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Introduction: The rapid growth of the unmanned aerial vehicle (UAV) market has
surged enterprises, exposing them to systemic risks from business homogeneity.
This issue has spread not only within the same level of the industrial chain but
also across different segments. Despite China’s enterprises spanning the entire
chain as the largest market, their business structure and regional differences
remain largely unexplored.

Method: This study constructs a three-tier UAV enterprise network based
on overlapping business scopes among firms, forming upstream, midstream,
and downstream layers, and examines its national and provincial structural
robustness through topological characteristics and network dismantling
experiments.

Results: The results reveal that national- and provincial-level UAV enterprise
networks follow a power-law distribution, reflecting a “rich-get-richer” pattern.
The national network is less robust than the provincial average, with downstream
segments in delivery, agriculture, and other applications particularly vulnerable.
Provincial networks exhibit strong regional heterogeneity; economically
developed provinces demonstrate stronger internal coordination but are more
fragile due to high centralization. Furthermore, provincial networks fall into four
structural types with differing levels of efficiency and robustness.

Discussion: The study highlights how business similarity fosters local
coordination but increases systemic risk through structural homogeneity.
To enhance network resilience, especially in downstream and centralized
regions, strategies such as modular design and region-specific coordination
are essential.

unmanned aerial vehicle, multi-layer complex network, targeted attacks, topological
characteristics, structural robustness

1 Introduction

In recent years, the global unmanned aerial vehicle (UAV), commonly known as
the drone industry, has expanded rapidly, reaching $31.66 billion in 2023 and projected
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to grow at a compound annual growth rate (CAGR) of 18.2% in
2024 [1]. The rapid growth has spurred in UAV-related enterprises
[2, 3], many of which pursue economies of scale through shared
resources, labor pools, and knowledge spillovers [4-6]. This has
resulted in industrial clusters with high business homogeneity [7],
which draws from institutional isomorphism theory. According to
this theory, organizations operating within the same domain tend to
become increasingly similar over time due to coercive, mimetic, and
normative pressures, resulting in convergence in structure, strategy,
and service offerings [8]. While such homogeneity may support
upgrading in traditional industries [9, 10], it can pose systemic risk
under external shocks in high-tech industries such as UAVs [10,
11]. Given China’s dominant position in the global UAV market
[12, 13], similar vulnerabilities are expected to emerge. However,
the network structure and risk resilience of China’ UAV enterprise
network at both national and provincial levels remain unclear, as
existing literature has yet to examine these aspects in detail.

Moreover, the risks brought by business homogeneity are
not limited to a single stage of the industry chain but span
across multiple levels [11, 14]. The UAV industry, like many
manufacturing sectors, can be divided into upstream, midstream,
and downstream segments, referring to suppliers, manufacturers,
and distributors, respectively [15, 16]. The convergence of suppliers
toward single-source materials introduces systemic risk [17].
When environmental or geopolitical disruptions exceed a certain
threshold, failures can rapidly cascade from manufacturers to end
users through downstream applications [17, 18]. Such cascade
vulnerability was evident in the 2011 Japan earthquake, where
the disruption of a single key supplier halted Toyota’s production
nationwide and impacted global end users [18]. Therefore, it is
essential to systematically assess the structural robustness of China’s
UAV market to mitigate risks from a multi-level industry chain
perspective.

The structural robustness, a concept originally developed in the
field of structural engineering [19-21], has been widely adopted in
network analysis [22-24]. Architectural literature defines robustness
as a structure’s insensitivity to local failure [19, 21], which is
determined by both internal deterioration and external shocks [21,
25, 26]. Such vulnerability is often influenced by material properties
and spatial arrangement [21, 26]. Similarly, in the enterprise
network, structural robustness is shaped by business scopes and
the positions of key business clusters. Previous research has shown
that enterprises with similar business activities are more likely to
cluster together [7, 27, 28]. Despite the potential significance of
this relationship, existing research in both network structure and
industrial value chain literature has yet to explore how business
similarity influences structural robustness.

Methodologically, we employ a multi-layer complex network
approach, which is increasingly applied to analyze trade flows
[29-32]. In this study, we are the first to construct a three-layer
complex network for UAV enterprise operations, segmented into
upstream, midstream, and downstream tiers, a division consistent
with the most widely recognized industrial chain structure. All
2,120 listed UAV-related enterprises comes from Qichacha, a
professional business database that provides comprehensive firm-
level information. Based on their registered business scope,
enterprises were assigned to different stages of the industry
chain. Details are recorded in Section 2.1. Data sources. The
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analysis focuses on China, given its dominant position in the
global UAV market. To examine regional differences, we selected
six key provinces in China. The six provinces are Guangdong,
Jiangsu, Beijing, Zhejiang, Shandong, and Henan, accounting for
approximately 60% of the sampled enterprise. A key concept in our
analysis is business homogeneity, which we define as the semantic
similarity between the business scope. This operationalization
reflects the degree to which firms engage in similar activities or serve
related functions along the industry chain.

In principle, our work renders three major contributions. First,
We pioneer highlight the examination of business homogeneity
in industrial network. Unlike previous studies that typically
focus on trade flows [29-32], our research investigates the
relationship between enterprises’ business scopes. It reveals the
importance of industrial clusters composed of similar businesses
in the robustness of network structure, thereby significantly
extending the research perspective and the boundaries of network
analysis. Second, we adopt a multi-scale spatial framework to
assess the structural robustness of UAV network at national and
provincial levels, examining both normal topology and response
to simulated attacks. Our results show that provincial networks
are more robust than the national network, suggesting that cross-
regional collaboration fosters industrial clustering but also increases
vulnerability to external shocks. Finally, we design a composite
node importance ranking method that integrates multiple indicators
for high accuracy. Furthermore, based on our findings, we offer
policy implications to improve risk management. For example, to
enhance network robustness, governments may consider promoting
regional differentiation by encouraging diverse business roles across
provinces. While our analysis focuses on Chinas UAV industry,
the framework linking business similarity, multi-layer networks,
and robustness can be applied to other interdependent high-tech
industries, providing a basis for comparative studies.

The remainder of this article proceeds as follows. Section 2
elaborates data and models used in this work. Section 3 presents
the main results. Section 4 discusses the findings, and Section 5
concludes.

2 Data and methods
2.1 Data sources

The primary dataset utilized in this study was obtained
from Qichacha (https://www.qichacha.com/), a commercial data
platform providing detailed firm-level information on Chinese
enterprises. Our sample includes 2,120 listed UAV enterprises, with
data covering corporate names, registered provinces, industrial
classifications, business scopes, and other relevant operational
characteristics. Non-listed and smaller-scale enterprises were
systematically excluded due to the often limited availability and
lower accuracy of operational data. Moreover, these enterprises
generally contribute less to the core UAV industrial chain dynamics.
Six provinces, namely, Guangdong, Jiangsu, Beijing, Zhejiang,
Shandong, and Henan, were selected as representative regions,
collectively constituting 60% of the total sample, as shown in Table 1.
The remaining 40% of UAV enterprises are distributed across
28 other provincial-level administrative regions, which were
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TABLE 1 Distribution of UAV enterprises by industry chain tier and region.

10.3389/fphy.2025.1651460

Region Upstream Midstream Downstream Overall Proportion
China 398 1,548 1,452 2,120 —
Guangdong 126 254 290 434 20.47%
Jiangsu 57 179 168 236 11.13%
Beijing 50 136 136 193 9.10%
Zhejiang 45 119 130 169 7.97%
Shandong 29 85 86 123 5.80%
Henan 19 75 66 106 5.00%

not included in the regional comparison due to their smaller
sample sizes. In this study, we use business similarity among
UAV enterprises as a proxy for inter-firm connectivity instead of
traditional trade data, as the latter reflects only short-term realized
transactional activities rather than potential structural connections.

All observed UAV enterprises were manually classified into
distinct segments of the industrial chain based on their business
scopes. The UAV industry in China encompasses research and
development, manufacturing, assembly, and distribution [33, 34].
The upstream segment primarily consists of raw materials, including
metals and composites. The midstream involves the manufacturing
of components such as engines, sensors, and avionics, while
the downstream focuses on the assembly of UAVs and their
distribution to end-users [35]. Notably, certain enterprises exhibit
cross-tier operations spanning the entire industrial chain. Table 1
presents the national and provincial-level data for the UAV
enterprise network.

2.2 Methodology

2.2.1 Construction of multi-layer UAV enterprise
network model

The UAV enterprise network is modeled as a three-layer
adjacency matrix S (A, O), where A = {A[”, Al AB]}
denotes intra-layer adjacency matrices representing connections

within each industrial segment, while O captures inter-layer
relationships. Specifically, A!!l represents the upstream network
of the UAV industry chain, A2l denotes the midstream network,
and APl corresponds to the downstream network. Enterprises
serve as network nodes, and each enterprise may appear in
one or more layers, depending on whether its business scope
includes activities related to that stage. Edges between enterprises
within the same layer are established based on business similarity,
quantified using the cosine similarity between their full registered
business scope texts. This text-based measure emphasizes functional
similarities that drive structural patterns within the network,
independent of firm-level attributes such as ownership, location,
or size. Prior to computation, all texts are first standardized by
removing punctuation and stopwords, and vectorized using the
term frequency-inverse document frequency (TF-IDF) method.
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The cosine similarity between enterprise i and j is calculated
in Equation 1:

!

=

1

Similarity, ; =

=

=

where T; and T“] denote the TF-IDF vectors of enterprise i and js
full business scope text. This enables quantification of operational
proximity based on the actual semantic content of business scope.
For example, a high similarity score between a firm focused on
UAV R&D and flight control systems and another emphasizing UAV
design and intelligent flight systems indicates functional overlap.
All non-zero similarity values were retained as network edges to
preserve the full spectrum of potential functional relationships.
Formally, the intra-layer connectivity within the 6-th layer is
formally structured as Aol = (Q[G],Ewl, W[el), where Q%) represents
the set of enterprise nodes in the 0-th UAV industry layer, E!%
denotes the edge set of UAV in the 6-th layer, and W% specifies
the weight of the 0-th layer network edge. If the similarity between
enterprise i and enterprise j is non-zero, an edge ez[j] is established

with edge weight WIE?J. Otherwise, no edge connection is created
between the two enterprises. Similarly, inter-layer relationships
are defined as O[®#] = (Q[H],Q["],E[a”], W[e’”]). If a similarity
relationship exists between enterprise i in layer 6 and enterprise
j in layer y, an edge e,[,f’”] is added with a weight Wl[j’”]. Notably,
while the network is multilayered, this study focuses on intra-layer
dynamics, as business similarity is mostly layer-specific. Vertical
edges reflect enterprise presence across layers rather than strong

functional interdependence. The three-layer UAV industry chain

network (n = 3) formalized in Equation 2, with more network
relationships detailed in Equation 3. Figure 1 provides a visual
representation of this three-tier structure, including both intra-layer

andinter-layer edges.
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FIGURE 1

Three-tier UAV industry chain network based on business similarity.
The circles represent nodes reflecting UAV enterprises, while the blue
solid lines represent intra-layer edges derived from the similarity of
business scopes. The gray dashed lines represent inter-layer edges,
which exist when enterprises operate across layers or exhibit business
similarity with enterprises in other layers.
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2.2.2 Measurement of structural robustness
under normal conditions

The UAV enterprise network is defined by its nodes and edges,
whose structural features are key to revealing business homogeneity
among enterprises. The network’s internal robustness is assessed
through topological properties such as node connectivity and
connection distribution, calculated using Gephi 0.10.1.

Degree is a fundamental parameter characterizing the local
connectivity of nodes in the networks [36]. It quantifies the number
of edges directly connected to a node, denoted as k;. As formalized
in Equation 4, for nodes i and j within a network of total size
N, the adjacency matrix element a; a; =
i = 0) of a direct connection. Nodes with higher

indicates the presence (a
1) or absence (
degrees are more central, thus reflecting their enhanced influence
on structural robustness [36]. It is calculated by

k; = Za,-j
=

Degree distribution represents the probability distribution

(4)

of node degrees across the entire network. Defined as P(k),
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the degree distribution reflects the fraction of nodes N, with
degree k relative to the network size N, as shown in Equation 5.
The distribution of nodes can be determined based on the
variation in the P(k) function, and provides insights into the
connectivity and structural prominence within the UAV enterprise
networks.

P(k) =

N,/N (5)

The clustering coefficient characterizes the transitivity of a
network, representing the average likelihood that two neighboring
nodes of a given local node are also interconnected [37].
Originally proposed by Watts and Strogatz, this metric gauges
the tendency of nodes to form clusters within a network [37]. A
high clustering coefficient indicates a strong clustering structure,
whereas a low clustering coefficient suggests the absence or
weakness of such a structure. Denoted as C, it is computed
in Equation 6:

L
le e 1) (6)

Where N; denotes the number of edges associated with node i,
and k; is the degree of node i. The clustering coeflicient satisfies 0
< C £ 1. When C = 0, nodes remain unconnected, whereas C = 1
indicates a fully interconnected network.

The average path length is a global property representing
the average value of all shortest paths between any two pairs of
nodes [37]. It quantifies the overall efficiency and connectivity in
complex networks, particularly in small-world networks and scale-
free networks [37]. For a network with N nodes, the shortest path
length between node i and j is denoted as d;;. The average path length
L is defined in Equation 7.

1
TNIN-D) Zdif @)

i#j

2.2.3 Evaluation of structural robustness under
targeted attacks
2.2.3.1 Methods of node importance ranking

To assess the structural robustness of the network under
targeted attacks, it is essential to determine the node removal
sequence by ranking node importance. Prior studies have
typically employed single-index centrality measures such as
degree centrality, betweenness centrality, closeness centrality, and
eigenvector centrality, each capturing a different aspect of node
importance.

Degree centrality represents the most straightforward method
for quantifying node centrality in network analysis [38]. Nodes
with a high degree of centrality are deemed influential due
to their extensive network connections, enabling efficient
information propagation and substantial systemic influence.
However, it overlooks a node’s global impact in the network. It
is calculated as Equation 8.

ki
DC; = o1 (8)
Betweenness centrality identifies nodes that frequently lie on
the shortest paths between other nodes, reflecting control over
information flow [39]. As shown in Equation 9. The betweenness
centrality BC; of node i is defined as the ratio of the number of
shortest paths between any pair of nodes j and / that pass through
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node i (N jl(i)) to the total number of all shortest paths between
nodes j and nodes | (N).
BC;= ) N%(l) (9)
jeizl Nl
Closeness centrality quantifies a node’ centrality by measuring
the average shortest path distance from the node to all other nodes
[40]. Nodes with higher values are more central. The formula is
presented as Equation 10, where CC; denotes the closeness centrality
of node i, and d;; represents the shortest path distance between nodes
iandj. )

N
ij=1 dij

CC;

1

(10)

Eigenvector centrality considers not only the quantity but also
the importance of a node’s neighbors, emphasizing influence within
high-status neighborhoods [41]. This recursive relationship ensures
that a node gains higher centrality if it is connected to other highly
centralnodes, asformalized in Equation 11, where cisaproportionality

constant, and x; denotes the eigenvector centrality of node j.

N
i j=1aijxj

(11)

While widely adopted, single centrality metrics may fail to
capture the multidimensional nature of node influence in complex
networks. To address this limitation, we propose a composite node
importance index that incorporate richer structural information
based on information-weighted assignment. Traditional weighting
methods often rely on correlation-based ranking or similarity to
ideal solution, which may overlook data complexity. In contrast,
the information-weighted method is grounded in mathematical
derivation, and quantifies variability and informational content
across criteria. Specifically, we integrates three objective approaches:
the CRITIC for contrast analysis, the Entropy Method for
uncertainty, and Entropy-Weighted TOPSIS for ideal solution
evaluation. To address scale and dimensionality disparities
among indicator values, we implement min-max normalization
to standardize these metrics within a unified range of 0-1. The
normalized value x*is calculated in Equation 12:

X* = (x_xmin)/(xmax_xmin) (12)

where x is the actual value, and x are the maximum

max> Xmin
and minimum value, respectively. Each method produces a weight
vector for the four centrality indicators. These are assembled into
j» where i = 1,2,3 denotes the method

and j = 1,2,3,4 denotes the indicator. To quantify the informational

a method-indicator matrix w

contribution of each method, we apply an entropy-based fusion
strategy. For each method i, the normalized weight distribution E;
across indicators in Equation 13:

4
E = —kZpij ln(pij),wherepij =
=1

X*
X

L X*®

i=1

The diversification degree, d; = 1-E,, is used to compute method-

Jk=1/1n(4) (13)

level weights in Equation 14, where E; represents the entropy value
associated with each method. Final indicator weight allocations
are then determined as specified in Equation 15. Subsequently, the
overall node importance score is then given by Equation 16.

d
6=

: (14)
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0.-

w, = ;

J

3
(15)
=1

Wij

I

NR; = w,DC; * +w,BC; * +w3CC; * +w,EC;* (16)
where NR; denotes the comprehensive index of node importance,
w; represents the information weight derived from the three
methods. DC;*, BC;", CC;*, and EC;'represent the values of
degree, betweenness, closeness, and eigenvector centrality for node
i, respectively. The workflow of the proposed multi-indicators and

multi-weight node ranking methodology is presented in Figure 2.

2.2.3.2 Network disintegration experiment

We conducted disintegration simulations on the three-layer
UAV enterprise networks at both the national and six provincial
levels to evaluate structural robustness. Specifically, nodes were
removed according to the composite ranking method introduced
earlier, in descending order of calculated importance. The
simulations were performed with node removal rates from 0 to
1 in 0.1 increments. As the process was non-stochastic, repeated
iterations were unnecessary. At each step, we calculated accessibility,
connectivity, and efficiency to assess structural degradation. All
simulations and visualizations, covering eight regions and six
structural indicators, were implemented using Python 3.0.

Accessibility serves as an efficiency-oriented metric for
industrial chain networks, quantifying the likelihood or ease with
which any two nodes can communicate via alternative paths [42, 43].
It is measured by the average shortest path length within the
maximum connected subgraph of the network, and the shorter the
path, the higher the accessibility. The average value of the shortest
path of the industrial chain network determines the transmission
speed of business information between enterprises. It can be
quantified as the ratio of the average value of the shortest path
of the maximum connected subgraph after the network is attacked
to the average shortest path length of the original system.

Connectivity evaluates the stability of industrial chain networks,
particularly the connectivity density among enterprises [43]. It is
quantified by the remaining capacity of the network after node
failures. The proportion of the number of nodes retained in the
surviving connected subgraph relative to the number of nodes
in the original network size constitutes a direct indicator of the
network’s vulnerability.

Network efficiency serves as a metric to evaluate resource
allocation and operational effectiveness in industry chain
networks, particularly reflecting the collaborative performance
among nodes [42]. It can be conceptualized as the ratio of the
global efficiency of the network post-attack to the global efficiency
of the original system.

3 Results

3.1 The ranks of node importance in UAV
network

To ensure the objectivity of node importance ranking, we

first employed the CRITIC method, Entropy Method, and
Entropy-weighting TOPSIS Method to assign weights to the
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FIGURE 2

Workflow of the multi-indicators and multi-weight ranking method for node importance. The pipeline integrates four centrality metrics (degree,
betweenness, closeness, and eigenvector centrality) through normalization, multi-method weight allocation (CRITIC, entropy, and entropy-weighted
TOPSIS), and comprehensive weighted aggregation. The final ranking index synthesizes topological and information-theoretic perspectives to quantify

node significance in complex networks.

four centrality metrics. Subsequently, we applied the information
weighting method, a quantitative analysis approach suitable
for complex systems and large-scale datasets, to reassign the
weights. All the final information is presented in Table 2. Finally,
based on the calculated weights, we ranked the importance of
nodes at both the national and provincial levels. The detailed
rankings can be found in Supplementary Table S1, with the top
30 nodes displayed due to space limitations. This distribution
method enables a comprehensive evaluation of each node’s
importance within the network. By incorporating multiple
centrality metrics, our approach achieves more objective, precise,
and robust rankings for node importance in the UAV industry
chain network.

To validate the methodology proposed in Section2.2.3.2,
we calculated node importance rankings in the UAV enterprise
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network and selected the top 30 nodes for further verification.
Node information is provided in Supplementary Table S2, while
network metrics are presented in Table 3. Compared to single-
metric approaches, our method demonstrated significantly lower
APL and variance, indicating higher connectivity and minimal
structural changes under risk disturbances. It also exhibits the
highest cohesion (0.94), resistance (0.92), and resilience (0.97), with
relative improvements of 9.17%, 9.26%, and 4.29%, respectively.
Although the absolute differences among the five metrics are not
large, the overall performance consistently favors the information
weight method. This trend is further supported by the resilience
degradation curves (Figure 3), which show slower connectivity
loss during progressive node removals. These findings confirm
its enhanced robustness, superior ranking stability, and imporved
network resilience under risk scenarios.
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TABLE 2 Weight allocation of centrality indicators by different objective methods.

Method Weight
Degree centrality Betweenness Closeness centrality | Eigenvector centrality
centrality

CRITIC 21.15% 32.65% 21.99% 24.21%

Entropy Method 19.79% 36.82% 27.30% 16.09%

Entropy-weighting TOPSIS 31.38% 7.92% 28.55% 32.15%
Method

Information weight 18.19% 47.96% 10.77% 23.09%

TABLE 3 Robustness test of node ranking methods based on network metrics.

Metrics CRITIC Entropy method Entropy-weighting TOPSIS method Information weight
Average path length 1.2046 1.3126 1.2667 1.1563

Cohesion 0.8935 0.8587 0.9239 0.9374

Resistance 0.8985 0.8437 0.8674 0.9218

Resilience 0.9289 0.9291 0.9615 0.9687

Variance 6.3073 5.9270 6.9298 5.4817

3.2 Structural robustness at the
national-level

3.2.1 Systemic topological characteristics

Figure 4 presents the topological characteristics of the national-
level UAV enterprise operation network, including node-level (i.e.,
degree distribution) and edge-level (i.e., clustering coefficient)
indicators. The results show that the overall structural robustness
at the national level is consistently below the provincial average, as
evidenced by its higher average degree and clustering coefficient,
along with a shorter average path length. This suggests that
interprovincial collaboration enhances connectivity but may also
increase systemic risk due to greater business homogeneity.

Figure 4A illustrates the cumulative degree distributions of UAV
enterprise operations at the national level. The results reveal that
the national UAV network follows a power-law distribution, with
linear trends in log-log coordinates [44]. This implies a “rich-
get-richer” structure, dominated by a few highly connected core
enterprises, driven by preferential attachment [45, 46]. A similar
pattern is observed across different industrial chain segments, where
internal resources become increasingly concentrated among leading
enterprises [47, 48]. This concentration may weaken the innovation
capacity of small and medium-sized enterprises (SMEs) and raise
systemic risk. Such a pattern likely stems from the high technological
barriers inherent in the UAV industry, consistent with evidence that
Matthew effects are more prominent in high-tech sectors [49, 50].
This self-reinforcing process suggests that enterprises with existing
advantages are more likely to attract new collaborations, further
amplifying their centrality and influence in the network.
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Additional topological results, shown in Figure 4B, reveal
uneven structural robustness across the UAV industry chain at
the national level. The upstream UAV enterprise network exhibits
the highest robustness, while the downstream segment is the
most fragile. The downstream segment has a high average degree,
strong clustering, and short average path length, indicating broad
business reach and dense clusters of similar enterprises. This may
be due to the downstream UAV sectors greater maturity, with
widespread applications in agriculture, tourism, emergency services,
and logistics. However, such diversification may intensify long-term
systemic risk due to business homogenization. Despite its apparent
structural density, the downstream network is more prone to rapid
collapse under targeted attacks.

3.2.2 Simulation of targeted attack scenarios

The simulation results of the structural robustness of the
national-level UAV enterprise network under targeted attacks
are presented in Figure5, with detailed data available in
Supplementary Table S3. As nodes are progressively removed,
the UAV enterprise network maintains fundamental structural
robustness during the initial phase but undergoes rapid
deterioration beyond a critical threshold (node removal rate >60%).
This phenomenon is attributed to business homogeneity. Similarity-
driven clustering enhances communication density within clusters
but also increases systemic risk by fostering dependency on a limited
number of key nodes with overlapping business characteristics.
These findings align with previous studies; business similarity
exacerbates systemic vulnerability by concentrating risks within
core clusters [7, 10, 11].
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FIGURE 3
Resilience degradation of the UAV enterprise network under targeted attacks. The y-axis represents remaining connectivity (i.e., the largest connected
component relative to the original network), and the x-axis indicates the node removal rate. Blue, orange, and green lines represent CRITIC, Entropy,
and TOPSIS methods, while the red line is the proposed information weight method, which shows superior robustness beyond a 0.2 removal rate.

Specifically, as depicted in Figures 5a,b, APL remains relatively
constant throughout most of the node removal process, while
the accessibility of the national UAV network declines after
approximately 60% node removal. This implies that while path
lengths among connected nodes remain short, the overall
connectedness decreases, isolating clusters of similar businesses.
Furthermore, the sharp shrinkage of the maximal connected
subgraph (Figure 5¢) and the sharp decline in connectivity
(Figure 5d) indicate the fragmentation and vulnerability arising
from interdependencies of enterprises with overlapping business
activities. Such fragmentation is considered to threaten the
information and resource flows critical for maintaining network
functionality. Nevertheless, global efficiency stays stable or slightly
increases under high node removal (Figure 5e), while network
efficiency in Figure 5f even exceeds 1 (up to 1.03). This unexpected
trend is likely driven by tighter local clustering among surviving
firms. To verify this, we compared network efficiency and clustering
coeflicients before and after node removal (Figure 6). Both metrics
exhibit a nearly parallel upward trend, suggesting that the efficiency
gain stems from denser intra-cluster ties rather than enhanced
overall robustness.

3.3 Structural robustness at the
provincial-level

3.3.1 Systemic topological characteristics

The cumulative degree distributions of provincial-level UAV
enterprise networks are presented in Figure 7. Similar to the
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national network, all six provincial networks exhibit a power-
law distribution, a hallmark of scale-free networks. This implies
the presence of a few hub enterprises with extensive business
overlaps, reinforcing the existence of hierarchical structures with
uneven inter-firm connectivity. Such a pattern indicates that once
an enterprise becomes central in a provincial network, its likelihood
of forming new connections increases, consolidating its dominant
position and reinforcing structural inequality across firms.

Further topological analysis in Figure 8 reveals pronounced
regional differences. As shown in Figure 8a, Jiangsu demonstrates a
high clustering coefficient, elevated average degree, and the lowest
APL, suggesting a tightly connected structure with high business
similarity among UAV enterprises. While this configuration
enhances internal collaboration and operational efficiency, it also
indicates increased systemic risk due to close interdependence. In
contrast, Henan exhibits low clustering and connectivity, implying
relatively independent business operations among enterprises,
likely reflecting the province’s less developed UAV industry base.
Interestingly, although Guangdong holds the highest average degree,
its network appears loosely clustered and topologically fragmented,
indicating a broader but weaker pattern of inter-firm linkages.
different of the
UAV industrial chain is shown in Figures 8b-g. A consistent

Subnetwork analysis across segments
pattern emerges; economically developed provinces such as
Guangdong, Jiangsu, Beijing, and Zhejiang exhibit stronger
industrial collaboration. Their networks show higher average
degree and clustering coeflicients across upstream, midstream,
and downstream segments compared to less developed regions
like Henan industrial

and Shandong, suggesting broader

coverage and tighter inter-enterprise relationships. While such
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FIGURE 4
Topological characteristics of the national-level UAV enterprise network. Results are shown for upstream (blue), midstream (orange), downstream
(green), and overall (red) segments. (a) The line chart presents the cumulative degree distribution. The horizontal axis (K) represents node degree,
spanning 10* to 10°, while the vertical axis (P(K > (K)) shows the probability of nodes with degrees > k, scaled from 10~% to 10°. (b) The bubble chart
displays three structural indicators: degree, clustering coefficient, and average path length. Bubble colors represent industrial chain stages, and bubble
sizes reflect the magnitude of the indicators. Red triangles denote the provincial average for each metric.

characteristics promote production efficiency and innovation
through specialization and cooperation, they also contribute to
concentrated vulnerability. Additionally, structural imbalances
across industrial chain stages are evident in certain provinces.
For instance, Henans downstream segment has a significantly
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lower average (53.396) and coefficient

(0.7705) compared to its upstream and midstream segments,

degree clustering

revealing weak business cohesion in application services. This

suggests potential disruptions or fragmentation in the regional
UAV value chain.
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Simulation of the national UAV network under targeted attack scenarios
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FIGURE 5
Simulation of the national UAV enterprise network under targeted attack scenarios. Nodes were sequentially removed based on the ranks of node
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The degree distribution of national-level UAV network

FIGURE 7
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3.3.2 Simulation of targeted attack scenarios
The simulation results of provincial UAV enterprise operation

networks under targeted node removal are illustrated in Figure 9,

with detailed numerical results available in Supplementary Table S4.

The simulations reveal a consistent degradation pattern across all six

provincial networks, as shown by a reduction in maximal connected

subgraph size, network connectivity, and global efficiency. However,
up to a 50% removal ratio, APL and accessibility remain relatively

stable, indicating preserved local communication and operational

buffering capacity despite growing global fragmentation. Based on
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a comparative evaluation of key robustness metrics, the networks

can be categorized into four types, nam
coexisting networks (Jiangsu, Beijing),

ely, efficiency-robustness
highly centralized but

fragile networks (Guangdong), low-efficiency and low-robustness
networks (Henan, Shandong), and moderately robust networks

(Zhejiang).
In detail, Jiangsu and Beijing exhibit str

ong efficiency-robustness

coexistence. In Jiangsu, APL and accessibility remain virtually
unchanged throughout the removal process (see Figures 9a,b),

and the maximal connected subgraph retains a substantial size
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even under 70% node removal (see Figure 9c). Both global

and network efficiency remain nearly constant (see Figures 9e,f),

indicating an internally cohesive, well-connected structure with
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sufficient redundancy to withstand external perturbations. Similarly,
Beijing shows minimal disruption in local structural indicators and
maintains network efficiency close to 1 across all stages, despite a
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Simulation of the provincial UAV network under targeted attack scenarios
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slightly faster degradation in connectivity (see Figures 9d,f). These

Guangdong represents a highly centralized but fragile structure.

observations are consistent with the Robustness-efficiency tradeoff ~ As shown in Figure 8¢, it possesses the most extensive initial

framework (RETO) in complex network analysis [51, 52].
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connectivity (433 nodes in the maximal subgraph), and its structural
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integrity deteriorates rapidly once nodes are removed. APL and
accessibility rise sharply (see Figures 9a,b), and connectivity drops
to nearly zero at a 90% removal rate (see Figure 9d), indicating a lack
of sufficient redundancy. Despite its reach, the networK’s centralized
and loosely clustered structure makes it particularly vulnerable to
targeted attacks.

Henan and Shandong display low efficiency and low robustness.
Henan begins with the smallest subgraph, the highest APL, and
the lowest global efficiency in Figures 9a,c,e, and suffers rapid
and near-complete structural collapse at higher attack levels.
Shandong shows similar fragility in connectivity (see Figure 9d),
although global and network efficiency remain relatively stable or
slightly improved (see Figures 9e,f), possibly due to peripheral node
elimination and the persistence of a small core cluster. Nonetheless,
both networks are characterized by weak inter-firm linkages and
fragmented topologies.

Zhejiang occupies an intermediate position in terms of
structural robustness. Although its APL and global efficiency begin
to decline more noticeably in the later stages of attack (Figures 9a,e),
and connectivity drops to 0.12 at the 90% removal level (Figure 9d),
the overall network shows better structural stability compared
to Henan and Shandong. This suggests that Zhejiang’s network
is denser but still partially reliant on central nodes, leading to a
moderate level of vulnerability.

4 Discussion
4.1 Result analysis

Industrial clusters are a specific type of industrial organization,
where enterprises with similar business scopes tend to co-locate and
form tightly-knit networks [7,27,28]. Driven by business homogeneity,
such clustering not only shapes the internal connectivity patterns of
enterprise networks but also increases their vulnerability to external
disruptions [7, 53]. While local collaboration within these clusters can
improve operational efficiency, it simultaneously heightens systemic
risk by concentrating dependencies on a few central enterprises
[10, 11]. These risks are particularly pronounced under targeted
disruptions, where the failure of key nodes can trigger widespread
structural fragmentation [54, 55].

Our study applies a complex network model based on
business similarity and network disintegration experiments to
investigate the structural robustness of UAV enterprise networks
at national and provincial levels. The following observations are
obtained from the study. First, both levels exhibit power-law
degree distributions, indicating a typical scale-free structure. This
suggests that a few enterprises with high business similarity play
disproportionately central roles in network connectivity, a pattern
consistent with the Matthew effect in industrial development
[49, 50]. Second, the national network is less robust than the
provincial average, with inter-provincial collaboration increasing
systemic risk despite enhancing connectivity. Notably, robustness
varies across supply chain stages, with upstream segments being
the most resilient and downstream segments the most vulnerable.
This discrepancy is likely due to higher business similarity
in downstream sectors, which increases mutual dependencies.
Third, our simulation experiments indicate that the national UAV
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enterprise network can tolerate targeted attacks involving up to
60% of central nodes before structural collapse becomes irreversible.
Fourth, regional heterogeneity is observed, with economically
developed regions such as Guangdong, Jiangsu, Beijing, and
Zhejiang demonstrate stronger internal coordination. Finally, based
on network disintegration patterns, provincial networks can be
categorized into four structural types, namely, resilient and efficient,
centralized but fragile, weakly connected and inefficient, and
moderately robust. These findings provide insights into how
business similarity, clustering, and network topology jointly shape
the robustness of emerging industrial systems such as UAVs.

4.2 Policy implications

Building on the insights from our analysis, we reexamine
the structural vulnerabilities of Chinas UAV enterprise network
under both normal conditions and targeted attacks. Accordingly, we
propose actionable strategic recommendations at a comprehensive
level for policymakers, illustrated as follows.

First and foremost, national policy should prioritize inter-
provincial coordination, particularly between midstream and
downstream enterprises. Our analysis conenterprises that the
national UAV enterprise network, with extensive cross-regional
linkages, has higher overall communication efficiency than the
average provincial network. This aligns with previous studies
suggesting that diversified inter-organizational ties boost adaptive
capacity in technological networks [37, 56]. However, we also
find that vulnerability concentrates in downstream segments,
which are prone to cascading failures under targeted attacks.
This fragility stems in part from the high business similarity
among downstream enterprises, leading to the emergence of highly
central nodes. To address this, the vertical linkages between
midstream and downstream enterprises should be promoted to
reduce dependency on key nodes. This can be achieved through
coordinated industrial planning with cross-segment and cross-
regional collaboration, especially by fostering partnerships among
enterprises with complementary rather than homogeneous business
scopes. Such interventions are in line with modular network design
principles [57], which emphasize decentralization and functional
compartmentalization. To support the implementation of these
recommendations, policy tools such as the publication of industrial
chain maps and subsidies for cross-regional collaboration should be
considered.

Second, local governments should actively promote diversified
and complementary industrial collaboration to enhance resilience
against external shocks. Our provincial-level network analysis
reveals that economically developed regions such as Guangdong,
Jiangsu, Beijing, and Zhejiang exhibit weaker structural robustness.
However, this is primarily driven by over-concentration around
a few central enterprises, which increases systemic vulnerability.
This pattern is consistent with empirical evidence showing that
industrial clustering increases dependency on core nodes, thus
increasing network fragility [7, 27]. Therefore, local governments
in these regions could encourage heterogeneous business linkages
that go beyond enterprises with similar scopes to decentralize
critical hubs and improve structural robustness. In contrast,
less developed provinces like Henan and Shandong tend to
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have fragmented and inefficient industrial networks, limiting
their capacity for coordinated growth. Here, fostering diversified
forms of collaboration can accelerate the formation of a resilient
industrial ecosystem. This recommendation is grounded in research
on regional innovation systems [56, 58, 59], which emphasizes
that balanced network topologies improve adaptive capacity and
systemic stability.

Third, category-based differentiated
and interventions are essential for addressing the structural

regional  policies
heterogeneity of China’s UAV enterprise networks. Our typological
analysis classifies provincial networks into four distinct categories
based on their efficiency and robustness. This typology provides a
valuable foundation for targeted policy intervention, as emphasized
in the literature on regional development asymmetry and adaptive
industrial policy [60, 61]. In centralized but fragile regions like
Guangdong, policy efforts should prioritize decentralization
strategies, such as supporting secondary hubs and fostering
horizontal collaborations among enterprises with complementary
business scopes to reduce similarity-driven clustering. While
structural upgrading is critical for inefficient and fragile regions
such as Henan and Shandong. Governments in these areas should
expedite infrastructure development, enhance innovation capacity,
and encourage business diversification. Contrastingly, regions
already displaying strong structural robustness should focus
on sustaining current advantages while preparing for demand
shocks and technological shifts. If well-designed and consistently
implemented, these differentiated strategies can significantly
enhance the structural robustness of China’s UAV sector by reducing
uneven regional development.

5 Conclusion

This study investigates the structural robustness of China’s UAV
enterprise operation networks using complex network models based
on business similarity. Our analysis reveals that both national-
and provincial-level networks exhibit scale-free characteristics,
with robustness varying significantly across regions and supply
chain segments. Notably, downstream enterprises, often clustered
due to high business similarity, are particularly vulnerable to
targeted disruptions. At the provincial level, economically developed
regions tend to be more fragile due to over-concentration.
We further identify four distinct types of provincial network
structures, reflecting varying degrees of efficiency and robustness.
These findings underscore the dual role of business similarity
in fostering local coordination while also amplifying systemic
risk through structural homogeneity. Policy implications highlight
the importance of inter-provincial coordination, complementary
inter-firm linkages, and region-specific strategies in enhancing the
robustness of emerging industrial systems.

Admittedly, this work suffers from three notable limitations.
First, despite its size, the Qichacha database could leave out new
or unregistered UAV enterprises, which may bias the sample and
underrepresent informal network users. Second, although excluding
non-listed enterprises ensures data reliability, it may overlook
peripheral participants that contribute to the system’s redundancy
and flexibility in actual networks. Third, the analysis does not
further decompose the factors contributing to business similarity
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or examine their differentiated effects on network robustness. These
restrictions might lead to an overestimation of network vulnerability
in some regions and an underidentification of adaptive structures.
Future research should leverage more comprehensive datasets and
investigate the heterogeneous drivers of similarity across regions to
support more targeted policy interventions.
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