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Mean-field and Monte Carlo
analysis of multi-species agent
dynamics

Eduardo Velasco Stock, Roberto Da Silva* and
Sebastian Gonçalves

Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

We propose amean-field (MF) approximation as a recurrence relation governing
the dynamics of m species of particles on a square lattice. We simultaneously
perform Monte Carlo (MC) simulations under identical initial conditions to
emulate the intricate motion observed in environments such as subway
corridors and scramble crossings in large cities. Each species moves according
to transition probabilities influenced by its respective static floor field and the
state of neighboring cells. To illustrate the methodology, we analyze statistical
fluctuations in the spatial distribution form = 1,m = 2, andm = 4 and for different
regimes of average density and biased movement. A numerical comparison is
conducted to determine the best agreement between the MC simulations and
the MF approximation considering a renormalization exponent β that optimizes
the fit between methods. Finally, we report a phenomenon we term “Gaussian-
to-Gaussian” behavior, in which an initially normal distribution of particles
becomes distorted due to interactions among same and opposing species,
passes through a transient regime, and eventually returns to a Gaussian-like
profile in the steady state, after multiple rounds of motion under periodic
boundary conditions.

KEYWORDS

pedestrian dynamics, mean-field, transport equation, lattice gas, stochastic process,
multi-species

1 Introduction

Pedestrian dynamics is one example of complex systems of self-driven agents in the
realm of macro-scale physics, which give rise to a variety of emerging phenomena. Several
theoretical and experimental studies have been conducted on crowd dynamics, focusing
on topics ranging from city planning [1] and disaster prevention to the understanding of
complex human behavior [2, 3].

Some places with crowd formation as subway corridors [4, 5], nightclub dynamics
[6, 7], and scramble crossings [8] in large cities, are examples of these complex
systems that exhibit collective behavior. Simply put, it features different groups of
individuals aiming to reach various common destinations, for instance, the entrance/exit
of a train station, reaching/leaving the bar to buy beverages, or crossing to get
to another corner. Thus, the spatial and temporal context in question may involve
a single group of agents moving towards a common goal, or multiple groups
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moving along confronting trajectories, which rapidly increases the
complexity of the dynamics.

The problem of two groups of particles in counterflow has
been extensively studied across various contexts, ranging from
microscopic scales—such as the dynamics of charged colloids
[9]—to macroscopic phenomena, such as pedestrian flows in
corridors [10, 11], and evenmore complex situations like evacuation
[12] scenarios. Notably, even in single-species models [13],
intriguing phenomena such as condensate formation emerge,
illustrating the richness of these systems.

An interesting approach to describe the hard-body dynamics
of macroscopic systems is the lattice-gas modelling [14]. In our
recent work, we used the dynamics of a lattice gas-type interaction
to describe the motion of pedestrians inside nightclubs [6, 7] and
in a four-way crossing walk [8], the so-called scramble crossing. In
such works, we have shown that the intrinsic high correlation of this
approach reflects the model’s sensitivity to jamming and condensate
formation.

In that sense, Monte Carlo (MC) simulations are a natural
method for studying such models, as they allow for the definition
and implementation of transition rules to simulate different
evolutions from specified initial conditions. These systems can
also be interpreted in a broader context as multi-agent systems.
Additionally, there are approaches that model these dynamics
through differential equations based on Newton’s laws, within the
so-called social force framework [12, 15, 16].

In that direction, the mean-field (MF) approach in particle
dynamics has been extensively studied, particularly in the context
of lattice gas models. These models were originally proposed to
describe the behavior of specific types of fluids, such as solvents
[17], electrochemical cells [18], and other systems that can be
characterized by Hamiltonians derived from free energy potentials
[19]. In 2015, we introduced a related model [20] based on a
two-species particle framework to describe pedestrian counterflow.
Unlike classical exclusion principles, our model employed density-
dependent exclusion rules, where the probability of occupation
varied with the local density of particles. The system’s evolution
was governed by a set of coupled partial differential equations
(PDEs). Other variations have been explored tomodel deterministic
dynamics [21, 22], and further extensions of our framework have
incorporated concepts from Fermi-Dirac statistics [23].

In this work, we propose a general framework for a MF
approximation of the lattice gas dynamics of m-species of particles
on a square lattice. We derive a generalized non-linear coupled
PDE obtained by the MF approximation and compare it to MC
simulations, by using a set of initial conditions for the cases m =
1, m = 2, and m = 4, where each type of particle is guided by its
own static floor field [24] towards its target. We study the statistical
properties of the distributions of particles of the species and
investigate what are the circumstances and range of parameters that
make the model a suitable and efficient option for MC simulations.

Our results show excellent agreement between the PDE
predictions and MC simulations for low-density regimes. However,
at higher densities, jamming effects reduce the accuracy of this
agreement. We present a detailed numerical study to delineate the
conditions under which our method remains valid compared to the
computationally more expensive MC simulations.

In the next section, we describe the method for deriving
the PDEs based on a model where particles exhibit preferential
directed motion combined with random movements dependent
on the occupation of neighboring sites. Through a mean-field
approximation, we successfully derive a generalized PDE that
describes scenarios involving an arbitrary number m of species.

Subsequently, in the third section, we present our results
comparing the spatial distribution of particles on a bidimensional
lattice for different model parameters and initial particle
concentrations. We study three different cases —m = 1, m = 2,
and m = 4—, analyzing the evolution of key distribution features
over time under periodic boundary conditions. These features
reflect the interactions between particles across the various
scenarios. Additional details—including equation derivations,
supplementary plots, and a discussion of numerical instabilities
related to the PDEs—are provided in the supplemental material
accompanying this text.

2 Methods

Our model consists of a system of n particles that move along
an underlying square lattice of side l. Each particle in the system
belong to one ofm species and can hop to one of its first neighboring
cells at each time step according to a set of transition probabilities
which depends on its species “social fields” (static floor field),
denoted as u(k) = u(k)(r), where k = 1,…,m. For instance, a given
particle belonging to the species q at cell r = (i, j) hops to one of
its neighboring cells r′ = (i′, j′) in the unit time interval t→ t+ 1
according to the transition probability density

Pr(q)r→r′ = p+ αΔr • û
(q), (1)

where p is a constant probability to hop to one of the four
neighboring cells, α is the coefficient that measure the bias towards
the direction of its species static floor field, û(q) ≡ u(q)/‖u(q)‖ is the
normalized static floor field of species q, and Δr ≡ r′ − r is the
displacement vector of the calculated transition probability. As one
may expect, normalization constraints reflect on the possible values
of p, which in a Cartesian regular lattice is 0 < p ≤ 1/4, whilst α
satisfies the condition 0 < α ≤ p.

It is important to note that, in our model, each particle perceives
only the static floor field specific to its species, evaluated at its current
position. Consequently, the inner product defined in Equation 1
quantifies the contribution of each possible transition probability to
the particle’s movement toward its target.

As one might anticipate, Equation 1 is the general form of the
four possible transition probabilities each of which have a different
corresponding displacement vector that can assume the values Δr =
ex, −ex, ey, and −ey, with ex and ey denoting the unit vectors of
our reference frame as depicted in Figure 1. Thus, to ensure the
normalization constraint, the probability that a particle remains in
its current cell is expressed as:

Pr(q)r→r = 1−∑
⟨r′⟩

Pr(q)r→r′ = 1− 4p, (2)

where the angle brackets ⟨r′⟩ indicate that the summation is carried
out solely over the nearest neighbours, with i′ = i± 1 and j′ = j± 1.
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FIGURE 1
Cartesian lattice depiction of a likely transition to happen of a particle
at position r to a neighbouring cell r′ = r+Δr.

It is important to note that these transition probabilities define
the intended particle movement, conditional on the target cell
being empty, as each cell can accommodate at most one particle.
Thus, the probability represents what should occur, not what will
necessarily occur.

2.1 Lattice gas dynamics

We focus our study on an approximate regime of a lattice
gas model. The key feature, as previously noted, is the exclusion
principle, which prevents particles from overlapping or occupying
the same cell, regardless of the specific rules governing the transition
probabilities.This characteristic makes it particularly challenging to
derive an approximate recurrence relation or equation of motion,
as the occupation states of neighboring lattice cells are highly
correlated. Nevertheless, we develop a recurrence relation for the cell
occupation that remains consistent with the asynchronous updating
scheme characteristic of lattice gas dynamics with nearest-neighbor
interactions. Accordingly, we propose the following recurrence
relation for a given species q:

ρ(q)t+1 (r) = (1− ρt (r)) ∑
〈r′〉

ρ(q)t (r
′)Pr(q)r′→r

+ρ(q)t (r)(Pr
(q)
r→r + ∑
〈r′〉

ρt (r
′)Pr(q)r→r′),

(3)

where ρt(r) ≡
m
∑
k=1

ρ(k)t (r) is the total density of particles at a given
cell r at time step t. The proposed equation decomposes the update
process into two key contributions: (1) particle inflow into the cell
and (2) particle persistence or outflow from the cell. In the lattice
gas dynamics, the occupation state is binary, with ρ(q)t (r) = 1 if the
cell is occupied and ρ(q)t (r) = 0 if it is vacant. However, in the mean-
field (MF) approximation, ρt(r) represents an average density field

and does not directly reflect the actual number of particles n in the
system. To bridge this gap and improve consistency between theMF
and MC descriptions, we generalized the normalization condition
of the MF recurrence relation. Specifically, we modified the global
constraint so that the sum over all lattice sites scales as a power of n:

∑
r
ρt (r) = n

β,

where β is a tunable exponent. The introduction of β allows us
to adjust the MF approximation to better reproduce the behavior
observed in MC simulations. By treating β as a fitting parameter,
we aim to compensate for the differences between the averaged MF
treatment and the discrete, stochastic nature of the MC dynamics.

The first term on the right-hand side of Equation 3, the factor
(1− ρt(r)), reflects the hard-body exclusion principle, which dictates
that a particle can only occupy an empty cell. This factor multiplies
the sum of possible sources of inflow of particles of species q from
the neighboring cells of r, i.e., the notation ⟨r′⟩. Each neighboring
source of particles depends on the density of the species q at
the neighboring site ρ(q)t (r

′) and the transition probability Pr(q)r′→r,
reflecting its likelihood to hop from r′ to r. The second term
on the right-hand side of Equation 3 describes the contribution
of particles already present in r. The first factor, ρ(q)t (r), accounts
for the actual occupation of it, whilst the factor inside the large
brackets corresponds to a composition of two possibilities. The first
possibility is the probability Pr(q)r→r of the particle at r remaining
in place, which contrasts with the second possibility that stands as
the probability of the particle at r trying to move to an occupied
neighboring cell r′.

With this framework, we explicitly separate the exclusion
interaction, reflected in the terms (1− ρt(r)) and ρt(r), from
the transition probabilities, which can incorporate additional
interaction mechanisms such as long-range fields or cooperative
dynamics. As an example, Equation 3 can reproduce even
deterministic models of particles, such as proposed in [21], which
could allow us to describe the model proposed by Cividini et al.,
for instance, by a proper choice of parameters such as fixing m = 2
with one species moving eastbound and the other species moving
northbound with transition probabilities equal to one towards their
respective target directions.

We can rewrite Equation 3 as follows

ρ(q)t+1 (r) = ∑
⟨r′⟩
[(ω(q)t (r,r

′) −ω(q)t (r
′,r))

− (ρt (r)ω
(q)
t (r,r

′) − ρt (r
′)ω(q)t (r

′,r))]

+ρ(q)t ,

(4)

whereω(q)t (r,r
′) ≡ ρ(q)t (r

′)Pr(q)r′→r is the flow rate of particles of species
q entering the cell at r from the cell r′. Alternatively, we could write
Equation 4 as

ρ(q)t+1 (r) =Φ
(q)
t (r) −Ψ

(q)
t (r) + ρ

(q)
t , (5)

where

Φ(q)t (r) ≡ ∑
⟨r′⟩
(ω(q)t (r,r

′) −ω(q)t (r
′,r)) (6)

is the net flow rate of particles of species q into the cell at r and

Ψ(q)t (r) ≡ ∑
⟨r′⟩
(ρt (r)ω

(q)
t (r,r

′) − ρt (r
′)ω(q)t (r

′,r)) (7)
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is the frustrated net flow rate of particles of species q into the cell
at r. The frustrated net flow rate measures the particle interaction,
i.e., measures the amount of q particles unable to access or leave
the cell at r due to the its occupation and of its neighbouring cells
Equations 5-7 provide an alternative representation that offers a
more physical perspective on the mean-field dynamics.

2.2 Mean-field regime

When applying Equation 1 into the lattice gas recurrence
relation given by Equation 3, we end up with the specific
recurrence relation

ρ(q)t+1 (r) = (1− ρt (r)) ∑
〈r′〉

ρ(q)t (r
′)(p− α(Δr • û(q) (r′)))

+ρ(q)t (r)[(1− 4p) + ∑
〈r′〉

ρt (r
′)(p+ α(Δr • û(q) (r)))].

(8)

After some algebra (see Supplementary Material A) we obtain
the following partial differential equation

∂ρ(q)

∂t
= c′1∇

2ρ(q) − c′2∇ • (ρ
(q)û(q)) − c′3∑

k≠q
(ρ(k)∇2ρ(q) − ρ(q)∇2ρ(k))

+c′4
m

∑
k=1
[ρ(k)∇ • (ρ(q)û(q)) + ρ(q)∇ρ(k) • û(q)] ,

(9)

where c′1,c
′
3 ∝ lim

τ,ϵ→0
pϵ2

τ
and c′2,c

′
4 ∝ lim

τ,ϵ→0
αϵ
τ
.

In Equation 9, we notice that the constants c′3 and c
′
4 are species’

coupling factors and themathematical pathwe took fromEquation 3
makes them not to depend on each possible pair of species.
However, a more general approach would consider these constants
as dependent on each possible coupling pair of species, which we
will not going to explore in this work.

To study how good a fit is the mean-field approximation is to
the particle dynamics, we investigate how the spatial distributions
of both methods differ from each other for different sets of the
model parameters such as the total number of particles (n), the total
number of species (m), and the bias level of movement (α).

3 Discussion

As mean-field approaches approximate the microscopic
behavior to an average behavior, their fidelity to the model tends
to be limited to a certain range of parameters. This restriction is
potentiated when considering cases of highly correlated systems of
particles, such as the lattice gas dynamics we study in this work. In
particular, we addressed how a system of an arbitrary number of
species m, each carrying a different static and uniform social field
u, influences emerging phenomena. As stated previously, the social
field’s direction is the only cause of difference between particles of
different species, so that a system of m > 1, but with u(1) = u(2) =
⋯ = u(m) is not different from the case m = 1. In that sense, the
complexity of the model comes from different configurations of
static floor fields.

Thus, to simplify things a little bit, we use a relatively
simple rule to define social fields û(q), where each species has a

guaranteed different field from each other in the two-dimensional
Cartesian lattice:

û(q) = (cos(
2π (q− 1)

m
), sin(

2π (q− 1)
m
)). (10)

By defining the static floor fields in Equation 10 as such, we took the
first species to have its preferential direction ofmovement parallel to
the x-axis, whilst all other species’ directions are defined in regularly
divided angles according to the total number of particles (m).

As initial conditions, we considered each species concentrated in
separate regions of the lattice as initial “wave packages” to describe
what would be a real physical confrontation scenario, such as found
in pedestrian crossings [8, 21]. More specifically, we considered
each species’ initial distribution as a bivariate uncorrelated normal
distribution with mean values defined in a circular fashion
analogous to the static floor fields previously defined with a light
difference. To observe confrontation between species, we defined
the initial distributions of each as μ(q)x =

l
2
[1− 1

2
cos( 2π(q−1)

m
)]

and μ(q)y =
l
2
[1− 1

2
sin( 2π(q−1)

m
)]. That particular choice guarantees

that agents will have to cross each other at the lattice center,
simulating scenarios where species have well-defined positions and
confrontation between groups of agents with different objectives is
bound to occur as depicted in Figure 2.

For all species, we define the standard deviation of the initial
distributions to be σ(q)x = σ

(q)
y = l/32. The reason behind this specific

choice for the standard deviation and not a smaller value is the
constraint of the exclusion feature of the lattice model. For instance,
a Dirac’s delta function as initial distribution, where σ(q)x = σ

(q)
y →

0, can only be implemented on MC simulations if we put only
one particle in the species mean initial position and we would
have to make the system large enough so to have an approximate
distribution of choice, which would be impractical computationally.
In that sense, to study systems with more than one particle per
species, we have to choose initial distributions not so localized.

Specifically, we have examined the cases of m = 1, m = 2, and
m = 4, which represent simpler scenarios where the species’ static
floor fields align with the x- and y-axes. This alignment with the
Cartesian axes provides a symmetric structure that facilitates a
clearer comparison between the two methods via the marginalized
distribution relative to the species’ static floor field. For instance,
if a species has a preferred direction û = ± ex, we compute the
marginalized density ρ(x) by summing ρ(x,y) over all y-values. This
reduction to a one-dimensional distribution simplifies the analysis.

In all cases, we studied a system of l = 128 with periodic
boundary conditions on both directions (toroid). In a previous
study, we performed a finite-size scaling analysis of the three-
species version of this model using an indirect observable—the bar
profits (see Ref. [6]). The results indicated that a lattice size of l =
128 was sufficiently large to suppress boundary effects. We also
used p = 1/4 in this work, which reflects a scenario of high noise
dynamics (see Equation 2) where particles only stay still if the target
cell is occupied.

We simulated the particle dynamics of our model via MC
algorithm with a shuffled asynchronous update scheme.This means
that at any given MC step, we form a list of n particles chosen
at random (uniform distributed pseudo-random number generator
[25]) from the population of n that compose the system. We then
update the position of each sequentially, according to the transition
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FIGURE 2
Schematic lattice (not to scale) illustrating a system with m species in a situation involving confrontation. Each point marks the mean (μ(q)x ,μ

(q)
y ) of a

species’ initial distribution, with arrows indicating the direction of its static floor field. Angular separations are illustrative; actual values depend on m.
The figure conveys the structure of initial conditions and static fields.

probabilities given by Equations 1,2, and its neighboring cell states.
For the initial conditions, we used a Box-Muller algorithm [25] to
generate two independent andnormally distributed pseudo-random
variables (X and Y) to define each particle’s position according
to their species. Throughout this work, variables originating from
MC simulations were obtained by averaging the time series of
each run at each timestep over nrun = 106/n samples generated with
same parameter, but different seeds for the pseudo-random number
generators.

3.1 m = 1 case

The simplest scenario we examined involves only a single
species. As we defined previously by Equation 10, a single species
tends tomove according to the static floor field û = ex, with its initial
distribution having μ(1)x = l/4 and μ

(1)
y = l/2 with σ

(q)
x = σ

(q)
y = l/32. In

these simulations, we used β = 1.
In Figure 3, we present plots of the marginal distribution of

particles along x, where circles represent the Monte Carlo (MC)
simulation results and solid lines correspond to predictions from the
recurrence relation (mean-field approximation). We examine these
distributions for various particle counts, ranging from n = 64 to n =
448 in increments of Δn = 64 and shown at four distinct time steps:
(a) t = 50, (b) t = 250, (c) t = 450, and (d) t = 4950. For this study, we

used α = 0.15, which corresponds to agents with mid range level of
impetus as we already shown in [7, 8].

As a general remark, we notice a qualitatively good agreement
between the twomethods and that the distributions in more densely
populated systems shows more positive skewness of the probability
density function (PDF) in comparison to systems with fewer
particles, revealing the exclusion effects.These exclusion effects are a
result of agents leading the pack acting as obstacles for the particles
in the bulk. As time passes, we notice that the distributions present
increasing dispersionwith the “front tail”maintaining synchronicity
for different values of n. It is important to disclose that in the study
that produced Figure 3, the recurrence relation exhibited numerical
instability for n ≥ 512, which the corresponding data is omitted
here and throughout the manuscript for conciseness. To understand
the source of the instabilities, note that Equation 8 includes the
term 1− ρt(r), which, in the context of discrete particle dynamics,
only takes values 0 or 1, as previously explained. In this regime,
the factor 1− ρt(r) behaves in a stable and well-defined manner.
However, under the mean-field approximation, increasing either
the total density N/V or the parameter α can lead to locally high
average densities. As a result, 1− ρt(r)may become negative, causing
ρt+1(r) to also take on unphysical negative values. When this occurs,
the normalization of the distribution becomes unstable, as the
sum involves both large positive and negative terms—sometimes
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FIGURE 3
Evolution of normalized marginal distributions of x of MC simulations (circles) and MF (lines) for different time steps (a,b) t = 50, (b,f) t = 250, (c,g) t =
450, and (d,h) t = 4950 considering one-species (m = 1). Plots labeled from (a-d) illustrate the influence of different values of n for a fixed α = 0.15,
whereas plots from (e-h) show the effect of varying α for a fixed n = 192.

yielding normalized values with magnitudes as high as 1020. Thus,
providing a quantitative indication that there exists a certain range
of the parameters of the model beyond which the approximate
method becomes unreliable and serves as justification for the
assumption that a tuning parameter, β, might be necessary to also
preserve the mean-field stability. The reader is advised to check the
supplementary material to check the form of marginal distributions
of particles right before numerical collapse.

Another key parameter we investigated is the bias movement
level, α, which quantifies the particles’ tendency to move in their
species’ preferred direction. For this analysis, we fixed n = 192,
corresponding to a generally low-density scenario as shown, while
ensuring sufficient particle interactions to produce the positive
skewness observed in the distribution.

In the lower panels of Figure 3 (plots e to h), we present
the marginal distributions at time steps (e) t = 50, (f) t = 250, (g)
t = 450, and (h) t = 4950 for α = 0.050,0.100,0.150, and 0.200. As
expected, distributions with higher α values exhibit faster drift
velocities in the +x direction. Additionally, increasing α amplifies
the skewness, similar to the effect observedwith higher n. Notably, at
longer simulation times, larger α values lead to greater discrepancies
between the two methods, as seen in Figure 3h.

Given the phenomena observed in Figure 3, we notice that
systems with a greater total number of particles (n) tend to show
less agreement, even if qualitatively their shapes follow the same
pattern. However, this disparity is not observed when changing
the level of movement bias (α) shown in Figure 3. With this in
mind, we show, in Figure 4, how the exponent of normalization, β,
influences the shape of the marginal distribution of x.

Figure 4a illustrates the influence of β on the distribution profile
for a system with parameters m = 1, n = 128, and α = 0.249. As
discussed in the previous section, the normalization constraint in the
recurrence relation can be interpreted through an ansatz in which
the number of particles is raised to a power β, with β expected to be
close to 1, if not exactly 1. As such, this parameter serves to tune the
agreement between methods at the same time, it allows for systems

with number of particles expected to show numerical collapse to
evolve in a well-behaved manner.

To better measure the agreement between the two methods
and the range of parameters where the mean-field shows numerical
stability, we compared both methods using the time average of the
squared difference of the spatial entropies of each method, i.e.,

ΔS2 ≡ 1
tmax

tmax

∑
t=1
(StMC
− StMF
)2, (11)

where St = ∑rρt(r) lnρt(r). The loss function introduced in
Equation 11 is one among several possible choices for quantifying
the discrepancy between the MC and MF results. However,
as we demonstrate below, it proved to be particularly suitable
for optimization purposes. For comparison, we also tested an
alternative loss function based on the squared differences of local
densities, as illustrated in Supplementary Figure S2 and defined in
its caption in the Supplementary Material. This alternative metric
failed to produce a well-behaved optimization landscape, which
made it ineffective for identifying optimal values of β. For this
reason, we opted not to pursue it further.

In Figure 4b, we show ΔS2 as a function of the exponent β for
different values of n and for a fixed simulation time of tmax = 104

time steps. We studied the range of β ∈ [0.5:1.5]. In this range, we
observednumerical instability of the recurrence relation in all curves
shown for values of β greater than certain values, which are reflected
by the discontinuity of the curves. More specifically, greater n shows
lower β’s where the numerical collapse occurs. However, within the
range of numerical stability, we observe that, for n ≤ 256, methods
show an optimal agreement at β ≡ βc > 1, shown by the local minima
which become closer to 1 as n increases. For n ≥ 256, we notice that
the numerical instability of theMFmakes the lowest stable β assume
the stance of optimal value, i.e., it becomes the value that minimizes
ΔS2.

Figure 4c completes the analysis form = 1, by showing the linear
dependence of the optimal value βc on the number of agents. The
data is fitted with a linear function ax+ b, yielding a = − 0.000588±
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FIGURE 4
(a) Influence of β on the distribution profile for a system with parameters m = 1, n = 128, and α = 0.249. (b) Variation of the average squared deviation

ΔS2 as a function of β, for a single-species system (m = 1) with α = 0.15. (c) Completing the analysis for m = 1, we show the linear dependence of the
optimal value βc on the number of agents. The data is fitted with a linear function ax+b, yielding a = −0.000588±5.3× 10−5 and b = 1.17±0.017. (d) By
extending the same calculations to systems with multiple species (m = 2 and m = 4), we observe that the results are well described by power function
fits for βc, using the form ax−b. The fitted parameters are: m = 2: a = 3.3±0.11, b = 0.193±0.0065; m = 4: a = 3.04±0.23, b = 0.176±0.014.

5.3× 10−5 and b = 1.17± 0.017. Such behavior will be different of
upper values ofm as it is previously presented in Figure 4d.However,
we must first study the particle distribution for these cases under
varying parameters, which will be performed in the next sections.

3.2 m = 2 case

The case m = 2 is the simplest case within our proposed
framework of initial conditions (see Figure 2) where two species of
particles move in counterflow, which is a scenario vastly studied
in the literature, once it can describe a two species systems
with opposing responses to an external field such as oppositely
charged coloids [9, 20] (external electrical field) or chromatographic
columns [10, 26–29] (gravitational field), to cite a few. For this
case, initial distributions assume μ(1)x = l/4 and μ(1)y = l/2, μ

(2)
x = 3l/4

and μ(2)y = l/2 as we defined in the previous section. Static floor
fields are then û(1) = ex and û(2) = − ex as stated by Equation 10,
which still carries a rather trivial symmetry in the y-direction
(diffusive profile) making observations of the marginal distribution

on the x coordinate rather more interesting because is where the
confrontation occurs.

In Figure 5, we show the marginal distributions of x of the MC
simulations with circles and lines for the MF approach. We studied
two values of the total number of particles shown simultaneously:
n = 128 shown in purple and n = 256 shown in green for the time
steps (a) t = 50, (b) t = 250, (c) t = 450, and (d) t = 4950, where both
species appear as different peaks with same color for each case. In
this first case, we used α = 0.15 and β = 1.0, and we observe that,
similarly to them = 1 case, a greater total number of particles makes
the distributions more asymmetric due to the exclusion interaction
of particles of the same species. We do not observe, however, a clear
influence of the opposing species on the shape of the distribution.
We can interpret this “lack” of interaction deformity occurring
because of the exclusion effects of the nearest neighbor interaction,
suggesting that a sort of shield is formed by the same-species
particles in a low-density regime.This warrants further investigation
in future work.

While both methods show reasonably good agreement in
Figure 5, we find that the agreement can be further improved
by optimizing β. Revisiting Figure 4d and extending our earlier
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FIGURE 5
Evolution of normalized marginal distributions of x of the MC simulations (circles) and MF (lines) for different time steps (a,e) t = 50, (b,f) t = 250, (c,g) t =
450, and (d,h) t = 4950. Plots (a-d) show the influence of different values of n for α = 0.15, whilst plots (e-h) show different α’s for a fixed n = 192.

analysis for m = 1 to m = 2, we observe that the critical value βc
minimizing ΔS2 follows a power-law dependence, ax−b. For m =
2, the fit yields a = 3.3± 0.11 and b = 0.193± 0.0065, contrasting
with the linear behavior found for m = 1. This indicates that
increasing the model complexity (from m = 1 to m = 2) modifies
the parameter dependence. However, no significant changes are
observed beyond m = 2 up to m = 4, as seen in Figure 4D—a point
we will address in detail later. Importantly, we note that lower-
density cases do not provide the best agreement between the two
methods, revealing non-trivial model-specific characteristics that
lack complete theoretical understanding.

3.3 m = 4 case

The last case we discuss in this work is the case with four species
moving along the x− and y−directions. More precisely, their initial
distributions have mean value: μ(1)x = l/4 and μ(1)y = l/2, μ

(2)
x = 3l/4

and μ(2)y = l/2, μ
(3)
x = l/2 and μ(3)y = l/4, and μ(4)x = l/2 and μ(4)y = 3l/2

as we expected to be by our previous definition. Similarly, the static
floor fields assume the formû(1) = ex,û(2) = ey,û(3) = − ex, andû(4) =
− ey (see Equation 10). Similarly to the two prior cases, having an
initial condition with radial symmetry about the lattice center, also
makes the four species present a symmetric “cross section” of the
distribution, i.e., the distribution on the direction perpendicular to
û(q) shows no asymmetry. Thus, studying the marginal distribution
of x of the species q = 1 or q = 3 would be no different from studying
themarginal distribution of y of the species q = 2 and q = 4 given the
system’s initial arrangement and static floor fields (see Figure 2).

With this in mind, Figure 6 displays the particle distribution
ρ(1)(x) for different values of n using α = 0.249 at four time points: (a)
t = 50, (b) t = 250, (c) t = 450, and (d) t = 4950. Our analysis reveals
two key observations:

(1) First, the discrepancy between methods becomes more
pronounced for larger n values in this regime of highly
driven agents. Despite this disagreement, the MC simulations

demonstrate the formation of transient condensates for n =
320, as evidenced by the emerging peak at t = 250.

(2) Second, the mean-field solution exhibits anomalous behavior
at t = 250, particularly in the left tail of ρ(1)(x), which appears
bent near x ≈ 100. Notably, however, both methods show
qualitatively good agreement in the front tail of ρ(1)(x),
suggesting synchronized drifting profiles in the steady state.

Building on our analysis of them = 4 case, Figure 6 presents the
evolution of ρ(1)(x) distributions for various α values in a system
with n = 256 particles. We also examine the same four time points:
(e) t = 50, (f) t = 250, (g) t = 450, and (h) t = 4950. The results
reveal that while the wave fronts remain synchronized between MC
simulations and mean-field theory, the MC distributions exhibit
significantly greater dispersion. Returning to Figure 4d, we apply the
same minimization procedure for ΔS2 used for the m = 1 and m =
2 cases. For m = 4, we obtain an excellent power-law fit identical in
form to the m = 2 case, with fitted parameters a = 3.04 ± 0.23 and b
= 0.176 ± 0.014.

It is important to note that, despite some differences in the
evolution of particle profiles, a qualitatively similar behavior is
observed in both cases when the systems are initialized with a
normal distribution of particles in the environment.The interactions
among particles—especially the interaction with counterflowing
particles—tend to deform the initial distribution shape. Over time,
however, after several rounds of confrontation and interaction,
the particles begin to reorganize themselves, ultimately restoring a
Gaussian-like behavior.

This transition from one Gaussian state to another is illustrated
in Figure 7. In Figures 7a–e, we show the results from MC
simulations, while Figure 7f corresponds to the mean field
approximation. All plots refer to the case of m = 4 species, n = 256
particles, and interaction parameter α = 0.249.

In Figure 7a, we observe the particle distribution at t = 50. We
observe that the initial Gaussian behavior is disrupted due to particle
interactions. The red and blue curves represent normal and log-
normal fits, respectively, with the latter providing amore accurate fit
at this stage.The inset plot shows the same trend on a semi-log scale.
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FIGURE 6
Evolution of normalized marginal distributions of x of the MC simulations (circles) and MF (lines) for different time steps (a,e) t = 50, (b,f) t = 250, (c,g) t =
450, and (d,h) t = 4950. Plots (a-d) show the influence of different values of n for α = 0.249, whilst plots (e-h) show different α’s for a fixed n = 256.

By t = 150, the distribution becomes strongly non-Gaussian, with a
pronounced peak emerging, as shown in Figure 7b.

At t = 250, the shape of the distribution becomes nearly
triangular (Figure 7c), signaling the beginning of a return to
Gaussianity. A goodGaussian fit is eventually recovered in Figure 7d,
and a noisy but stable Gaussian distribution is observed at t = 400,
as shown in Figure 7e.This reflects the establishment of a steady state
after extensive particles interactions.

Finally, in Figure 7f, we analyze the mean-field approximation.
Unlike the MC simulations, which display the full evolution of
the particle profile, we summarize the results using the coefficient
of determination R2, which quantifies the quality of a normal
distribution fit over time. These values are represented by circles.
Initially, we observe a sharp decline in R2, indicating the breakdown
of Gaussianity (illustrated in the inset). As t increases, the system
goes through a transient (points inside blue rectangle) phase before
recovering a Gaussian profile, again shown in the inset. This
confirms that the same Gaussian-to-Gaussian behavior occurs in
the mean-field scenario, in agreement with the MC simulations
presented in Figures 7a–e.

4 Conclusion

In this work, we proposed a mean-field approximation to
describe the dynamics of an agent-based model of m-species of
particles. Specifically, we proposed a recurrence relation that shows
the evolution of lattice gas dynamics with an asynchronous updating
scheme in a Von Neumann neighborhood.

We showed that the MF method shows a good agreement with
the particle dynamics implemented through MC simulation using
initial conditions and static floor fields carrying polar symmetry in
relation to the center of the lattice. We studied the cases of one, two,
and four species, which, with the initial conditions, made for a sort

of “controlled” environment so that we could access more easily the
agreement between methods.

The MF approach carried a normalization constant exponent β,
which relied on the parameters n and m, because the agreement
of methods is strongly influenced by the complexity of the
interactions. We showed that when one species is considered, its
optimal value, βc, has a linear dependence on the total number of
particles, when m = 2 and m = 4 it shows to be a function of some
power of n.

We highlighted that our proposed mean-field approach is not
bulletproof by showing what specific set of parameters made it
show numerical instability due to competing terms inside the
recurrence relation.

Despite studying only three cases, our approach is general
enough to allow an arbitrary number of particles, even for initial
conditions and/or species preferential directions of motion different
from those studied in this work. Not only that, our framework
proposed by Equation 3 presents a general feature of application to
asynchronous lattice gas models, even reproducing the recurrence
relation of other models such as the deterministic two-species
dynamics studied in [21].

We are currently exploring higher systems with more than four
species, which means that some species are going to present static
floor field at angles lower than 90° with the x− and y−direction. As
a consequence, we expect to observe βc presenting a more complex
dependency with n.

Finally, our model reveals a distinctive pattern we term
the “Gaussian-to-Gaussian” transition. In this phenomenon,
particles initially distributed in a Gaussian configuration undergo
significant deformation of this pattern, only to eventually recover
a Gaussian distribution after multiple interaction cycles. Both
Monte Carlo simulations and mean-field theory reproduce
this effect, though they follow different temporal evolution
pathways.
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FIGURE 7
Plots (a–e) show the particle distribution at different times obtained via Monte Carlo simulations. At t = 50, significant deviations from a normal
distribution are observed. As time progresses, the system gradually returns to a Gaussian-like profile, culminating in a noisy steady-state distribution at
t = 400, as seen in plot (e). Plot (f) summarizes the corresponding results for the mean-field approximation. Here, the quality of the Gaussian fit over
time is quantified by the coefficient of determination R2, represented by dark yellow circles. Initially, interactions among particles cause strong
deviations, leading to a transient regime. At later times, the system converges again to a Gaussian distribution—less noisy than that of the Monte Carlo
steady state. The inset in (a) compares normal and log-normal fits on a semi-logarithmic scale. The insets in (f) illustrate the particle profile at different
stages of the evolution.
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