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The Fisher–Kolmogorov–Petrovsky–Piskunov equation is a diffusive logistic 
model for the population density of an invasive species. This paper presents a 
one-level numerical simulation of the non-linear diffusion logistic population 
model using the thin plate spline (TPS) radial basis function (RBF) collocation 
method. Based on the combination of time and space variables, the time–space 
points are constructed. During the collocation procedure, the non-uniform 
point distribution case is considered for comparison with the traditional uniform 
point distribution case. Numerical examples show that the one-level TPS-
RBF collocation method avoids the complexities of mesh generation and re-
meshing. We can conclude that non-uniform point distributions yield higher 
accuracy in simulating the non-linear diffusion logistic population model than 
uniform distributions, especially with increased collocation point density. The 
efficiency, accuracy, and stability of the proposed method are demonstrated 
through numerical experiments.
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 1 Introduction

The Fisher–Kolmogorov–Petrovsky–Piskunov (Fisher–KPP) equation, which is also 
termed the reaction–diffusion equation, is an important model in population biology 
that characterizes the wavefront propagation dynamics of advantageous genes in spatially 
extended systems. This equation can describe the spatial diffusion of invasive species, and it 
is typically formulated as [1, 2]

ut = αuxx + βu(1− u
k
),a < x < b, t > 0, (1)

where u is the population density reflecting the distribution intensity of biological 
populations, t is time, and x is the space variable. α represents the diffusion coefficient 
that quantifies the random migration rate of individuals in a population in the 
given space. It is consistent with the physical meaning of the diffusion coefficient in 
Fick’s second law. β is the intrinsic growth rate, which characterizes the maximum 
proliferation rate of a population without resource constraints. k is the environmental 
carrying capacity that describes the maximum sustainable population density that
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an ecosystem can sustain, reflecting the saturation effect of resource 
constraints on population growth. The diffusion term αuxx describes 
the diffusion process of a population in space, and it is derived from 
the statistical law of individual random motion. The reaction term 
βu(1− u

k
) reflects the growth and competition of the population, 

where 1− u
k

 represents the density constraint effect caused by 
resource constraints.

As is known to all, solutions to partial differential 
equations (PDEs) should be accompanied with initial/boundary 
conditions. The corresponding initial and boundary conditions for 
governing Equation 1 are usually given as

u(x,0) = u1(x),x = a,and x = b, (2)

u(x, t) = u2(x, t), t > 0. (3)

Here, u1(x) and u2(x, t) are prescribed smooth functions.
Due to the inherent non-linear dynamics and wavefront 

propagation challenges in the Fisher–KPP equation, numerical 
approaches are considered a critical framework for constructing 
stable approximations to its solutions rather than analytical 
solutions [3–5]. [6] used the Adomian decomposition method to 
construct an approximate solution of the generalized Fisher–KPP 
equation. [7] revisited traveling wave solutions of the Fisher–KPP 
model and showed that these results provide new insight into 
traveling wave solutions of the Fisher–Stefan model and the 
spreading–extinction dichotomy. The general construction of the 
Cauchy problem solution for the Fisher–KPP equation is described 
in terms of semiclassical asymptotics based on the complex 
WKB–Maslov method by [8]. [9] presented an unconditionally 
stable positivity-preserving numerical method for the Fisher–KPP 
equation. [10] investigated the bounds on the critical times for 
the general Fisher–KPP equation. Under conditions of weak 
diffusion, [11] used numerical methods to compare the processes of 
spatiotemporal pattern formation in a nonlocal population model 
described by a 1-D generalized Fisher–KPP equation with nonlocal 
competitive losses. [12] established results using a combination 
of high-accuracy numerical simulations to investigate the non-
vanishing sharp-fronted traveling wave solutions of the Fisher–KPP 
model. [13] proposed modeling the growth of Candida auris
with a computationally randomized Fisher–KPP partial differential 
equation. [14] proposed an approximate solution based on 2D 
shifted Legendre polynomials to solve the non-linear stochastic 
Fisher–KPP equation with space uniform white noise for the 
same. [15] used an asymptotic approach to investigate moving 
singularities of the forced Fisher–KPP equation. [16] explored 
the numerical solution of the Fisher–KPP equation through two 
meshless methods. [17] proposed an approximate solution based 
on 2D shifted Legendre polynomials to solve the non-linear 
Fisher–KPP model under nonlocal competition. The positivity-
preserving and unconditionally stable numerical scheme for the 3D 
modified Fisher–KPP equation was demonstrated by [18].

Although existing research studies have explored meshless 
approaches for the Fisher–KPP equation, these implementations 
typically require a two-level numerical procedure where the 
meshless method must be coupled with extra numerical techniques 
to handle time-dependent temporal derivatives in the governing 
equation. To circumvent the two-level procedure, we introduce 

a one-level meshless approach to solve the Fisher–KPP equation, 
where the time-dependent temporal derivative is reformulated as a 
spatial term through a unified space–time framework. Since the thin 
plate spline radial basis function (TPS-RBF) kernel functions have 
good mathematical properties, they facilitate theoretical analysis 
and calculation. The TPS-RBF has been widely used in various 
applications, including image registration, shape analysis, and 
numerical solution of PDEs [19–21]. In this paper, we focus on the 
TPS-RBF-based collocation method for the numerical simulation of 
the spatial diffusion of invasive species governed by the Fisher–KPP 
equation. The methodology of the proposed one-level meshless 
method is presented in Section 2. Several numerical examples are 
provided in Section 3 to show the efficiency, accuracy, and stability 
of the proposed method. Some concluding remarks with future 
directions are provided in Section 4. 

2 Methodology

2.1 Space–time TPS-RBF

The TPS-RBF is one of the traditional RBFs based on distance 
measurement. Compared with the multiquadrics and Gaussian RBF 
[22, 23], it is parameter-free. It also has the advantage of high 
flexibility, can adapt to complex data distributions, and performs 
particularly well when dealing with non-linear data.

For 2D problems, it is defined as

φ(r) = r2 log r. (4)

Here, r = ‖Xi −Xj‖ is the Euclidean distance between the two 
points Xi = (xi,yi) and Xj = (xj,yj).

There is only one space variable x in F–KPP Equation 1. To 
facilitate the numerical procedure, the time variable t is “equally” 
considered as a new space variable. Hence, one can obtain a new 
space–time point (x, t). To avoid confusion with Equation 4, the 
corresponding space–time RBFs can be expressed as

ϕ(r) = r2 log r, (5)

where r = √(xi − xj)
2 + (ti − tj)

2 is the distance between the points 
Xi = (xi, ti) and Xj = (xj, tj). 

2.2 Collocation method

The collocation method is a numerical technique for solving 
PDEs by enforcing the governing equation at a set of discrete 
collocation points [24, 25]. In the context of RBF collocation, 
the unknown solution is approximated as a linear combination 
of RBFs centered at the collocation points. The coefficients of the 
linear combination are then determined by enforcing the governing 
equation and boundary conditions at the collocation points.

The collocation points should be determined before 
implementing the collocation method. To be more specific, the 
interval [a,b] is divided into {xi}

n
i=1 by inserting n− 2 points, 

with x1 = a and xn = b. The interval [0,T] is divided into {ti}
n
i=1 by 

inserting n− 2 points, with t1 = 0 and tn = T. The traditional interval 
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division is usually based on a uniform scheme, but it can also be 
applied to a non-uniform scheme. The corresponding numerical 
results will be compared in the numerical examples.

In this study, we consider using the Chebyshev–Gauss–Lobatto 
scheme to generate non-uniform collocation points in the t direction 
[26]. However, the uniform scheme is still considered for the x
direction. Considering t ∈ [0,1], we obtain Equation 6 as follows

ti = 1− cos( π
2n

i), i = 1, ...,n. (6)

The configuration of the Chebyshev–Gauss–Lobatto scheme 
reveals that the points are initially dense but gradually become sparse 
as the index increases.

Based on the fundamental principles of collocation methods, the 
numerical approximation for u(x, t) in Equation 1 can be expressed 
in the following combination form of Equation 5:

u(x, t) ≈
N

∑
j=1

λjϕj(r), (7)

where {λj}
N
j=1

 represents the unknown coefficients to be 

determined. ϕj(r) = r2
j log rj with rj = √(x− xj)

2 + (t− tj)
2 and Xj =

(xj, tj), (j = 1, ...,N) are the N collocation points.
To illustrate the TPS-RBF collocation method, we substitute 

Equation 7 into Equations 1–3 at N collocation points, Xk =
(xk, tk), (k = 1, ...,N). Then, one can obtain Equations 8–11 as follows

N

∑
j=1

λjLϕj(rkj) = 0,k = 1, ...,NI, (8)

N

∑
j=1

λjϕj(rkj) = u1(Xk),k = NI+ 1, ...,NI+NB, (9)

N

∑
j=1

λjϕj(rkj) = u2(Xk),k = NI+NB+ 1, ...,NT. (10)

Here,

Lϕj = α
∂2ϕj

∂x2 −
∂ϕj

∂t
+ βϕj(1−

ϕj

k
), (11)

rkj = √(xk − xj)
2 + (tk − tj)

2, NI is the interior collocation 
number, NB is the boundary collocation number, and NT is the 
total collocation number.

The detailed first- and second-order derivatives used in the 
collocation procedures can be computed. More specifically, for the 
TPS-RBF ϕj(r) = r2

j log rj, we have Equations 12–14 as follows:

∂φj(r)

∂x
= 2r · rx · log r+ r2 · 1

r
.rx

= 2(x− xj) log r+ (x− xj)
, (12)

∂2φj(r)

∂x2 = 2 log r+ 2(x− xj) ·
1
r
· rx + 1,

= 2 log r+
2(x− xj)

2

r2 + 1

(13)

∂φj(r)

∂t
= 2r · rt · log r+ r2 · 1

r
· rt

= 2(t− tj) log r+ (t− tj)
. (14)

Equations 8–10 have the following matrix form:

Qλ = b, (15)

where Q = [Qkj] is the NT×NT interpolation matrix with elements

Qkj = Lϕj(rkj),k = 1, ...,NI; j = 1, ...,NT,

Qkj = ϕj(rkj),k = NI+ 1, ...,NI+NB; j = 1, ...,NT,

Qkj = ϕj(rkj),k = NI+NB+ 1, ...,NT; j = 1, ...,NT.

λ = (λ1,λ2, ...,λNT)T

is the unknown coefficient vector.

b = (0, ...,0
NI
,u1(XNI+1), ...u1(XNI+NB),u2(XNI+NB+1), ...u1(XNT))

is the NT× 1 right-hand side vector.
By solving Equation 15, the unknown λ can be determined, 

enabling the computation of an approximate solution for the 
unknown function in the Fisher–KPP equation using Equation 7. 

2.3 Numerical procedures

The proposed TPS-RBF collocation method is 
implemented as follows: 

Step 1: Select a set of collocation points in the problem domain.
Step 2: Construct the RBF approximation of the unknown solution 

u(x, t) using the TPS-RBF.
Step 3: Enforce the governing equation and boundary conditions 

at the collocation points to form a system of algebraic 
equations.

Step 4: Solve the system of corresponding algebraic equations using 
a suitable numerical method.

3 Numerical simulations

To demonstrate the effectiveness of the proposed one-level 
TPS-RBF collocation method for the numerical simulation of the 
Fisher–KPP equation, we consider three different examples. The 
L2 − error is employed to show the error between analytical solutions 
and numerical solutions. 

3.1 Example 1

For the constant diffusion coefficient α = 1, the reaction 
factor β = 6, and the environmental carrying capacity k = 1, the 
Fisher–KPP equation takes the following form:

ut = uxx + 6u(1− u),−1 < x < 1,0 < t < T.

The corresponding exact solution is

u(x, t) = 1
(1+ ex−5t)2

.
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3.2 Example 2

In this example, we consider the following modified 
Fisher–KPP equation:

ut = uxx + u(1− u2),0 < x < 1,0 < t < T.

The corresponding analytical solution is

u(x, t) = −1
2

tanh(
√2
4
(x−
√18t

2
))+ 1

2
.

 

3.3 Example 3

In this study, we consider a non-linear Fisher–KPP equation 
with parameters α = 1, β = − 1, and k = 1.

ut − uxx + u(1− u) = f(x, t),a < x < b,0 < t < T.

The right-hand term is f(x, t) = (2t+ 2t2 − t4 sin (x)) sin (x). The 
corresponding exact solution is

u(x, t) = t2 sin (x).

All corresponding initial and boundary conditions can be 
deduced from exact solutions. 

3.4 Convergence analysis

For example 1, at time t = 1, the variation in the total collocation 
point number versus the L2 − error is presented in Figure 1a for 
both uniform and non-uniform point distributions. It can be 
observed that the L2 − error curve oscillates for relatively small total 
collocation point numbers in both two types of point distributions. 
As the total collocation point number increases, the L2 − error curve 
converges smoothly. From this observation, one should choose 
relatively larger total collocation point numbers when dealing with 
the Fisher–KPP equation. At the same time, the non-uniform point 
distribution case performs better than the uniform case for relatively 
larger collocation points, even with one-decimal precision.

For example 2, at time t = 1, the variation in the total collocation 
point number versus the L2 − error is presented in Figure 1b for both 
uniform and non-uniform point distributions. It can be observed 
that the L2 − error curve converges smoothly for the non-uniform 
point distribution case, while there is a sharp increase for the 
uniform point distribution case. At the same time, the non-uniform 
point distribution case also performs better than the uniform case.

For example 3, at time t = 10 with interval [a,b] = [0,1], the 
variation in the total collocation point number versus the L2 − error
is presented in Figure 1c for both uniform and non-uniform point 
distributions. It can be observed that the L2 − error curve converges 
smoothly for the uniform point distribution case for relatively few 
points. For larger points, the non-uniform case also performs better 
than the uniform case. Thus, we selected three different collocation 
numbers in the following analysis to show the numerical results. 
If we choose the same collocation number, the numerical results 
remain at the same level. 

FIGURE 1
L2 − error curve versus the total collocation number for example 1 (a), 
example 2 (b), example 3 (c).

3.5 Accuracy analysis

For example 1, we fix the total collocation point number NT = 517. 
In order to show the consistency between the numerical and exact 
solutions for different times t = 0.2, t = 0.6, and t = 1, the solutions 
for non-uniform and uniform point distribution cases are presented 
in Figures 2a, b, respectively. From Figure 2a, we can observe that the 
numerical solutions of the non-uniform case coincide exactly with the 
exact solutions, while there is a relatively larger error at the two sides 
of the solution curve for the uniform case. 
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FIGURE 2
Numerical and analytical solutions at different times for the non-uniform case (a) and the uniform case (b).

FIGURE 3
Numerical and analytical solutions at different times for the non-uniform case (a) and the uniform case (b).

For example 2 with fixed total collocation point number NT =
429, Figure 3 demonstrates the strong consistency between the 
numerical and analytical solutions at different times t = 0.1, t = 0.5, 
and t = 1 for the non-uniform point distribution case. It was found 
that the numerical solutions coincide exactly with the exact solutions 
for all the different times.

For example 3 with interval [a,b] = [−1,1] and fixed total 
collocation point number NT = 472, Figure 4 illustrates the close 
agreement between the numerical and analytical solutions for 
different times t = 1, t = 5, and t = 10.

3.6 Discussion

Numerical experiments have demonstrated the impact of two 
different point distributions and the total number of collocation 
points on solution accuracy. For all the given examples, increasing 

the total number of collocation points can reduce oscillations and 
ensure smoother convergence of the solution curve, especially for 
non-uniform distributions. It is notable that in cases where the total 
number of distribution points is relatively large, the non-uniform 
point distribution cases always perform better than the uniform 
distribution cases with higher solution accuracy. At different times, 
the non-uniform distribution exhibits strong consistency with 
the exact solution at all testing time points, while the uniform 
distribution shows significant errors near the domain boundaries in 
some cases. This may contribute to the relatively dense collocation 
points along the time axis; in other words, dense information at the 
initial boundary leads to more accurate results than in the uniform 
information case.

These findings emphasize the practical advantages of using non-
uniform collocation with a relatively large number of points to 
ensure numerical stability and accuracy when solving Fisher–KPP 
equations. 
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FIGURE 4
Numerical and analytical solutions at different times for the non-uniform case (a) and the uniform case (b).

4 Concluding remarks

In this paper, the one-level thin plate spline radial basis 
function collocation method is provided as an efficient and 
accurate approach for simulating the spatial diffusion of invasive 
species. The proposed method eliminates the need for complex 
mesh generation or adaptive re-meshing, significantly reducing 
the computational overhead while maintaining stability. Non-
uniform point distributions yield higher accuracy than uniform 
distributions, especially with increased collocation point density. 
This work highlights the potential of mesh-free RBF-based 
approaches for simulating complex biological systems governed 
by non-linear partial differential equations.

Furthermore, the method shows promise for extension to 
fractional differential equations. The theoretical foundations, 
especially those pertaining to convergence and stability within 
generalized frameworks, still require significant exploration. Future 
research should address these directions through systematic 
investigation.
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