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Understanding systemic risk in financial markets requires tools that capture
both structural complexity and dynamic evolution. This study adopts a
complex systems perspective to analyze the Chinese stock market through
correlation-based state classification. Using multidimensional scaling and K-
means clustering on rolling stock return correlations, we identify five distinct
market states that reflect varying degrees of systemic co-movement and exhibit
strong temporal persistence and local transition patterns.We find that transitions
among these states encode meaningful information about market structural
shifts and are closely linked to the emergence of crash conditions. Building on
this insight, we construct an early warning model using decision trees trained
on temporal features derived frommarket state transitions—including medium-
term state distributions, directional change ratios, and short-term evolutionary
paths. The model achieves high recall and precision across configurations, and
supports real-time adaptability via projection-based state labeling. These results
highlight the value of market state dynamics and their transitions as a basis for
systemic risk monitoring and crash anticipation in complex financial systems.
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1 Introduction

Financial markets are widely regarded as complex adaptive systems, in which the
interactions among heterogeneous agents give rise to emergent phenomena such as
volatility clustering, contagion, and crashes [1–4]. Capturing these dynamics requires
moving beyond isolated asset-level indicators to examine the structure and evolution
of market-wide interactions. In this context, correlation-based and network-theoretic
representations have emerged as powerful tools for modeling systemic behavior. Early
studies constructed networks from return correlation matrices to quantify collective
dynamics and market fragility [5, 6], while more recent work has introduced higher-
order interaction structures, includingGranger-causality networks [7], speculative influence
networks [8], portfolio overlap networks [9], and Ricci-curvature-based geometric
approaches [10, 11]. These approaches collectively highlight the importance of modeling
financial markets as evolving structures whose topological and temporal features govern
their stability—serving, in effect, as emergent order parameters that summarize the global
configuration of the system [12, 13]. In parallel, recent advances in econometric modeling
have enriched this structural perspective through dynamic correlation and network
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connectivity analyses [14], contagion mechanism estimation [15],
and cross-sectional uncertainty metrics [16], offering additional
insights into the spatiotemporal propagation of systemic stress.

Building on these foundations, a growing body of research has
demonstrated that financial markets can be decomposed into a
small number of discrete market states, derived from clustering
time-dependent correlation matrices [17–19]. These states are
understood to reflect varying levels of market-wide coordination,
with high-correlation regimes typically aligned with heightened
systemic risk. Crucially, transitions between these states are not
random but exhibit structured, often persistent patterns—indicative
of path-dependent dynamics rooted in collective behavior and
feedback effects [20, 21]. This suggests that financial instability
is less a sudden shock than a gradual process, emerging from
shifts in the system’s internal organization and the evolution of
its interaction topology. Such state transitions are also closely
related to latent patterns of risk contagion and inter-market
connectivity, as highlighted in recent econometric models of
dynamic transmission mechanisms and time-zone-adjusted VAR
frameworks [15]. Moreover, advances in modeling cross-sectional
uncertainty have shown promise in enhancing correlation-based
classificationmethods, offering insights into the predictive structure
of latent regimes [16].These perspectives collectively underscore the
need to treat state transitions notmerely as clustering artifacts, but as
meaningful structural shifts reflecting endogenous risk propagation.

Despite these advances, several important aspects remain
underexplored in the existing literature. First, most studies are
retrospective in nature—focusing on identifying and interpreting
market states ex post—without translating these structural insights
into forward-looking monitoring tools. Second, while emerging
research suggests that market state transitions encode valuable early
signals of systemic stress [22, 23], relatively few studies have formally
integrated such temporal patterns into operational early warning
systems. This issue is especially relevant in the context of emerging
markets such as China, where distinctive market microstructures
from developed market and investor behaviors complicate risk
assessment. Existing models often lack structural interpretability
and real-time adaptability, underscoring the need for monitoring
frameworks that reflect the endogenous evolution of systemic
fragility [24–26].

To address the aforementioned limitations, this paper proposes
a structure-aware early warning framework that explicitly
incorporates the temporal dynamics of market state transitions.
Using the CSI 300 Index as a representative system, we first identify
five distinct market states through a combination of correlation-
based similarity measures, multidimensional scaling (MDS), and
K-means clustering. These states correspond to different levels of
systemic coupling and exhibit empirically stable transition patterns:
transitions occur predominantly between adjacent states, while
high-correlation regimes are disproportionately associated with
historical crash periods.

Leveraging these insights, we develop a decision tree-based
early warning model constructed from temporally structured
features of market state dynamics.These includemedium-term state
distributions, directional transition ratios, and recent evolutionary
motifs. The model demonstrates high recall and precision under
cross-validation and remains robust when extended to new data
via an efficient projection-based labeling mechanism. Crucially,

unlike traditional indicators based on instantaneous correlation
structure—such as the Absorption Ratio (AR) [6] and its extension
ARR [27], eigenvalue-based earlywarning signals [20], or curvature-
derived fragility measures [10, 11]—our framework emphasizes the
predictive value of how structural regimes evolve over time. This
transition-centric approach provides a dynamic lens on market
fragility, enhancing the model’s interpretability and its potential for
real-time monitoring in complex financial environments.

To the best of our understanding, few studies have systematically
leveraged market state transitions—interpreted as emergent order-
parameter dynamics within complex systems—to inform supervised
early warning models, particularly in the context of emerging
markets. This study seeks to bridge complex systems modeling with
practical risk monitoring by operationalizing structurally grounded
state transitions as interpretable signals for crash forecasting.

The remainder of the paper is organized as follows. Section 2.1
introduces the methodology for identifying correlation-driven
market states and modeling their temporal transitions. Section 2.2
details the decision tree-based early warning model, including
the design of interpretable state-informed features and projection-
based labeling of new data. Section 3.2 presents empirical analysis
of 15 years of CSI 300 data, covering market state classification,
transition dynamics, and their link to crash periods. Section 4
evaluates the early warningmodel, focusing on feature configuration
tuning, performance assessment, and interpretation of decision
paths related to pre-crash signals. Section 5 concludes with
key findings and implications for systemic risk monitoring and
future research.

2 Methods

2.1 Market state classification and labeling

We conceptualize the financial market as a complex system,
where its internal structure is reflected in the correlation patterns
among individual stocks. Amarket state, in this context, is defined by
the collective behavior of these correlations. To distinguish different
states over time, we assess how the correlation structure evolves
across different time windows, mainly following the approach
proposed by Pharasi et al. [17, 19]. Specifically, we measure the
similarity of correlation matrices computed over these windows,
treating similar correlation patterns as indicators of the same
underlying market state. To construct the correlation matrices,
we begin with daily post-rights-adjusted prices of all stocks and
assemble them into a data matrix. The logarithmic return of each
stock i is calculated as

ri (t) = lnPi (t) − lnPi (t− 1) ,

where t denotes the end time point of the corresponding time
window. Using these returns, we derive the correlation matrix ρ(τ)
for each time window, with matrix elements given by the Pearson
correlation coefficients between stock return pairs.

ρij (τ) =
⟨rirj⟩− ⟨ri⟩⟨rj⟩

√⟨r2i ⟩ − ⟨ri⟩
2√⟨r2j ⟩−⟨rj⟩

2
. (1)
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The average ⟨…⟩ is evaluated within a fixed-length time window
ending at time point τ, spanning M discrete time intervals. The
subscripts i, j = 1,…,N denote the stocks. To avoid ambiguity, we
distinguish between two time-related indices: t refers to the actual
trading day, while τ denotes the index of the rolling window, each
of which spans a fixed number of trading days (e.g., M = 22). Thus,
each window τ aggregates market information across the interval
[t−M+ 1, t], enabling the construction of smoothed correlation
matrices C(τ) for dynamic structural analysis. Since correlation
matrices derived from short time series tend to be highly singular,
we adopt the power mapping method to suppress noise in these
matrices. This approach improves the stability and discriminative
power of the correlation matrix spectra, as discussed in previous
works like Guhr and Kälber [28]. The nonlinear exponentiation
effectively reduces spurious correlations while preserving genuine
structural relationships. In this approach, each Pearson correlation
coefficient within a time window is transformed nonlinearly as

Cij (τ) = sign(ρij (τ)) |ρij (τ) |
1+ϵ,

where ϵ ∈ (0,1) is a parameter that controls the degree of noise
suppression.

By applying this transformation, we obtain a sequence of noise-
suppressed correlation matrices C(τ) = [Cij(τ)]N×N that capture the
dynamic structure of stock return correlations over time. In our
analysis, we use a rolling time window of M = 22 trading days
(approximately 1 month), with a sliding step of Δ = 1 day to ensure
high temporal resolution.

We now define a similarity measure (or distance) between two
correlation matrices, C(τ1) and C(τ2), evaluated at different ending
time points τ1 and τ2, as:

d (τ1,τ2) ≡ |C (τ1) −C (τ2)|, (2)

where the overline denotes the average over all matrix elements.
These pairwise distances are thenused as input forMultidimensional
Scaling (MDS), which projects the matrices into a low-dimensional
space while preserving their mutual distances within an acceptable
tolerance. MDS aims to map each correlation matrix C(τ) to a
point in a lower-dimensional space, such that the pairwise distances
between matrices are represented by a distance matrix ζ(τ1,τ2). This
matrix is defined as:

ζ (τ1,τ2) =(

(

δ1,1 δ1,2 ⋯ δ1,Fr
δ2,1 δ2,2 ⋯ δ2,Fr
⋮ ⋮ ⋱ ⋮

δFr,1 δFr,2 ⋯ δFr,Fr

)

)

, (3)

where each entry δi,j represents the computed distance between
matrices C(τi) and C(τj). The goal of MDS is to assign coordinates
x1,x2,…,xFr in a low-dimensional Euclidean space such that the
Euclidean distance ‖xi − xj‖ approximates the original dissimilarities
δi,j, i.e.,

‖xi − xj‖ ≈ δi,j, ∀i, j ∈ {1,2,…,Fr} ,

where ‖ ⋅ ‖ denotes the Euclidean norm. In doing so, MDS provides
a spatial representation of the Fr correlation matrices in a reduced-
dimensional space ℝD.

1: Input: Set of Fr data points from MDS, number

of clusters K

2: Output: Cluster assignments and centroids

3: Randomly initialize K cluster centroids among

the Fr data points

4: repeat

5: Compute the Euclidean distance from each data

point to all centroids

6: Assign each point to the cluster with the

nearest centroid

7: Update each centroid by averaging the positions

of all points in the cluster

8: until cluster assignments and centroid

positions converge

Algorithm 1. K-Means Clustering for Market State Classification.

In this study, we select D = 2 or D = 3 to enable effective
visualization. The resulting coordinates xi are then used to generate
two- or three-dimensional mappings that capture the structural
relationships among correlation matrices over time. Structurally
similar matrices are projected to nearby points, whereas dissimilar
ones appear farther apart. Thus, MDS serves as a powerful tool to
visualize and explore the dynamic evolution ofmarket states through
the similarity structure encoded in ζ(τ1,τ2).

We then applyK-means clustering to partition the Fr data points
obtained from the MDS mapping into K distinct clusters, each
defined by a cluster centroid. The algorithm proceeds through the
following iterative steps:

To determine the optimal number of clusters K and the
appropriate noise suppression parameter ϵ, we evaluate the clustering
quality using the intra-cluster distance dintra. This metric is defined
as the average of the mean Euclidean distances from each point to
its respective cluster centroid, aggregated across all clusters. For each
candidate value ofK, we perform the clustering under 1,000 different
random initializations and compute the standard deviation of the
resulting intra-cluster distances, denoted as stdintra. This procedure
enables robust assessment of clustering stability and helps identify a
reliable choice for K.

To determine the optimal number of clusters K, we introduce
a pseudo-AIC criterion that balances intra-cluster dispersion and
model complexity:

AICpseudo = 2K+ n ln(stdintra) ,

where K is the number of clusters, n is the number of samples, and
stdintra is the average intra-cluster standard deviation.

While this formulation resembles the structure of the
Akaike Information Criterion (AIC), it is not derived from a
traditional likelihood framework. Rather, it draws on a probabilistic
interpretation of K-means under isotropic statistical assumptions
and inspired by the information-theoretic model selection principle
of balancing model complexity and goodness-of-fit [29]. To avoid
confusion, we refer to it as a pseudo-AIC, and provide a detailed
justification of this formulation in Supplementary Appendix A. The
value of pseudo-AIC balances model fit and complexity, penalizing
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1: Input: Daily closing prices Pt of a selected

market index

2: Parameters: Time window length N, drawdown

threshold η

3: Output: Labels yt ∈ {0,1} for each trading day

4: for each time window of length N (using sliding

or fixed approach) do

5: for each trading day t in the window do

6:  Compute drawdown: Drawdown(t) = Pt
max (Pwindow)

7: end for

8: if there exists t such that Drawdown(t) < η and t

is not the first day then

9:   Let MaxDate be the date of peak price

in the window

10:  Mark the day before MaxDate as start of

drawdown (Starti), assign y = 1

11:  Find the first day t′ after Starti such that

Drawdown(t′) ≥ η

12:  Mark the day before t′ as end of drawdown

(Endi)

13:  Store drawdown window [Starti,Endi]

14: end if

15: end for

16: Merge all intervals [Starti,Endi] to form

disjoint market crash periods

17: Assign yt = 0 for all days t outside of

these periods

Algorithm 2. Labeling Market Crash Cases from Market Price Data.

models with a large number of clusters. We select the optimal
number of clusters K and the noise suppression parameter ϵ by
minimizing the AIC value. This ensures that the selected model
achieves both compact and stable intra-cluster structure while
avoiding overfitting caused by an excessively large K.

In our analysis, we primarily consider cases where K ≥ 4, as
configurations with fewer than four clusters (K ≤ 3) are deemed
insufficient to capture the diversity of market states in a realistic
manner. Once the optimal values of K and ϵ are determined, we
compute the average correlation matrix within each cluster. These
clusters are then sorted in ascending order based on their average
correlation levels and assigned sequential labels corresponding to
market states: S1,S2,S3,…

2.2 Early warning model for market crash
using machine learning methods

The first step in constructing the machine learning-based
early warning model is to define the binary classification labels:
market crash cases (y = 1) and non-crash (normal) cases (y = 0).
These labels can be generated based on the historical daily closing
prices of a representative market index. The labeling algorithm
proceeds as follows:

In this paper, we employ the decision trees to construct themarket
crash early warning model. This modeling choice is motivated by
several considerations. Decision trees are inherently simple yet highly
interpretable, offering a clear hierarchical structure of decision rules
that makes them particularly well-suited for applications requiring
transparent reasoning. Second, they are relatively robust to overfitting,
especially when the model complexity (e.g., tree depth) is properly
controlled.Third, andmost importantly in our context, decision trees
are well-suited to scenarios with a limited number of input features.
Since our early warning model is constructed based on market state
transitions—resulting in a compact, semantically meaningful feature
set—the ability of decision trees to perform reliable classification
without requiring high-dimensional input is a critical advantage.
These properties allow the model to maintain strong generalization
performance while ensuring interpretability for financial analysts
and policy researchers.

To enhance predictive performance, there are three types of
features to be implemented to extract patterns associated with
market state transitions in pre-crash dynamics:

• Proportions of Specific States in the Past L1 Windows: pL1k .
Market states are first categorized into K distinct types. Over
the most recent L1 time windows, the frequency of each state
is recorded and converted into proportions to reflect their
relative prevalence. Let ni,k denote the number of times for
market state k appears in the i-th window. The proportion of
state k across these windows is computed as:

pL1k =
∑L1

i=1
ni,k

L1
(k = 1,2,…,K) (4)

This process yields K features, represented by the vector
(p1,p2,…,pK), which captures the medium-term structural
distribution of market states. These features are designed to reflect
the prevailing level of market stability within the observed period.

• Ratio of Upward to Downward State Transitions in the Past L2
Windows: rL2 . An upward transition refers to a shift from a state
with a lower index to one with a higher index (e.g., from S3
to S5), while a downward transition refers to the reverse (e.g.,
from S4 to S3). Letmi and ni denote the number of upward and
downward transitions observed in the i-th window. The ratio
over the most past L2 windows is computed as:

rL2 =
∑L2

i=1
mi

∑L2
i=1

ni
. (5)

Although the state indices themselves are agnostic to specific
economic meanings, empirical observations—both from our
subsequent empirical results and related literature—suggest that
transitions toward higher-indexed states tend to coincide with
increased structural complexity or market disorder. Hence, a high
value of rL2 may indicate an ongoing shift in market conditions that
precedes a turbulent phase. Conversely, a lower ratio may imply a
trend toward greater structural coherence or reduced systemic stress.
By capturing the relative directional trend in state transitions, this
feature provides the model with a coarse-grained but informative
indicator of evolving market stability.
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(3) Evolutionary Path ofMarket States in the Nearest L3 Windows:
πL3 . The sequence of market states over the most recent L3
time windows is encoded as a categorical transition pattern.
Let Si denote the identifiedmarket state in the i-thwindow.The
observed pattern is then represented as an ordered sequence:

πL3 = (S1→ S2→⋯→ SL3) . (6)

Each unique sequence of L3 consecutive states forms a
categorical feature that reflects the short-term evolutionary
path of market structure. Some simple examples include π3 =
(S2→ S3→ S2), π

3 = (S3→ S4→ S5), or π
4 = (S1→ S3→ S4→ S4).

The total number of distinct features generated depends on both L3
and the total number of state categories K, with longer sequences
enabling more granular pattern differentiation.

These pattern-based features are particularly useful for capturing
local dynamics, including sudden structural shifts, oscillatory
behavior, or persistent regime patterns within stable/unstable
conditions. By encoding the short-run evolutionary trajectory of
market states, this feature set complements other indicators focused
on medium- and long-term structural characteristics.

Given the asymmetric costs associated with classification
outcomes in this context—where missing a true crash event (false
negative) may result in significantly more severe consequences
than issuing a false alarm (false positive)—the model selection
process is designed to prioritize recall. Among models achieving
the highest recall, further selection is made by jointly considering
overall classification accuracy and minimizing the false positive
rate (FPR), thereby ensuring both sensitivity and precision
in practical application.

To address the issue of model adaptability over time, we
further consider how to incorporate newly arriving data without
compromising model consistency. A key challenge lies in assigning
market state labels to new incoming time points. Re-clustering the
entiredatasetwhenevernewdatabecomesavailable iscomputationally
expensive and introduces instability, particularly near cluster
boundaries, where minor perturbations may lead to significant
reassignments and undermine the validity of previously extracted
features. Moreover, substantial updates in data may necessitate a
recalibration of clustering hyper-parameters, including the optimal
number of clusters and the noise suppression coefficient. To mitigate
these issues, we propose the following procedure: compute the
similarity (or distance) between the new data and the historical
correlation matrices defined in Section 2.1, apply MDS algorithms to
project thenewobservation into the same low-dimensional space, and
subsequently assign its cluster label using a computationally efficient
classifier (e.g., SVM) trained on the original MDS-embedded data.

3 The state transition behavior of the
Chinese Stock Market

3.1 Data

This study utilizes the daily post-rights-adjusted prices of
constituent stocks from the CSI 300 Index.The CSI 300, comprising
300 large-cap and highly liquid stocks from both the Shanghai and

Shenzhen stock exchanges, represents approximately 60% of the
total market capitalization of China’s A-share market. As such, it
serves as a key indicator for tracking the overall performance of
the Chinese stock market. Its constituents are typically industry-
leading enterprises that are highly responsive to sectoral and
macroeconomic developments. Fluctuations in their stock prices
tend to promptly reflectmarket sentiment and investor expectations,
making them particularly suitable for investigating market state
transitions.

Focusing on CSI 300 constituents allows the study to capture
systemic market dynamics using a representative sample set,
balancing analytical validity with computational efficiency. For
the empirical analysis, there are 285 stocks selected from the
CSI 300 Index, covering a 15-year period from January 2010 to
December 2024, corresponding to T = 3643 trading days. To ensure
the temporal consistency and comparability of correlation matrices
Cij(τ), we included only those stocks that were part of the CSI 300
on 4 January 2010, and remained continuously listed throughout
the entire study period. The data is sourced from the RESSET
database. All stock prices are post-rights-adjusted, a standard
adjustment method that incorporates the effects of corporate
actions including stock splits, cash and stock dividends, and rights
offerings. This adjustment ensures that historical price series reflect
true economic returns and are free from artificial jumps, thereby
allowing for consistent return calculation across the full 15-year
sample period.

3.2 Identification of market states

We compute the logarithmic returns of the daily post-adjusted
closing prices for each stock and generate a sequence of 3,621
correlation matrices of dimension 285 using a sliding window
approach, with the window length set to M = 22—approximately
one trading month—and the sliding step Δ = 1 to ensure
sufficient granularity in state identification. To determine the
optimal number of market states K, we employ the K-means
clustering procedure as introduced in Algorithm 1 of Section 2.1,
and apply the Akaike Information Criterion (AIC) to penalize
excessive model complexity. Specifically, we examine how the
number of clusters K and the noise-suppression parameter ϵ
interact under varying initialization conditions, while tracking the
stability of the clustering outcomes. The convergence condition is
defined as:

• Convergence threshold: relative change in centroid position <
10−5;
• Maximum iterations: 20 (to avoid oscillation in unstable cases).

Figure 1 presents the landscape of pseudo AIC-adjusted
standard deviations across a grid of cluster counts (K = 1
to 10) and noise-suppression levels (ϵ = 0.0 to 0.95). Color
intensity reflects the magnitude of the standard deviation,
with darker regions corresponding to more stable clustering
outcomes. Each parameter configuration is evaluated over
1,000 independent K-means initializations, and the minimum
observed pseudo AIC-adjusted standard deviation is interpreted
as identifying the most robust and reliable clustering
structure.
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FIGURE 1
Stability landscape for clustering: Pseudo AIC-Adjusted standard deviation across K and ϵ.

As discussed in Section 2.1, although configurations with K <
4 sometimes yield lower intra-cluster standard deviations, we
restrict our analysis to K ≥ 4 to ensure sufficient interpretability
and structural resolution. This choice is supported by prior
studies in complex systems and financial market dynamics,
which suggest that markets typically evolve through multiple
qualitatively distinct regimes which are characterized by different
levels of systemic co-movement and risk [11, 30]. Clustering
configurations with fewer than four states often fail to capture
this heterogeneity, resulting in overly coarse classifications that
obscure meaningful structural transitions. For the CSI 300 Index,
the configuration yielding the most stable and interpretable
clustering outcome is ultimately determined to be K = 5 with
ϵ = 0.0.

Figure 2a presents a two-dimensional projection of the
clustering result onto the xz-plane, derived from the optimal
three-dimensional embedding obtained via MDS. This projection
facilitates intuitive visualization of the cluster separation in reduced
dimensions. The full three-dimensional representation of the MDS
result, as shown in Figure 2b, provides a more comprehensive view
of the geometric structure underlying the correlation matrices.
Together, these visualizations demonstrate that the five identified
market states are well-separated in the embedded space, suggesting
the presence of latent structural patterns in market behavior
over time.

Figure 3 presents example heatmaps of stock return correlation
matrices for 285 constituent stocks, each selected from a
representative trading day corresponding to one of the five identified
market states under the configuration ϵ = 0.0. A notable progression
is observed across the states: as the market transitions upward
(i.e., from lower- to higher-indexed states), the red intensity
in the heatmaps increases, reflecting a rising level of average
pairwise correlation among stocks. This pattern suggests a shift
in market structure—from a relatively fragmented condition
with weak inter-stock dependencies to a more cohesive regime
marked by stronger co-movement. Such transitions often coincide
with phases of elevated systemic dynamics, potentially signaling
the emergence of market-wide trends or collective reactions to
macro shocks.

To capture the temporal dynamics of market conditions, we
examine the evolution of state occupancy probabilities over time.
The color blocks in Figure 4 represent the relative frequency of
each market state within semiannual windows. Specifically, the
probability of a state in each window reflects the proportion of
trading days classified under that state. Blue, orange, and green
blocks correspond to lower-indexed market states, while red and
purple denote higher-indexed states. Several noteworthy patterns
emerge. Periods such as 2014, the second half of 2016 through
2017, and the second half of 2020–2021 are dominated by lower-
indexed states, suggesting relatively stable market conditions. In
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FIGURE 2
Multidimensional scaling (MDS) visualization of market state clustering.

FIGURE 3
Representative correlation structures across market states.

FIGURE 4
Semiannual market state landscape of Chinese stock market.

contrast, the window spanning 2015 to early 2016 is characterized
by a pronounced transition to high-indexed states, aligning with
the 2015 A-share market crash—one of the most severe episodes of

turbulence in recent years. This temporal clustering of market states
provides intuitive validation for the proposed state classification and
its relevance to real-world market events.
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FIGURE 5
Empirical transition matrix and probabilities among market states.

3.3 Market states transition

To better understand the dynamic evolution of market
conditions, we analyze the empirical transition behavior among
the identified market states. Figure 5a presents the empirical state
transition matrix of the CSI 300 Index, obtained under the optimal
clustering setting k = 5, ϵ = 0.0.The transitionmatrix exhibits a near-
tridiagonal structure, suggesting that state changes tend to occur
gradually—either remaining in the same state or shifting to adjacent
states.This reflects themarket’s inertia andpath-dependent nature in
its structural evolution. Transitions that leap multiple levels—from
lower-indexed states directly to a high-indexed state (e.g., from
S1 or S2 to S5)—are virtually nonexistent, highlighting the rarity
of abrupt structural shifts without intermediate transitions. Instead,
gradual escalations aremore common.Notably, we observe a limited
number of transitions from S2 to S4 (2 times), from S3 to S4 (62
times), from S3 to S5 (6 times), and from S4 to S5 (19 times), which
may be interpreted as structural precursors to periods of elevated
market stress.

Figure 5b visualizes the corresponding transition probabilities
using a directed graph, where edge annotations indicate the
estimated transition probabilities. Most of the mass is concentrated
along self-loops and adjacent-state arrows, reinforcing the local
stability of market states. Furthermore, the long-run stationary
distribution derived from the estimated Markov chain closely aligns
with the empirical frequency distribution:

P (S1,S2,S3,S4,S5) = (0.20,0.28,0.26,0.18,0.08) ,

which closely mirrors the empirical frequency of observed
states. This consistency reinforces the robustness of the five-
state market classification and suggests that the estimated state
transitions capture meaningful and persistent structural dynamics
in the market.

3.4 Relationship between market states
and market crashes

To investigate whether market crashes tend to occur under
specific structural states of the market, we examine the relationship
between identified market states and empirically observed crash
periods. The five market states of the CSI 300 Index are
ordered by ascending average pairwise correlation, with the
mean correlations given by [CS1(τ),CS2(τ),CS3(τ),CS4(τ),CS5(τ) ] =
[0.19,0.30,0.41,0.52,0.61 ], displaying a clear linear progression
from weakly to strongly correlated market conditions.

Table 1 summarizes the start and end dates of crash episodes,
the number of crash cases detected in each episode, the average
correlation level during each crash period, and the corresponding
market state assigned.These results are based on the proposed crash
cases labeling procedure, i. e., Algorithm 2, with timewindow length
N = 10 and a drawdown threshold of η = 0.08. To map each crash
episode to a market state, we calculated the average correlation
within the episode and classified it using the midpoint between
adjacent state correlation means, i.e., 1

2
(CSi(τ) +CSi+1(τ)).

Based on Table 1, different crash episodes are mapped to
different market states, forming an initial distribution of state
assignments as (S1,S2,S3,S4,S5) = (0,3,4,6,9). However, some of
these episodes are notably brief—lasting fewer than three time
windows—and are likely driven by exogenous shocks rather
than the result of endogenous market dynamics such as herding
behavior or feedback amplification. To focus on more persistent
and structurally significant crashes, we exclude these short-lived
cases by removing periods with fewer than four cases. The
adjusted distribution then becomes (S1,S2,S3,S4,S5) = (0,1,0,4,8),
clearly indicating that most sustained crashes occur under higher-
indexed states, particularly States 4 and 5. This result reinforces
the association between elevated systemic co-movement and the
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TABLE 1 Crash period characteristics and corresponding market states.

No. of crash
periods

Start End No. of crash
cases

Average
correlation

State Max
drawdown

1 2010-04-14 2010-05-18 10 0.498 4 20.2%

2 2010-06-22 2010-07-05 3 0.467 4 9.7%

3 2010-11-08 2010-11-24 7 0.617 5 12.5%

4 2011-12-02 2011-12-15 1 0.329 2 8.5%

5 2013-05-28 2013-07-01 11 0.542 4 18.3%

6 2015-01-26 2015-02-06 1 0.383 3 8.2%

7 2015-06-08 2015-07-01 15 0.612 5 31.6%

8 2015-07-23 2015-08-06 7 0.664 5 10.3%

9 2015-08-10 2015-09-07 10 0.657 5 25.9%

10 2015-12-22 2016-02-01 18 0.714 5 26.4%

11 2018-01-26 2018-02-12 3 0.429 3 12.3%

12 2018-06-13 2018-06-28 2 0.422 3 9.6%

13 2018-07-24 2018-08-06 1 0.387 3 8.6%

14 2018-09-28 2018-10-18 5 0.624 5 11.5%

15 2019-04-19 2019-05-09 4 0.548 4 12.6%

16 2020-01-13 2020-02-05 3 0.714 5 12.3%

17 2020-03-05 2020-03-24 7 0.554 4 16.1%

18 2021-02-10 2021-03-10 5 0.288 2 14.4%

19 2022-03-01 2022-03-16 4 0.678 5 13.8%

20 2022-04-14 2022-04-26 2 0.542 4 9.7%

21 2022-10-18 2022-10-31 1 0.291 2 8.6%

22 2024-10-08 2024-10-17 4 0.693 5 11.0%

onset of significant market downturns. Figure 6 illustrates the time
series of daily closing prices for the CSI 300 Index, with shaded
areas indicating crash periods. Each color corresponds to themarket
state assigned to the crash episode: orange for S2, green for S3,
red for S4, and purple for S5. As shown, these periods align
well with major modification of the index, further validating the
classification.

Overall, the results suggest a strong association between
elevated-correlation market states and the occurrence of crashes.
In particular, States 4 and 5 appear to signal heightened
structural instability. This implies the Markov transition diagram
of states in Figure 5b can be served to synchronously monitor the
market’s stability status. However, it is important to emphasize that
such state classifications should be interpreted as contemporaneous
reflections of market conditions, rather than forward-looking

predictors. Whether they provide sufficient information for lead
time warning is addressed in the following section.

4 Early warning of stock market
crashes based on state transition
information

This section explores the predictive value of market state
transitions in generating early warnings for stock market crashes.
Building on the classification framework established in previous
sections, we aim to determine whether temporal patterns in market
state dynamics can be effectively utilized to identify imminent
periods of elevated market risk.

Based on the results in Table 1, we identify a total of 124 crash
cases. For each of these, we label the trading day immediately
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FIGURE 6
Crash periods and corresponding market states in the CSI 300 Index, along with the rolling forecasting performance of the early warning model. The
top panel displays the CSI 300 Index (black) and the average correlation C(τ) (gray dotted line), with vertical colored bands indicating identified crash
periods and their dominant market states (S2–S5). The bottom panel shows real-time warning signals produced by the model under a rolling
forecasting framework. Most signals are triggered shortly before or at the onset of crash periods, demonstrating the model’s ability to provide timely
early warnings.

TABLE 2 Top 10 best feature configurations.

Rank
no.

L1 L2 L3 Precision Recall FPR

1 35 40 6 0.9636 0.9677 0.0359

2 35 40 5 0.9633 0.9677 0.0362

3 40 40 6 0.9630 0.9677 0.0365

4 35 40 4 0.9621 0.9677 0.0374

5 35 40 3 0.9615 0.9677 0.0380

6 40 40 5 0.9603 0.9677 0.0392

7 40 35 6 0.9587 0.9677 0.0410

8 40 40 4 0.9582 0.9677 0.0413

9 40 40 3 0.9574 0.9677 0.0423

10 40 30 4 0.9533 0.9677 0.0465

preceding the start of the case as y = 1, representing a positive
(crash-imminent) sample. All other trading days outside the crash
periods are labeled as y = 0. This procedure yields 124 positive
samples and 3,289 negative samples. To mitigate the severe class
imbalance in the dataset, the y = 1 samples are replicated 26 times,
thereby constructing a balanced classification dataset suitable for
supervised learning.

4.1 Model tuning and implication

To systematically examine how the temporal structure of state-
based inputs affects the performance of crash early warning, we

adopt the methodology outlined in Section 2.2, varying the window
lengths used to construct the three categories of state-derived
variables. Specifically, the candidate window lengths L1 for the
proportion of each market state pL1k and window lengths L2 for
the ratio of upward to downward state transitions rL2 are both set
to (10,15,20,25,30,35,40). For the third feature type—capturing
the recent evolutionary paths of market states—the window size
L3 is selected from (3,4,5,6). The smaller values of L3 are chosen
deliberately to reduce the combinatorial complexity of the resulting
categorical pattern space, thereby enhancing model generalization
and mitigating the risk of overfitting. These three temporal window
features are designed to capture complementary structural and
temporal dimensions of market dynamics. Specifically, L1 encodes
the medium-term proportion of time the market resides in each
state, which reflects persistent structural tendencies; L2 captures
the directional momentum of market transitions—quantifying how
frequently the market moves into more fragile or stable states—thus
acting as a proxy for regime-level drift; and L3 records short-
term transition motifs, designed to detect recent local fluctuations
that may precede regime shifts. The design draws inspiration
from complex systems thinking, where multiscale memory effects
and structural inertia often play a critical role in the lead-up to
systemic events.

In total, 196 different (L1,L2,L3) combinations are evaluated
using a decision tree classifier with 5-fold cross-validation. Table 2
lists the top 10 configurations first ranked by recall and then ranked
by precision. The best-performing configuration is (L1,L2,L3) =
(35,40,6), which achieves a highest recall of 96.77%, along with
the precision of 96.36%, and a low FPR of 3.59%. This setting is
selected as the optimal feature configures for the model, balancing
sensitivity to crash signals with robustness to false alarms. All
performance metrics reported in this section are obtained via 5-fold
cross-validation, where the dataset is randomly partitioned into five
subsets. In each round, four subsets are used for training and one
for validation, ensuring that every observation is tested exactly once.
This repeated re-training procedure provides an estimate of model
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FIGURE 7
Heatmaps of precision, recall, and F1-Score with hyper-parameters combinations L1,L2,L3.

FIGURE 8
Decision tree structure under the optimal window configuration (L1,L2,L3) = (35,40,6). Each node shows the predicted class, Gini coefficient, the
number of samples labeled as crash (y = 1) and non-crash (y = 0), and the total number of samples in parentheses. Warm-colored nodes indicate
classification into the crash category (y = 1), while cool-colored nodes correspond to non-crash classification (y = 0). The notation ↻Si denotes
persistent stay in state Si, represented as a sequence such as (Si→ Si→ Si→ Si→ Si).
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TABLE 3 Comparison of early warning models using 5-fold
cross-validation.

Model Precision Recall F1-score FPR

MST model 0.964 0.968 0.966 0.037

VIX-like model 0.863 0.755 0.803 0.120

Spectrum model 0.677 0.904 0.773 0.347

Absorption ratio 0.783 0.828 0.804 0.229

Themaximum value in this column is indicated in bold.

generalization under moderate sample variability. To further assess
the robustness of the selected feature configuration, we conducted
an additional evaluation using repeated 5-fold cross-validation.
Specifically, we repeated the 5-fold CV procedure 20 times
with different random splits to estimate the variability of model
performance. Based on these repetitions, we calculated confidence
intervals for key performance metrics. The 95% confidence interval
for precision is [96.2%,96.5%], for recall is [96.7%,96.8%], for F1-
score is [96.5%,96.7%], and for the false positive rate (FPR) is
[3.4%,3.7%]. These narrow intervals confirm the model’s stable and
reliable predictive capacity under different sample partitions.

We did not construct a separate test set for final model
evaluation. Given the rarity and temporal clustering of crash
events, a fixed test split may lead to high variance and unreliable
evaluation. Instead, our focus is on examining whether temporal
features of market state transitions offer informative signals
for early crash detection. In future work, more rigorous
backtesting approaches—such as Combinatorial Purged Cross-
Validation (CPCV) [31]—could be explored to validate model
performance in a production-like environment.

To provide a more detailed and intuitive assessment of
how different window length combinations contribute to model
performance, we visualize the precision, recall, and F1-score
across all 196 (L1,L2,L3) configurations in Figure 7. Each panel
corresponds to a fixed value of L3 ∈ 3,4,5,6, while the horizontal
and vertical axes represent values of L1 and L2, respectively. The
color shading in each cell reflects the performance level for a specific
metric, with darker shades indicating better results.

The heatmaps reveal several consistent patterns. First, larger
values of L1 and L2 generally yield stronger performance across
all metrics, especially when L3 = 6, confirming the advantage of
incorporating longer historical context for state proportions and
transition ratios. Second, the F1-score—balancing precision and
recall—tends to peak in the upper-right regions of the grids,
where both L1 and L2 lie in the range of 30–40. This aligns well
with the previously identified optimal configuration (L1,L2,L3) =
(35,40,6), providing visual validation for the selected model
parameters. Importantly, the combination (L1,L2,L3) = (35,40,6)
integrates features over both short- and medium-term windows,
capturing persistent structural shifts as well as abrupt transitions.

Figure 8 illustrates the structure of a representative decision tree
trained under the optimal window configuration (L_1,L_2,L_3) =
(35,40,6), which displays the first four layers. Interpretation of
the decision rules reveals that the most informative paths leading
to a crash warning (i.e., terminal nodes classified as y = 1) tend

to involve long-term patterns in state proportions and transition
ratios—particularly pL15 and rL2—rather than short-term state
transition sequences.

Notably, one of the clearest decision paths leading to a
crash classification occurs when 0.3 < pL13 ≤ 0.84, and rL2 > 1.83,
suggesting that elevated presence of mid-to-high index states
combined with a strong net upward transition tendency serves as a
robust early warning signal. In contrast, the specific forms of short-
term state transition patterns—such as π5 = (Si→⋯→ Sj)—do
not appear to provide significant predictive power on their own.
However, when such patterns indicate that the market has not
persistently remained in state S5 (i.e., π

5 ≠ ↻S5), and are combined
withmedium- to long-term indicators such as pL1k and rL2 , the model
still achieves strong early warning performance. Specifically, long-
term state occupancy proportions pL15 act as proxies for structural
stress accumulation—indicating prolonged market exposure to
vulnerable regimes. The transition ratio rL2 captures directional
asymmetries in regime shifts, with high values signaling drift toward
higher fragility states. The short-term motif π5 provides further
granularity by detecting whether the market remains stable in a
specific state (e.g., ↻S5) or experiences disruptive shifts. These
layered indicators together help uncover latent warning signals
preceding systemic crashes, supporting the interpretability and
theoretical consistency of the model.

To further examine the practical utility of the proposed early
warning model, we apply the optimized classifier in a rolling
forecasting mode. At each time step, the model uses only past
information to predict whether a warning signal should be triggered
for the next period. This simulates a realistic deployment setting
where market operators make real-time decisions based on evolving
structural dynamics. The lower panel of Figure 6 visualizes the
resulting forecasted warning signals over the full sample period.
Most warnings align closely with the start of crash periods identified
by our drawdown-based labeling scheme, often appearing several
days in advance. These results confirm that the model generalizes
well to unseen data and is capable of generating timely early
warnings in real-world settings.

To benchmark the performance of our proposed market
state transition (MST) framework, we compare it with
three representative baseline models of early warning
signals that are widely used in the literature: (1) volatility-
based indicators, (2) spectrum-based indicators and (3)
absorption ratio.

For the volatility model, we construct a VIX-like indicator based
on the implied volatility of the China ETF 50 options, often referred
to as the “China fear index.” This index serves as a functional proxy
for market-perceived risk in the Chinese context. For the spectrum-
based category, we follow the methodology of Chakraborti et al.
[20] to compute the maximum eigenvalue of the correlation matrix.
For the absorption ratio, we use the implementation proposed by
Kritzman et al. [6], which quantifies the proportion of variance
absorbed by a fixed number of principal components.

To enable a fair comparison, we construct decision-tree-based
classifiers for each of these indicators by tuning thresholds to
generate binary crash warnings. All models are evaluated using
the same labeled crash dataset and assessed under 5-fold cross-
validation. Table 3 presents the results. Our MST-based framework
consistently outperforms the benchmark models across all metrics,
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FIGURE 9
Sensitivity of crash-state distribution to drawdown threshold η. Frequencies of each market state observed during identified crash periods under three
thresholds η = 7%, 8%, 9% are compared. Results confirm the consistency of crash-state associations.

FIGURE 10
Model performance under different resampling methods. Bars represent precision, recall, F1-score, and false positive rate (FPR) for simple replication,
SMOTE, and ADASYN. The results demonstrate that the model’s performance remains stable across various class-balancing strategies.

achieving the highest precision (0.964), recall (0.968), and F1-score
(0.966), along with the lowest false positive rate (3.7%).These results
highlight the advantage of structurally grounded, transition-driven
features in anticipating systemic stress.

4.2 Adaptability to new data

To evaluate the model’s adaptability in real-time environments,
we assess its ability to incorporate newly arriving trading data
using the procedure described at the end of Section 2.2. Specifically,
new correlation matrices are projected into the original low-
dimensional MDS space, and their market state labels are assigned
using a Support Vector Machine (SVM) trained on the initial
clustering results.

Results from 5-fold cross-validation indicate that the SVM
with a radial basis function (RBF) kernel achieves a classification
accuracy of 98.20%, demonstrating that new trading days can be
accurately labeled with minimal computational cost. This confirms
the model’s suitability for real-time deployment and continuous
market monitoring under dynamic conditions.

4.3 Sensitivity analysis

To evaluate the robustness of our results with respect to key
design choices, we conduct two sets of sensitivity analyses focusing
on crash labeling and resampling methods.

First, we examine the impact of changing the drawdown
threshold η used in crash event identification. Figure 9 illustrates
the distribution of market states associated with crash periods
under three threshold settings: η = 7%, 8%, and 9%. The patterns
remain highly consistent, confirming that the core findings
reported in Section 3.4—especially the concentration of crash
periods in states S4 and S5—are not sensitive to the exact
choice of η.

Second, we assess the influence of different resampling
techniques used to address class imbalance in model training. In
addition to the simple replication method (Simple Rep) used in the
main analysis, we consider two widely used alternatives: SMOTE
and ADASYN. As shown in Figure 10, the decision tree model
maintains stable performance across all three approaches. While
SMOTE and ADASYN yield slightly lower precision, recall and F1-
score, the overall differences are modest, supporting the validity of
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our original choice. These results demonstrate that the predictive
effectiveness of our framework is not materially dependent on the
specific sampling method adopted.

5 Conclusion

Grounded in the complex systems perspective, this paper applies
correlation-based structural analysis to identify and characterize
market states in the Chinese stock market, with the CSI 300 Index
as a representative system. Using multidimensional scaling and
K-means clustering on rolling correlation matrices, we identify
five distinct market states that reflect varying levels of systemic
co-movement. Our analysis confirms that these states are not
merely statistical artifacts but correspond to meaningful structural
configurations of the market.

Empirical results reveal that market state transitions are
predominantly local, occurring between adjacent states, while
abrupt multi-level jumps are rare. States also exhibit high temporal
persistence, underscoring the gradual and inertial nature of
structural evolution in financial systems. Notably, high-indexed
states—those with elevated average correlations—are strongly
associated with historically observed crashes, particularly when
the market resides in State 4 or State 5, where systemic co-
movement is most pronounced. While these states offer valuable
insight into ongoing market fragility, they function primarily
as contemporaneous indicators rather than forward-looking
predictors. Together, these findings support the use of market
state classification as a structurally grounded, real-time measure
of systemic risk.

Based on the identified state structure, an early warning model
is constructed using decision trees trained on state-derived temporal
features.These features capturemedium-termstructuraldistributions,
directional trends instate transitions,andrecentevolutionarypatterns.
The model demonstrates high recall and precision across multiple
validation settings, indicating strong robustness in identifying pre-
crash conditions. Furthermore, real-time adaptability is ensured
through a projection-based labeling procedure, allowing new data
to be efficiently embedded and classified, thus enabling continuous
and responsive market surveillance.

Several avenues for future research emerge from this work.
One direction is to extend the proposed framework to cross-
market or multi-asset systems, such as incorporating global indices,
fixed income instruments, or cryptocurrency markets, to examine
whether state transitions exhibit comparable structural patterns
across different financial domains. Another promising line lies
in enriching the modeling of state transitions themselves—e.g.,
using recurrent neural networks to capture nonlinear memory
effects. Furthermore, combining structural state dynamics with
behavioral signals, news flows may enhance the predictive power
and interpretability of crash warnings. Finally, linking market
state trajectories with macro-financial policy variables could
offer new insights into the interplay between systemic risk
and regulatory interventions.
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