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The rule for the number of
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states in the vector Chen-Lee-Liu
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Tongling University, Tongling, China, 4College of Optical, Mechanical and Electrical Engineering,
Zhejiang A&F University, Hangzhou, China

This study investigates the physical distribution patterns of Peregrine solitons
within multi-order rogue wave states and their potential applications in
optical systems under the vector Chen-Lee-Liu nonlinear Schrödinger equation
framework. Through non-recursive Darboux transformation, we systematically
analyze the nonlinear dynamics of vector optical fields during second-harmonic
generation, revealing an arithmetic progression in Peregrine soliton evolution
across rogue wave orders. For nth-order solutions, the fundamental Peregrine
soliton count follows an arithmetic sequence with first term n(n− 1), last term
n(n+ 1), and common difference n, where each rogue wave state comprises
fully decoupled Peregrine solitons (e.g., 1/2 for 1st-order, 2/4/6 for 2nd-order,
and 6/9/12 for 3rd-order configurations). It is noteworthy that the emergence of
nonet rogue wave states (nine Peregrine solitons) in third-order solutions breaks
through the conventional even-mode constraint in second-order solutions,
opening new avenues for investigating many-body nonlinear interactions in
multi-channel photonic devices. These findings provide significant insights
into the spatiotemporal localization characteristics of rogue waves in multi-
component nonlinear media and their applications in optical sensing and
quantum information processing.

KEYWORDS

Peregrine soliton, multiple rogue wave states, vector Chen-Lee-Liu system, self-
steepening, non-recursive darboux transform

1 Introduction

In the last decade, the study of rogue waves has attracted increasing interest in
such fields as oceanography [1], fluid dynamics [2, 3], optics and photonics [4–6],
acoustics [7], magnetism [8], Bose-Einstein condensation [9, 10], artificial intelligence
[11], and topological control [12]. Mathematically, rogue waves can be represented by
rational functions localized on the space-time domain [13, 14]. One typical example is
the fundamental rational solution of the nonlinear Schrödinger (NLS) equation, termed
Peregrine soliton, which was first discovered by Peregrine in 1983 [15]. The most distinctive
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feature of Peregrine soliton is the bilocalized peak on a finite
background. Due to its peculiar spatiotemporal structure, Peregrine
soliton is generally recognized as the prototype of rogue waves in
reality [16]. Nowadays, Peregrine solitons have been observed in
many physical environments, such as water wave tanks [2], optical
fibers [17, 18], plasmas [19], and irregular ocean states [20].

In many practical situations, multi-component nonlinear
systems with more complex spatiotemporal dynamics rather than
scalar integrable models need to be considered [21, 22]. Unlike
scalar NLS, the vector Chen-Lee-Liu (CLL) NLSmodel incorporates
some indispensable features. Multi-component coupling between
optical fields u1 and u2, essential for modeling polarization-
dependent effects in birefringent media [23], and self-steepening,
which induces spatiotemporal reshaping critical for ultrashort
pulses [24, 25]. These enable phenomena unattainable in scalar
models, such as energy-transfer-driven amplitude anomalies and
higher-order rogue states. Examples include the formation of
anomalous Peregrine solitons involving self-steepening effects in
the multi-component systems [26, 27], as well as the formation of
Peregrine rogue waves on a background of periodic waves induced
by interference [28]. Meanwhile, the dynamics of higher-order
Peregrine solitons have also attracted a great deal of research
activities [29–31], especially the multiple rogue wave states
consisting ofmultiple Peregrine solitons [32, 33] and the super rogue
wave states superimposed by three or six Peregrine solitons [34, 35].
It should be noted that the multiple rogue wave states are different
from the super rogue wave states, with the former being composed
of a number of well-separated Peregrine solitons. In addition, rogue
wave patterns have also been studied in recent years, and these
studies aremainly related to the root structure of special polynomials
(e.g., Okamoto polynomials or Adler–Moser polynomials), where
the distribution of the roots determines the geometry of the patterns
[36–39]. These studies have greatly enriched our understanding of
the nature of Peregrine solitons.

In our previous research works [40, 41], we explored the
omnipresent coexistence as well as Peregrine solitons on periodic
backgrounds, using the vector CLL-NLS equation. It is also found
that when having the double-root case, the nth-ordermultiple rogue
wave states will consist of n(n+1)/2 fundamental Peregrine solitons,
as whatwas found in scalar systems [35, 42, 43]. As for the triple-root
case, however, such nth-order rogue wave states will exhibit more
complex patterns, consisting of at most n(n+1) Peregrine solitons,
with at most two and 6 fundamental Peregrine solitons seen for their
first- and second-order rogue wave states, which were confirmed
in most other vector system [44–46]. One fundamental question
naturally arises: as for the third-order rogue wave states, does it
satisfy that it consists of at most 12 fundamental Peregrine solitons?
If so, what kind of pattern will its fundamental Peregrine solitons
show? Will it be similar to the second-order solutions case, with an
even number of multiple patterns of rogue wave states?

In this work, we conduct a systematic study of this problem.
We obtain up to third-order rogue wave solutions for the vector
CLL-NLS system by the nonrecursive Darboux transform (DT)
method and analyze the complex patterns of rogue wave states in
the triple-root case. In addition, based on the results for the first-,
second-, and third-order rogue wave states, the number patterns
of the fundamental Peregrine solitons of the nth-order rogue wave
states are discussed. Our findings may contribute to the possibility

of future experimental observations. This paper is structured as
follows: first, Section 2 gives an overview of the vector CLL-NLS
model and the nonrecursive DT form by which higher-order rogue
wave solutions are derived.Then, Section 3 gives a detailed list of the
first-, second-, and third-order rogue wave solutions, and discusses
the number rule of fundamental Peregrine solitons for rogue wave
states. Finally, Section 4 concludes the paper.

2 The vector CLL-NLS model and
nonrecursive DT scheme

We consider the vector CLL-NLS model, which controls the
mixing of two fundamental-frequency pulses in a second-order
nonlinear crystal through the generation process of type II highly
phasemismatched second-harmonic [24, 25, 47].The dimensionless
form of the CLL-NLS model is written as

iuız +
σ
2
uıtt + (|u1|

2 + |u2|
2)(uı + iγuıt) = 0, (ı = 1,2), (1)

where uı(z, t) are the normalized complex envelopes, with the
subscripts denoting the partial derivatives, and z and t being the
propagation distance and delay time, respectively. All variables
(z, t, uı) are dimensionless in this study. Physical units can be
restored via scaling transformations [23, 48]. The parameter σ can
be normalized to +1 and −1 in the case of anomalous and normal
dispersion, respectively. The third term of Equation 1 includes the
Kerr nonlinear effect, which arises from the intensity-dependent
refractive index [23], and the self-steepening effectmodulated by the
parameter γ [48]. It is easy to see that when γ = 0, the above model
will regress to the well-known Manakov system, which is widely
used in various nonlinear vector systems to model, for example, the
propagation of optical pulses in randomly birefringent optical fibers
[27], the formation of spatial solitons in planar waveguides [49],
and the cross-wave states occurring in the open ocean [50]. As an
important generalization of the Manakov system, the vector CLL-
NLS model can more accurately describe the dynamical evolution
of rogue waves in these different nonlinear media.

Due to complete integrability [51], Equation 1 can be
transformed into a 3× 3 linear eigenvalue problem

Rt = UR, Rz = VR, (2)

where R = [r, s,w]T is the characteristic function (T represents
transposition, r, s, and w are functions of z, t, and the complex
spectral parameter λ). Matrices U and V are given by the
following equations

U = −
i(λ− σ)σ3

2σγ
+
√λ
σ
Q+

iγ
σ
KQ2,

V = −
i(λ− σ)2σ3

4σγ2 +
iγ2

2σ
KQ4 −

γ
2
K(QQt −QtQ)

+
√λ
2σ
(λ− σ

γ
Q− i√λσ3Q2 + γQ3 + iσσ3Qt),

(3)

with

K = [[

[

0 0 0
0 1 0
0 0 1

]]

]

, σ3 =
[[

[

1 0 0
0 −1 0
0 0 −1

]]

]

, Q = [[

[

0 u1 u2

−u∗1 0 0
−u∗2 0 0

]]

]

.
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The asterisk denotes the complex conjugation operation for any
spectral parameter λ. Equation 1 can be easily derived from the
compatibility condition of Uz −Vt +UV−VU = 0.

Based on the Lax pair (Equations 2, 3), one can construct a
nonrecursive DT [44, 45, 52] by which the nth-order rogue wave
solutions can be obtained

u[n]1 = u10(1−
i
|u10|

Y1M−1Y
†
2)(

det(M)
det(M†)

) ,

u[n]2 = u20(1−
i
|u20|

Y1M−1Y
†
3)(

det(M)
det(M†)

) .
(4)

Here the sign † indicates the complex conjugate transpose and
det denotes the determinant of matrices. The non-recursive DT
fundamentally differs from recursive approaches. It constructs the
nth-order solution analytically in one step through the matrix M
and vectors Yj (j = 1,2,3, the same below) avoiding the error-prone
iterative dressing of recursive DT. The solution’s degrees of freedom
are globally parameterized by 3n complex γs (s = 1,…,3n), enabling
direct control over rogue wave states. uı0 represent the seeding
plane-wave solutions

uı0 = aı exp (iωıt− ikız), (5)

the amplitude (aı), the wavenumber (kı), and the frequency (ωı)
follow a dispersion relationship

kı = (a2
1 + a

2
2)υı +

1
2
σω2

ı , υı = γωı − 1. (6)

Yj are 1× n row vectors, defined as

[[

[

Y1

Y2

Y3

]]

]

= [Φ(0),Φ(1),Φ(2),…,Φ(n−1)], (7)

here Φ(m) are the series coefficients of the Taylor expansion
of the factorized column vector Φ(λ) = G−1R(λ), where the
given spectral parameter λ = λ0. M is an n× n matrix whose
matrix elements Mıj can be obtained by the Taylor expansion of
Φ†XΦ/(λ− λ

∗
), and

G = [[

[

1 0 0
0 u∗10/a1 0
0 0 u∗20/a2

]]

]

, X = [[[

[

√λ∗ 0 0
0 √λ 0
0 0 √λ

]]]

]

. (8)

The key of the above derivation process is to solve the expression
for R and to perform a Taylor expansion of it. Then, by substituting
the plane-wave solution (5) into the Lax pair (2), the characteristic
function R(λ) can be obtained,

R(λ) = GΦ(λ), Φ(λ) = Γ1N1 + Γ2N2 + Γ3N3, (9)

where Γj are arbitrary complex constants, and the expressions forNj
are as follows

Nj =
[[[

[

1
c1j
c2j

]]]

]

eiφj , φj = μjt+ νjz, (10)

with

cıj = −
iaıγψj

√λ(ψj − 2συı)
, ψj = 2μjσγ− λ− σ,

νj =
2Aγ2λ− (λ− σ)2

4σγ2 + i
√λ
2
(ω1a1c1j +ω2a2c2j)

+ i
√λ
2γσ
(Aγ2 − λ+ σ)(a1c1j + a2c2j),

(11)

the parameter μj in Equation 10 are the three roots of the cubic
equation of μ,

(μ−
β
2
+
Aγ
2σ
− κ

4
)

3
− 3ς(μ−

β
2
+
Aγ
2σ
− κ

4
)+ 2ϱ = 0, (12)

where the coefficients are defined by the following equations

ς = β2 + δ
2

12
− ι

3σ
, ϱ = β3 −

β(2ι+ σδ2)
4σ
+ δϖ

4σ
, (13)

with

β =
Aγ2 + λ− σ

3σγ
+ κ

6
, ι = a2

1υ1 + a
2
2υ2, ϖ = a2

1υ1 − a
2
2υ2,

A = a2
1 + a

2
2, κ = ω1 +ω2, δ = ω1 −ω2.

(14)

From Equations 12–14, the spectral parameter λ satisfies the
following equation

ς3 − ϱ2 = 0, (15)

and it is easy to see that under the condition
(Equation 15), Equation 12 will allow for the double-root μ1 = μ2 =
μ0, or when ς = ϱ = 0, allow triple-root μ1 = μ2 = μ3 = μ0. Under
both conditions, a particular value of λ0 can be obtained for λ.

Now, let’s focus on the triple-root case. According to cubic
Equation 12 there will be a triple-root

μj = μ0 = −
γA
2σ
+ κ

4
+ i
√3δ
4
, (16)

at the point of A = − σδ2(υ1 + υ2)/υ1υ2, where συ1,2 < 0.
To simplify the analytic derivation, we split λ0 into a real part λr

and an imaginary part λm, i.e., λ0 = λr + iλm, in the following form

λr = −Aγ2 − 1
2
σγκ+ σ, λm =

3√3
2

γδσ. (17)

When choosing Γj appropriately, it is easy to check that the
factorized eigenfunction Φ(λ) given by Equation 9 will disappear at
λ = λ0. Therefore, the Taylor expansion of Φ(λ) can be performed
at the specific point λ = λ0, thereby obtaining the row vectors Yj
and matrix M. Thus, in the case of triple-root, let λ = λ0 + χϵ3 [χ =
λ0 − λ
∗
0 = 2iIm(λ0)]

Γ1 =
1
3

n

∑
j=1
(γ3j−2 −

γ3j−1ϕ2

ϵ
+
γ3jϕ1

ϵ2
) ϵ3(j−1),

Γ2 =
1
3

n

∑
j=1
(γ3j−2 −

γ3j−1ϕ1

ϵ
+
γ3jϕ2

ϵ2
) ϵ3(j−1),

Γ3 =
1
3

n

∑
j=1
(γ3j−2 +

γ3j−1

ϵ
−
γ3j

ϵ2
) ϵ3(j−1),
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where ϵ is a complex perturbation parameter, γs are 3n arbitrary
complex constants called structural parameters, ϕ1 = 1/2+ i√3/2
and ϕ2 = 1/2− i√3/2, which can be expanded to a power of ϵ3 by
Φ(λ),

Φ(λ) =Φ(0) +Φ(1)ϵ3 +Φ(2)ϵ6 + ⋅ ⋅ ⋅ +O(ϵ3n). (18)

Here, O stands for infinitesimals of the same order. Of course, with
respect to the case of double-root, it is sufficient to simply replace
ϵ3n → ϵ2n.

Therefore, the matrix elements of M in Equation 4 are
given by the following equation

Φ†XΦ
λ− λ∗
=

n

∑
ıj
Mıjϵ
∗3(ı−1)ϵ3(j−1) +O(|ϵ|6n). (19)

From the above derivation procedure, the three one-row matrices
Yj are obtained from Equation 7, and the matrix X is obtained
from Equation 8. In this way, we obtain the nth-order rogue wave
solutions for Equation 4.

The triple-root condition (ς = ϱ = 0 in Equation 15) induces
critical structural changes in the DT: the eigenfunction expansion
(Equation 18) requires a cubic perturbation ϵ3 (rather than
quadratic for double roots), scaling the solution space as ϵ3n

for nth-order solutions. This necessitates the incorporation of
3n complex parameters γs in Γj, effectively tripling the system’s
degrees of freedom compared to the double-root case. These
expanded parametric capabilities directly enable the matrix M
(Equation 19) to accommodate higher-order polynomial roots,
thereby unlocking rogue wave states that can simultaneously
host up to n(n+1) fundamental Peregrine solitons. The unique
physical manifestation of this phenomenon originates from the
nonlinear self-steepening term (γ ≠ 0) in Equation 1, which
amplifies the system’s capacity for extreme wave interactions
while preserving the mathematical integrity of the triple-root
configuration.

3 Complex multiple rogue wave state
patterns

When the appropriate Γj are input, the eigenfunction
Φ(λ) in Equation 9 can be precisely extended to Equation 18.
The three expansion terms Φ(0), Φ(1), and Φ(2) can be
given by the following equations

Φ(0) = T[[

[

R0

R1

R2

]]

]

eiφ0 , Φ(1) = T[[

[

S0

S1

S2

]]

]

eiφ0 , Φ(2) = T[[

[

W0

W1

W2

]]

]

eiφ0 , (20)

where T = diag(1,c10,c20)(diag means the diagonal matrix), ψ0 =
σ(ν− i√3δγ) (ν = υ1 + υ2). φ0, cı0, and ν0 are given by Equations 10,
11 (let j = 0), respectively. The polynomial representations of R0,1,2,

S0,1,2, and W0,1,2 are as follows

R0 = γ1 −
iγ2
2
τ+

iγ3
4
(τ2 + 2τ+ 3iξ),

Rı = R0 −
√3δ
2αı
[γ2 − γ3 (τ−ϕı)] ,

S0 = γ1b0 + γ2e0 + γ3h0 + γ4 −
iγ5
2
τ+

iγ6
4
(τ2 + 2τ+ 3iξ) ,

Sı = S0 −
√3δ
2αı
[γ1bı + γ2eı + γ3hı + γ5 − γ6(τ−ϕı)] ,

W0 = γ1l0 + γ2p0 + γ3q0 + γ4b0 + γ5e0 + γ6h0 + γ7 −
iγ8
2
τ+

iγ9
4
(τ2+2τ+3iξ),

Wı =W0 −
√3δ
2αı
[γ1lı + γ2pı + γ3qı + γ4bı + γ5eı + γ6hı + γ8 − γ9(τ−ϕı)] .

(21)

where

αı =
ψ0(2συı −ψ0)

4υıγσ2 , β2 =
i(√3δ− iκ)

8σγ2 ,

ϑ = t−
Aγz
2
+
(λ0 − σ)z

2γ
− 2σ2γ2zβ2, τ = √3δϑ, ξ = δ2σz.

(22)

γs are complex structure parameters, the function ϑ and the
parameters ατ, β2, τ, and ξ are given by Equation 22. According
to Equation 21, R0,1,2, S0,1,2, and W0,1,2 have 3, 6, and 9 structure
parameters γs, corresponding to the first-, second-, and third-order
solutions, respectively.The other polynomials b0,1,2, e0,1,2, h0,1,2, l0,1,2,
p0,1,2, and q0,1,2 are given in Supplementary Appendix A.

Obviously, the expressions for Yj and M can be obtained by
substituting Equation 20 into Equations 7, 19, respectively.Then, we
can substitute the obtained expressions forYj andM into Equation 4
to obtain up to third-order rogue wave solutions.

3.1 Singlet and doublet rogue wave
solutions

Firstly, the first-order rogue wave solutions can be written as

u[1]ı = uı0[1+
3(1−ϕ2

ı )ψ
∗
0R0R
∗
ı

2m11
](
√λ0m11

√λ∗0m
∗
11

), (23)

with

m11 = λ∗0 |R0|2 + ι1|R1|2 + ι2|R2|2, ιı =
a2
ı γ

2ψ0ψ
∗
0

(ψ0 − 2συı)(ψ
∗
0 − 2συı)

.

(24)

It should be noted that we have translated these solutions on
the plane (z, t) to ensure that their peaks fall on the origin. Thus,
at the origin, the ratio of the peak to the average background
height of these Peregrine solitons can be estimated by equation fı =
1+ 4υıℓ2/η[(m+ωı)2 + ℓ2], (η = γm+ 1) [40]. For the first-order
solutions (Equation 23), under the normal dispersion condition
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(σ = − 1), the background parameters are set as γ = 1,ω1 = 7/4,ω2 =
5/4, a1 = √3/3, and a2 = 1.Three structural parameters γ1-γ3 control
nonlinear coupling terms of different orders respectively.When γ2 ≠
0 (γ2 = 1, γ1 = γ3 = 0, Figures 1a,b), theR0 polynomial (Equation 21)
dominates the singlet rogue wave structure; when γ1 and γ3 are
activated in combination (γ1 = 20, γ1 = i, and γ3 = 1, Figures 1c,d),
the quadratic phase modulation of the S0 term (Equation 21) breaks
the spatial symmetry and forms a doublet rogue wave mode. This
parameter sensitivity arises from them11 polynomial (Equation 24),
which manifests itself as γ2 modulating the amplitude of the single
peak, while the γ1/γ3 combination ensures the peak separation.
We can observe that under these parameters, the singlet rogue
waves in Figures 1a,b exhibit a bright-dark structure, and the
peak amplitude of the bright structure exceeds the threefold limit,
forming an anomalous Peregrine soliton structure [26, 27]. The
doublet rogue wave states in Figures 1c,d consist of two completely
separated Peregrine solitons, exhibiting bright-bright and dark-
dark structures. This bright-bright configuration also manifests an
anomalous Peregrine soliton structure. Unlike scalar NLS rogue
waves, this unique amplitude characteristic is attributed to the
coupling between field components and the coupling between
space and time. Coupling between field components results in
energy transfer between the different elements such that the peak
amplitude of one wave component ismuch higher than the threefold
background height ( f1 = 3.5), and the peak amplitude of the other
wave component decreases ( f2 = 0.5). At the same time, due to
the self-steepening (γ) effect, spatiotemporal coupling will lead to
further space-time rearrangement, which will make the Peregrine
soliton break through the upper limit of amplitude and exceed the
threefold amplitude limit.

This phenomenon results from the nonlinear enhancement of the
phasemodulationbytheself-steepeningterm,whichmakes theenergy
concentrate from the dark component to the bright component. To
illustrate this point more clearly, we take the Manakov system (γ =
0, no self-steepening effect) as an example, where the maximum
peak amplitudes of the two components obtained are only twice
the background height [26, 27]. In the Manakov system, coexistence
behavior only occurs in the anomalous dispersion region [44], while
the vector CLL-NLSmodelmakes coexistence of different rogue wave
solutions occur in a wide range of parameters in the anomalous
and normal dispersion regions due to the self-steepening effect,
significantly expanding the region in favor of coexistence behavior
in the Manakov system [40]. The ubiquitous existence of rogue waves
is correlated with two peaks in the Stokes frequency shift region in
the modulation instability (MI) spectrum. The ”γ” influences the
shape and characteristics of the MI spectrum indirectly by affecting
the dispersion and nonlinear characteristics of the system, thus
establishing a relationship with the appearance of rogue waves.

3.2 Doublet, quartet, and sextet rogue
wave solutions

Meanwhile, the second-order rogue wave solutions can
be written as

u[2]ı = uı0[1+
3(1−ϕ2

ı )ψ
∗
0 (R
∗
ı X− S∗ı Y)

2W
](

λ0W
λ∗0W
∗), (25)

with

m12 = λ∗0R
∗
0S0 + ι1R∗1S1 + ι2R∗2S2 −

iλmλ
∗
0 |R0|

2

λ0
−
λrm11

λ0
,

m21 = λ∗0R0S
∗
0 + ι1R1S

∗
1 + ι2R2S

∗
2 − iλm|R0|2 −m11,

m22 = λ∗0 |S0|2 + ι1|S1|2 + ι2|S2|2 − iλm(R0S
∗
0 + S0R

∗
0 )

−m12 −
λ2
mR0(R∗0 + 2S

∗
0 )

λ0
−
λrm21 − iλmm11

λ0
,

X = R0m22 − S0m21, Y = R0m12 − S0m11, W =m11m22 −m12m21.
(26)

For the second-order solutions, we found that the rogue
wave solutions (Equation 25) exhibit doublet, quartet, and sextet
rogue wave states only when appropriate structural parameters are
selected. Specifically, to obtain such spatiotemporally distributed
rogue wave doublets, we should ensure γ1 ≠ 0, γ5 ≠ 0, and γ2 = γ3 =
0; to obtain quartets, γ2 ≠ 0 and γ3 = 0 should be satisfied; and
to generate sextets, γ3 ≠ 0 must hold. This can also be verified by
examining the highest order of the polynomial m11m22 −m12m21 in
Equation 26 [46].

Figure 2 shows the doublet, quartet, and sextet rogue wave
structures under normal dispersion (σ = − 1) with the same
background parameters in Figure 1, but different structural
parameters as: (a),(b) γ1 = 1, γ5 = 30 (doublet rogue wave states);
(c),(d) γ1 = i, γ2 = 1, and γ5 = 300 (quartet rogue wave states);
(e),(f) γ1 = 5i, γ2 = 2, γ3 = 1, and γ5 = 400 (sextet rogue wave states).
Unlike the first-order solutions case, the doublet rogue wave states
appearing here are obtained from the second-order solutions with
more complex six structural parameters. From Figure 2, we can
also see that the structures of this even number of multiple rogue
wave states consist of two, four, and six fully separated Peregrine
solitons, respectively. It is worth noting that each component in
these multiple rogue wave states is practically identical, although
some may be slightly tilted due to strong interactions among nearby
components [41]. This is not surprising, since a pair of complex
conjugate λ0 values are identified from Equation 17, indicating that
coexisting rogue wave phenomena do not occur under this special
condition.

3.3 Sextet, nonet, and dodecatet rogue
wave solutions

Furthermore, the third-order rogue wave solutions can
be obtained

u[3]ı = uı0[1+
3(1−ϕ2

ı )ψ
∗
0 (R
∗
ı E+ S

∗
ı F+W

∗
ı H)

2G
](

λ0√λ0G

λ∗0√λ
∗
0G
∗
),

(27)

with

E = R0(m22m33−m23m32)−S0(m21m33−m23m31)+W0(m21m32−m22m31),

F = R0(m13m32−m12m33)+S0(m11m33−m13m31)−W0(m11m32−m12m31),

H = R0(m12m23−m13m22)−S0(m11m23−m13m21)+W0(m11m22−m12m21),

G =m11(m22m33−m23m32)−m12(m21m33−m23m31)+m13(m21m32−m22m31).
(28)
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FIGURE 1
Three-dimensional surface (top) and contour (bottom) plots of the singlet and doublet rogue wave states in the normal dispersion regime (σ = − 1).(a,b)
γ2 = 1, and γ1 = γ3 = 0; (c,d) γ1 = 20, γ2 = i, and γ3 = 1. The background parameters are given by γ = 1, ω1 = 7/4, ω2 = 5/4, a1 = √3/3, and a2 = 1. Axes in
dimensionless units.

where
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(29)

Similar to second-order solutions, for third-order solutions
(Equation 27), the spatiotemporal distribution of these rogue waves
depends on the selection of nine structural parameters γs. Specifically,
to obtain this spatiotemporally distributed rogue wave sextets, we

should ensure that γ1 ≠ 0, γ8 ≠ 0, and γ2 = γ3 = 0; to obtain nonets,
γ2 ≠ 0 and γ3 = 0 should be satisfied; and to generate the dodecatets,
γ3 ≠ 0mustbetrue,while it isnecessarytoensurethatγ8 is largeenough
to ensures the peak separation.This also can be verified by examining
the highest order of polynomial G in Equation 28 (combined with
Equations 24, 26, 29). Figure 3 shows the structures of multiple rogue
wave states with normal dispersion (σ = − 1), and the background
parameters are also the same as in Figure 1. We find that for the
third-order solutions, there are not an even number of multiple rogue
wave states aswe expected. Instead, by appropriately selecting the nine
structural parameters, sextet rogue wave states (γ1 = 1, γ8 = 10000)
form in Figures 3a,b, nonet rogue wave states (γ1 = 3, γ2 = 1, and γ8 =
20000) form in Figures 3c,d, and dodecatet rogue wave states (γ1 =
15i, γ2 = 5, γ3 = 1, and γ8 = 80000) form in Figures 3e,f, which consist
of six, nine, and twelve fully separated Peregrine solitons, respectively.
The parameterization capability of non-recursive DT is crucial here.
Byadjustingγ1−9 inEquation 21, sextet,nonet, anddodecatet states are
generated directly (Figure 3), which would require unfeasible nested
iterations in a recursive framework. Moreover, the nine Peregrine
solitons (non-even modes) emerging in the third-order solution
break through the constraint of even-numbered solitons imposed by
traditional second-order solutions. We also found that these modes
undergo drastic changes once the structural parameters are altered.
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FIGURE 2
Three-dimensional surface (top) and contour (bottom) plots of the doublet, quartet, and sextet rogue wave structures in the normal dispersion regime
(σ = − 1). (a,b) γ1 = 1, γ5 = 30 (doublets); (c,d) γ1 = 1, γ2 = 1, and γ5 = 400 (quartets); (e,f) γ1 = 4i, γ2 = 2, γ3 = 1, and γ5 = 500 (sextets). Those unspecified
parameters γs are set to zero. The other background parameters are kept the same as in Figure 1.

Furthermore, only when the Peregrine soliton components are well-
separated (easily achievable through appropriate parameter selection)
do the spatiotemporal distributions exhibit rogue wave structures
corresponding to the aforementioned nomenclature [31, 35]. At the
same time, we find that the triple-root condition directly implements
theobserveddiversityof roguewave states.By introducing3n complex
parameters γs that circumvent the even-soliton restriction imposed by
double-root systems (where second-order solutions are constrained to
2/4/6 solitons), this condition enables unprecedented odd-numbered
configurations like the nonet state (9 solitons) in third-order solutions
(Figures 3c,d). The cubic perturbation ϵ3n simultaneously generates
highly degenerate roots in the determinant det M (Equation 19),
permitting fully decoupled solitons in intricate spatial patterns such as
the dodecatet rogue wave states (Figure 3f). Physically, this reflects
the role of self-steepening-induced spatiotemporal coupling. The
condition συ1,2 < 0 (Equation 16) and γ ≠ 0 are necessary for triple-
roots, linking anomalous amplitude growth (Figure 1) to multi-
soliton state formation.

The emergence of non-even-mode configurations (e.g., the nine-
soliton state in Figures 3c,d) is fundamentally attributed to the self-
steepening term (γuıt) in Equation 1. This term introduces two
key symmetry-breaking mechanisms: (i) the intensity-dependent
group velocity shift υı = γωı − 1 (Equation 6) causes temporal
misalignment between components. As demonstrated in Ref. [26],
this decouples the phase locking enforced in Manakov systems
(γ = 0), allowing independent soliton clustering. (ii) The term
iγuıt breaks the SU(2) rotational symmetry of the vector system
[40, 41]. Under triple-root conditions, this permits odd-numbered
states (e.g., nonet) that violate even-mode constraints observed in
scalar systems [27]. Specifically, the imaginary part λm =

3√3
2
γδσ

(Equation 17) quantifies the symmetry-breaking strength.When γ ≠
0, λm ≠ 0 lifts the degeneracy of soliton positions, enabling the nine-
soliton configuration in Figures 3c,d. This contrasts with Manakov
systems, where λm = 0 forces even-mode distributions [44].

Finally, let us comment on the rules involving the number
of fundamental Peregrine solitons for multiple rogue wave states.
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FIGURE 3
Three-dimensional surface (top) and contour (bottom) plots of the sextet, nonet, and dodecatet rogue wave structures in the normal dispersion regime
(σ = − 1). (a,b) γ1 = 1, γ8 = 10000 (sextets); (c,d) γ1 = 3, γ2 = 1, and γ8 = 20000 (nonets); (e,f) γ1 = 15i, γ2 = 5, γ3 = 1, and γ8 = 80000 (dodecatets). Those
unspecified parameters γs are set to zero. The other background parameters are kept the same as in Figure 1.

Based on the above results, we find that for the first-order solutions,
one and two Peregrine solitons constitute the singlet and doublet
rogue wave states; whereas for the second-order solutions, two,
four, and six Peregrine solitons constitute the doublet, quartet,
and sextet rogue wave states; and for the third-order solutions,
six, nine, and twelve Peregrine solitons constitute the sextet,
nonet, and dodecatet rogue wave states, respectively. From this
perspective, the number of fundamental Peregrine solitons for
the nth-order solution forms an arithmetic sequence with the
general term:

Tk = n(n− 1) + n(k− 1) (k = 1,2,3).

where k denotes the rogue wave state pattern. (i) The first term
T1 = n(n− 1) corresponds to the terminal mode of the (n-1)th-
order solutions (e.g., the first term 6 of the third-order = the last

term of second-order); (ii) the common difference d = n is due to
linear scaling of soliton generation relative to order n in a non-
recursive DT framework, governed by the 3n structural parameters
γs and the n× nmatrixM in Equation 4; (iii) when all γs parameters
activate different Peregrine components, the Taylor expansion
order ϵ3n (Equation 18) and the determinant det M (Equation 19)
determine the polynomial growth of the soliton number (the highest
n(n+1) terms).

3.4 Limitations and outlook

This study employs idealized assumptions that may limit
real-world realization. (i) Plane-wave background simplification
(Equation 5): real systems exhibit amplified spontaneous
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emission noise and finite energy, with peak amplitudes 5
times lower than theoretically predicted [17], and future work
should incorporate stochastic backgrounds [20]. (ii) Triple-
root sensitivity: the condition συ1,2 < 0 (Equation 16) requires
exact parameter matching in waveguides. Small deviations
in γ (wavelength-dependent [25]) suppress nonet states. (iii)
Material nonlinearities: the model neglects Raman scattering
and two-photon absorption, critical for pulses < 100 fs in
chalcogenide glasses or semiconductors [24]. Despite these, recent
experiments [17, 24] confirm that key phenomena (e.g., amplitude
anomalies) persist in noisy environments, supporting the model’s
predictive value.

4 Conclusion

In the study of spatiotemporal dynamics in nonlinear optical
systems, the vector CLL-NLS model reveals phenomena that
are impossible in scalar NLS: anomalous peak amplitudes,
inhomogeneous soliton states (e.g., 9-soliton states) and an
arithmetic sequence soliton distributions. These phenomena are
essentially caused by multi-field coupling and self-steepening
effects, making the model crucial for multichannel nonlinear
photonics. While the idealized model neglects noise and material
nonlinearities (Section 3.4), its predictions - anomalous amplitudes,
nonet states, and arithmetic progressions - provide testable
benchmarks for nonlinear photonics. Experimental validation in
χ(2) waveguides [24, 25, 47] is underway. Unlike the Manakov
system’s even-mode solutions [44], the CLL-NLS system’s self-
steepening term (γ ≠ 0) enables asymmetric localization, anomalous
peak amplification, and odd-mode rogue wave states (e.g., nonets).
These differences are rooted in the SU(2) symmetry breaking and
cross-component energy transfer mechanisms, as quantified in [27,
44]. Rogue waves of high amplitude can enhance the sensitivity
of photonic sensors. For example, in blood glucose detection,
the refractive index disturbance caused by the change of urine
glucose concentration, high-amplitude solitons can improve the
coupling efficiency of the waveguide evanescent field [53]. In
addition, in cancer marker detection, the local field enhancement
effect of infrared laser in photonic crystal ring cavity [54]
matches the spatiotemporal focusing characteristics of
rogue waves.

This paper systematically investigates the evolution patterns of
higher-order anomalous soliton states through a non-recursive DT
method, based on a multi-component optical pulse propagation
model constructed by the vector CLL-NLS equation. The research
reveals that in nonlinear fiber media, rogue wave states with
different orders exhibit predictable Peregrine soliton structures:
(i) first-order solutions can form the structures with singlet
(one Peregrine soliton) and doublet (two Peregrine soliton)
rogue wave states, corresponding to bright-dark alternating
spatiotemporal localization characteristics. (ii) Second-order
solutions generate soliton clusters with doublet, quartet (four
Peregrine soliton), and sextet (six Peregrine soliton) configurations.
(iii) Third-order solutions further demonstrate complex soliton
structures including sextet, nonet (nine Peregrine soliton), and
dodecatet (twelve Peregrine soliton) formations. The number
distribution of Peregrine solitons in n-order rogue wave states

follows an arithmetic progression Tk = n(n− 1) + n(k− 1) (k =
1,2,3), where T1 = n(n− 1) is the minimal count (linked to the (n-
1)th-order terminal state); T3 = n(n+ 1) is the maximum count;
the common difference n reflects the linear growth per state
transition, tied to the dimension of the DT matrix M. Notably,
while the first-order solution exhibits dual-mode distribution,
all higher-order solutions demonstrate tri-mode distribution
patterns. We hope these findings may contribute to understanding
complex rogue wave dynamics in multi-component nonlinear
systems.
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