show a substantial increase in multifractality.
This suggests that linear temporal correlations become a more
significant driver of multifractality in the HS300 spot-future
cross-correlation following the implementation of quote limits.
The shuffled series, in contrast, show a much lower level of
multifractality, implying a diminished role of the amplitude
distribution alone.

The multifractal sources for the CSI500 spot-futures cross-
correlation exhibit a different pattern. Before the event, similar to
the HS300 spot-futures returns, both shuffled and surrogated series
showed reduced multifractality. After the event, the shuffled series
still exhibited a considerable level of multifractality, suggesting a
persistent role of the amplitude distribution. The surrogated series
showed a modest increase in multifractality compared to its pre-
event level, indicating a potentially slightly enhanced role of linear
temporal correlations.

Comparing the two indices, the quote limits event appears to
have a distinct impact on the sources of multifractality in their spot-
futures cross-correlations. For HS300, the increased multifractality
seems to be primarily driven by linear temporal correlations. For
CSI500, while there is a slight increase in the contribution from
linear temporal correlations, the amplitude distribution remains a
relevant source of multifractality.

5.4 Change in nonlinear granger causality

Nonlinear Granger causality tests whether past values of one
return series contain unique nonlinear information that improves
the prediction of another series’ current values [28, 37, 53, 54]. In
financial contexts, this implies that certain past price movements or
trading activities in one market (e.g., futures) can provide nonlinear
predictive power for another related market (e.g., spot), reflecting
potentially asymmetric or complex information transmission and
market efficiency dynamics [1, 15, 24, 55].

Table 9 presents results of the Nonlinear Granger causality
test. For the HS300 spot and futures return series, significant
nonlinear Granger causality runs unidirectionally from futures to
spot returns at lag 1 before the implementation of quote limits.
After the event, this unidirectional causality persists at lag 1 and
becomes significant at lags 2, 3, and 4 (at the 10% level). There is
no evidence of nonlinear causality from spot to futures in either
period. Consequently, the quote limits event appears to strengthen
and broaden the nonlinear influence of HS300 futures returns on
spot returns across multiple lags. This may be due to the decreased
market efficiency of the HS300 spot market, thereby strengthening
the informational leadership of the futures market over the
spot market.

Regarding the CSI500 index, before the event, there exists
significant nonlinear Granger causality from futures to spot
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FIGURE 2
Change in Multifractal spectra for spot-futures cross-correlations. (A): HS300 spot-futures. (B): CSI500 spot-futures.

returns at lags 1 and 2. Post-event, this unidirectional causality
not only remains significant but also strengthens across lags
1 to 4. Notably, a bidirectional nonlinear Granger causality

TABLE 8 Change in sources of multifractality for spot-futures
cross-correlations.

Period αmin αmax △α △h MDM

Panel A: HS300 spot-futures

Pre

Original 0.3266 0.8774 0.5508 0.3525 0.1762

Shuffled 0.3385 0.7266 0.3881 0.2275 0.1137

Surrogated 0.4056 0.6574 0.2518 0.1277 0.0639

Post

Original 0.0685 1.0250 0.9565 0.6990 0.3495

Shuffled 0.5347 0.7699 0.2352 0.1175 0.1297

Surrogated 0.3189 0.8635 0.5446 0.3484 0.1742

Panel B: CSI500 spot-futures

Pre

Original 0.1882 1.0633 0.8751 0.6252 0.3126

Shuffled 0.3628 0.7727 0.4099 0.2581 0.1291

Surrogated 0.4594 0.8233 0.3640 0.1996 0.1119

Post

Original 0.1295 0.9264 0.7969 0.5833 0.2916

Shuffled 0.3005 1.0361 0.7356 0.5168 0.2584

Surrogated 0.2948 0.7585 0.4638 0.2849 0.1425

Note: “Pre” refers to the sub-period before the implementation of quote limits, and “Post”
refers to the sub-period after. “Original”, “Shuffled”, and “Surrogated” denote results for the
original, shuffled, and surrogated spot and futures return series.

emerges at lags 1 and 2, with significant causality running
from spot to futures as well. Therefore, the quote limits event
fundamentally altered the nonlinear causal relationship between
CSI500 spot and futures returns, establishing a more integrated
and sophisticated bidirectional information flow at shorter lags.
This finding aligns with the results of increased market efficiency
and reduced complexity for the CSI500 spot market, implying
a more mature relationship between the derivative and its
underlying.

Overall, the quote limits policy also has a distinct impact
on their nonlinear causal relationships. Specifically, it primarily
enhances the existing unidirectional causality from futures to
spot for HS300, whereas it leads to a more significant change
by establishing a bidirectional nonlinear causality at shorter
lags, alongside the strengthening of the futures-to-spot causality
for CSI500.

6 Conclusion and discussion

This study investigated the impact of the quote limits policy
on market efficiency and the complex dynamics between spot and
futures markets of the HS300 and CSI500 indices. Using the MF-X-
DMA approach and nonlinear Granger causality tests, our findings
reveal a significantly different impact on these two key Chinese
equity benchmarks.

Specifically, the implementation of quote limits decreases
the market efficiency of the large-cap HS300 index, evidenced
by a marked increase in multifractal characteristics in HS300
index returns. For the HS300 spot-futures relationship, while
linear correlations remain robust, the complexity of co-movement
increases, and nonlinear Granger causality from futures to spot
is strengthened and broadened, suggesting a more dominant
and potentially asymmetric information flow from the derivatives
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TABLE 9 Change in Non-linear Granger causality between spot and futures returns.

HS300 CSI500

Lag Period Spot↛ futures Futures↛ spot Spot↛ futures Futures↛ spot

1
Pre −0.4686 1.6464

∗∗
0.5315 1.6925

∗∗

Post 0.8401 1.9353
∗∗

1.7958
∗∗

2.0464
∗∗

2
Pre 0.8371 0.7983 0.3669 1.3624

∗

Post 0.8650 1.3217
∗

1.9196
∗∗

2.316
∗∗

3
Pre 0.1554 0.2776 0.3728 1.2698

Post −0.1009 1.3105
∗

0.8162 1.9696
∗∗

4
Pre 0.1385 0.9918 0.3141 0.8862

Post 0.3871 1.5064
∗

0.6921 1.8172
∗∗

Note: “spot↛ futures” denotes the null hypothesis that spot returns do not nonlinearly Granger cause futures returns, while “futures↛ spot” denotes the null hypothesis that futures returns do
not nonlinearly Granger cause spot returns. “Pre” refers to the sub-period before the implementation of quote limits, and “Post” refers to the sub-period after. “

∗
,” “
∗∗
,” and “

∗∗∗
” suggest rejection

of the null hypothesis at the 10%, 5%, and 1% significance levels, respectively.

market. Notably, for HS300, the increased multifractality in spot-
futures cross-correlations appears to be primarily driven by linear
temporal correlations.

In contrast, the policy enhances the market efficiency
of the mid-to-small cap CSI500 index, reflected in a
reduction in multifractal characteristics in the CSI500 index
returns. More importantly, the cross-market analysis shows a
simplification of co-movement complexity and the emergence
of bidirectional nonlinear Granger causality between spot and
futures returns. This indicates the development of a more
interactive and bidirectional information flow, where both
markets dynamically influence each other. For CSI500, the
sources of multifractality in spot-futures cross-correlations
show a slight increase in the contribution from linear temporal
correlations, though the amplitude distribution remains a
relevant source.

From a policy perspective, our findings highlight that a
“one-size-fits-all” approach to market regulation may yield
unintended consequences. While the quote limits policy
achieves its goal of stabilizing certain market segments or
curtailing excessive speculation (as seen in CSI500s increased
efficiency), it simultaneously introduces new complexities or
reduced efficiency in others (as observed in HS300). This
underscores the critical need for policymakers to adopt tailored
regulatory designs that account for the unique characteristics
of different market segments and to continuously assess the
actual impact of regulations. For market participants, our results
imply the necessity of developing segment-specific trading
strategies and adaptive risk management frameworks, given the
distinct alterations in market dynamics for the HS300 versus
the CSI500.

A possible concern is that changes in multifractal characteristics
can be influenced by various complex factors and may not
represent the sole or absolute measure of market efficiency.
Furthermore, while this study reveals the impact of the quote

limits system at the index level, future research could further
explore the system’s effects on the multifractal characteristics
of individual stocks. This would allow for more granular
insights into market dynamics and help prevent the loss
of detailed information that can occur through index-level
averaging.
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