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The pn interaction and isospin
symmetry

R. B. Cakirli*, K. Blaum®! and R. F. Casten?

*Max-Planck-Institut fur Kernphysik, Heidelberg, Germany, 2Wright Lab, Yale University, New Haven,
CT, United States

A possible correlation between isospin symmetry/breaking and the average
proton-neutron interaction of the last particles, 8V, is discussed. This
correlation is tested for T, = +1/2 mirror nuclei in terms of a differential of
0V A(8V,,). and their low-lying excited levels. Some nuclei, whose mass
measurements will be useful for future studies, are suggested.
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1 Introduction

The strong nuclear force is considered charge-independent and has charge symmetry.
The latter means that the interaction strength between protons and neutrons is the same,
and being independent of charge means that the sum of proton-proton (pp) and neutron-
neutron (nn) interaction strengths is two times proton-neutron (pn) interaction strength. If
the Coulomb interaction is ignored, charge independence and charge symmetry will have
the same meaning for isobaric nuclei which have the same mass number with different
proton and neutron numbers.

Mirror nuclei are pairs of atomic nuclei in which the number of protons in one nucleus
equals the number of neutrons in the other, and vice versa (e.g., 25 Mg and 25Al). In such
mirror isobaric nucleus pairs, we expect similar nuclear structures [1]. We can easily see
this from similar level schemes.

To understand this, it is useful to define the concept of isospin, T. Both protons and
neutrons are assigned the same isospin value of T' = 1/2, but differ in their isospin z-
projection. Protons have T, = -1/2, while neutrons have T, = 1/2. Isospin symmetry is related
to similar behavior of nucleons (protons and neutrons). Since some configurations such as
pp and nn with T = 0 are forbidden, the Pauli principle should not be forgotten at this point.
That is, the isospin symmetry only connects to T = 1 in the pp and nn interactions. For a
given nucleus, the isospin projection is given by T, = (N-Z)/2 where Z and N are, respectively,
the number of protons and neutrons. While the low-lying states of a nucleus with given T,
which we focus on here, generally have T'= | T, |, higher states can have higher T values, being
part of more extended multi-isobar isospin multiplets.

Mirror nuclei have different T,. The similar nuclear structure in such nuclei means that
their excited states are (almost) identical, in terms of both their energies and spin-parity
values. For example, the low-lying states of the A = 23 isobaric nuclei, **Na with T, = 1/2
and ®*Mg with T, = -1/2, are shown in Figure 1. As can be seen from the figure, the level
schemes of the two nuclei are almost identical, so their nuclear structures are expected to be
very similar. For these states, these nuclei exhibit good isospin symmetry. The assumption
of perfect isospin symmetry implies that the difference between the binding energies of the
mirror nuclei is zero if the differences in the Coulomb interaction in the two nuclei are
ignored. Isospin symmetry breaking can occur due to increases in parts of the Coulomb
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FIGURE 1
(Color online) Low-lying levels and spin-parity assignments for
A =23 [2], T = 1/2 mirror nuclei are shown.
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FIGURE 2

(Color online) Experimental V,,, values as a function of mass number
for mirror T, = +1/2 nuclei. For each mass, there are two 4V, values
shown with different colors, namely, T, = 1/2 with orange and T, =
-1/2 with blue. Thereis no T, = -1/2 data at A = 61, 65, 69 due to the
lack of direct mass measurements. Masses are based on Refs. [22, 23].

interaction, especially as the mass number increases. Isospin
breaking can also occur for other reasons beside the Coulomb
interaction (e.g. [3, 4]). By taking these isospin symmetry breaking
effects into account, the isospin concept can provide a tool for
understanding the excitation energies and binding energies of exotic
nuclei that are difficult to reach experimentally. In addition, the
study of isospin symmetry breaking plays an important role not only
in nuclear physics but also in particle physics, especially in testing the
unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing
matrix [5-9].
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Many isobaric nuclei with different isospin projections, such as
T, = 1, T, = +2 have been investigated by experimental charge-
exchange reactions [10, 11] and -decay studies (e.g. [12]). In such
studies, the B(GT) values from isobaric T, = +1 nucleitoa T, = 0
nucleus can be compared using both experimental techniques. If the
experimental values of B(GT) are similar, isospin symmetry between
mirror, T, = +1, nuclei can be confirmed. If the values are different,
the isospin symmetry may be broken.

2 Approach and methods

In this paper, we explore another observable as a possible
indicator or signature of isospin symmetry or its breaking. Since the
valence proton-neutron interaction plays an important role in the
evolution of nuclear structure [13-15], we will investigate whether
an empirical measure of those strengths correlates with isospin
[16; 17; 18]
and is the average interaction strength of the last proton(s) and
neutron(s). It reflects the spatial overlap of their respective wave

symmetry or its breaking. This measure is called 6V,

functions. We will examine values of 8V, for nuclei near Z = N
and will also discuss a related quantity obtained from adjacent 8V,
values. We can extract the strengths of these interactions for the last
valence proton(s) and neutron(s) from the following expressions in
terms of binding energies [16, 17]:

SVZ‘; (Z,N) = [(BZ,N - BZ,N—Z) - (BZ—l,N - Bz-uv-z)] (1)

1
2

SVEG (Z N) [(BZN BZN 1) (BZ—Z,N_BZ—Z,N—I)] (2)

where B is the nuclear binding energy
By =(Zm,+ Nm, - M)c 3)

and M in Equation 3 is the nuclear mass. Equations 1, 2 are given for
odd-A. More detailed information can be found in Ref. [18]. Here
we look at other applications of §V,,, to understand nuclear structure
and its trends.

3 Results and discussion

In recent years, many light nuclei have been studied especially
in such contexts as of the island of inversion, appearance, and
disappearance of closed shells, etc. [ 19]. In addition, such nuclei have
been studied in terms of 6V, in particular for the case where the
values of §V,,,, have obvious spikes at Z = N. This has been explained
by Wigner’s SU(4) symmetry [20, 21]. In these Z = N nuclei, since
protons and neutrons fill the same nuclear shell model orbitals,
there can be a large spatial overlap between the proton and neutron
wave functions and therefore we expect a large interaction between
protons and neutrons, §V,,,. As the mass number increases, the
values of 8V, decrease presumably due to the Coulomb and spin-
orbit interactions, and perhaps due to the greater average spacing of
the last protons and neutrons.

Turning now to isobaric mirror nuclei, Figure 2 shows the
experimental 8V, values of odd-A T = +1/2 mirror nuclei versus
their mass numbers. There are two §V,, values in each mass number
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TABLE1 Alist of the nuclei discussed in this study with the T, 8V, and A(3V,,

10.3389/fphy.2025.1653635

n) values. While the table has data up to A = 77, Figures 2, 3 have data up
to A =71, which is the largest mass number in which a pair of 8V,,,, is experimentally known. Bold face is used for high values of 8V, With even-Z to
draw attention to these nuclei; see the text for details.

Nucleus Z N ‘ T, Vo (keV) A(8V,,) (keV) ‘

"Li 3 4 1/2 5970 (25)

"Be 4 3 -1/2 5785 (25) ~185 (35)

“Be 4 5 1/2 1037(4)

°B 5 4 -1/2 914 (13) -123 (13)

B 5 6 1/2 5706.8 (5)

e 6 5 -1/2 5727.6(5) 21 (1)

Bc 6 7 1/2 2222(1)

BN 7 6 -1/2 1661 (3) -562 (3)

N 7 8 1/2 4132.0 (1)

el 8 7 -1/2 4138.4(3) 6.4 (1)

70 8 9 1/2 1462.5(4)

g 9 8 -1/2 935 (7) -527(7)

Y 9 10 1/2 3696.6 (1)

Ne 10 9 -1/2 3746.7(2) 50.0 (3)

2INe 10 11 1/2 1403(1)

2INa 11 10 -1/2 1377 (5) -26 (6)

2Na 11 12 1/2 3181.40 (2)

BMg 12 11 -1/2 3192.0(1) 10.6 (1)

BMg 12 13 1/2 1065.0(1)

Al 13 12 -1/2 1065.0 (3) 0.3(3)

27Al 13 14 1/2 2999.7 (3)

27si 14 13 ~1/2 2992.0 (1) ~7.7 (3)

2si 14 15 1/2 1015.10(3)

2p 15 14 -1/2 971 (5) —44 (5)

3p 15 16 1/2 2274.1 (2)

31s 16 15 -1/2 2290.5(2) 164 (3)

3g 16 17 1/2 1027.10(3)

3l 17 16 -1/2 1006 (2) -21(2)

e 17 18 1/2 2047.1 (3)

BAr 18 17 -1/2 2049.4 (4) 2.3 (4)

37 Ar 18 19 1/2 900.7(1)

(Continued on the following page)
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TABLE 1 (Continued) A list of the nuclei discussed in this study with the T,, 8V, and A(8V,,,,) values. While the table has data up to A = 77, Figures 2, 3
have data up to A = 71, which is the largest mass number in which a pair of §V,,, is experimentally known. Bold face is used for high values of §V,,, with

even-Z to draw attention to these nuclei; see the text for details.

Nucleus 4 N ’ T, 8Vpr° (keV) A(8V,,) (keV)

K 19 18 -1/2 887.0 (3) -13.7(3)

¥K 19 20 1/2 2261.9 (2)

¥Ca 20 19 -1/2 2253.9 (3) -8.1(4)

“Ca 20 21 1/2 882 [3]

41Sc 21 20 -1/2 841 (12) —41(12)

8¢ 21 22 1/2 1922 (1)

BT 22 21 -1/2 1954(4) 40 (4)

T4 22 23 1/2 800.1(6)

By 23 22 -1/2 761 [20] -39 (20)

v 23 24 1/2 1770.5 (6)

Cr 24 23 -1/2 1814(6) 44 (6)

“Cr 24 25 1/2 854(4)

“Mn 25 24 -1/2 851 (16) -3(17)

S'Mn 25 26 1/2 1592 (4)

SIFe 26 25 -1/2 1601(6) 9(6)

>Fe 26 27 1/2 714 (1)

3Co 27 26 -1/2 732 (25) 18 (25)

*Co 27 28 1/2 1724 (1)

SNi 28 27 -1/2 1721 (3) -3(3)

S7Ni 28 29 1/2 476 (1)

Cu 29 28 -1/2 520 (80) 44 (80)

¥Cu 29 30 1/2 1364.1 (4)

¥7n 30 29 -1/2 1370(25) 6(25)

%1Zn 30 31 1/2 615 (10)

*1Ga 31 30 -1/2

SGa 31 32 1/2 1206 (13)

SGe 32 31 -1/2 1266(22) 60 (25)

%Ge 32 33 1/2 561 (5)

SAs 33 32 -1/2 -

7 As 33 34 1/2 1239 (26)

(Continued on the following page)
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TABLE 1 (Continued) A list of the nuclei discussed in this study with the T,, 8V, and A(8V,,,,) values. While the table has data up to A = 77, Figures 2, 3
have data up to A = 71, which is the largest mass number in which a pair of 4V, is experimentally known. Bold face is used for high values of §V,,, with
even-Z to draw attention to these nuclei; see the text for details.

Nucleus 8Vpr° (keV) A(8V,,) (keV)
7Se 34 33 -1/2 1201 (32) —37 (41)
“Se 34 35 1/2 604 (15)
“Br 35 34 -1/2
7'Br 35 36 12 1240 (22)
7IKr 36 35 -1/2 1245(71) 51 (74)
7Kr 36 37 12 697 (68)
*Rb 37 36 -1/2
>Rb 37 38 12 1411 (21)
St 38 37 -1/2
7St 38 39 12 786 (42)
7Y 39 38 -1/2
for T, = -1/2 for even-Z and odd-N except for A = 7, 27, 39, 55, 57,
9 15 21 27 33 39 45 51 57 63 69 59 and 67. For mass numbers where 8V, is small (e.g., A =9, 13, 17,
1004 i 21, etc.), 8V, is again always higher for cases of even-Z and odd-N
I but now for T, = 1/2. That is, except for a few mass numbers and
i i) 1 |
50 i I 1 regardless of what T is, 8V, is always higher in the case of even-Z
§ 0 = !' . | B }I | I 2 and odd-N compared to odd-Z and even-N. This effect is even more
,i_/)/ —50] l ! ! l I ‘_ visible in Table 1 which shows the data on which Figures 2, 3 are
~ based on. Bold face is used for the cases of even-Z and high 6V,
>°‘ —100+ i values for each mirror pair.
© —-150 L When we look at the trends of the large values of
< 200 ‘ 0V, in Figure 2, we see a smooth decrease except at A = 39 and 55
0 oddZ T~122 |+ in which 8V, increases a little compared to the general downward
_550:]/ l 1 Bl cvenzT~-12 trend. For A = 39, the 6V[m values of (Z,N) = (19, 20) and (20,
e —— ,Z T 19) are very close to each other within their error bars. A small
7 13 19 25 31 37 43 49 55 61 67 increase is seen because both Z and N contain the magic number 20.
Mass Number Similarly, in A = 55, the effect of the magic number 28 is observed
in (Z,N) = (27, 28) and (28, 27). For the smaller pairs of bars, in the
FIGURE 3 . )
(Color online) Experimental A(8V,,,,) values as a function of mass case of A = 17, the effect of the magic number eight should also be
number for mirror T, = +1/2 nuclei. Shadowing is used to point out a considered for (Z,N) = (8, 9) and (9, 8). After the decrease in A =9,
50 keV band around zero. See also Table 1. there is an increase in A = 13. The question here is whether A =9 is

shown with vertical bars for T, = 1/2 (orange) and T, = -1/2 (blue).
The A = 61, 65, and 69 nuclei have only T, = 1/2 data due to missing
experimental values for the masses of the involved nuclei.

Perhaps a simple way of stating the systematics in Figure 2 is that
0V, is large for nuclei with A = 4k - 1 and small for nuclei with A =
4k + 1. Interestingly, large and small 6V,,, values involve different sets
of T, values (see Equations 1, 2), the large bars contain |T,| equals 0,
1/2 and 1; small bars contain |T,| values 0, 1/2, 1 and 3/2.

There is another systematic effect in Figure 2. For mass numbers
where 8V, islarge (e.g., A =7,11,15, 19, etc.), 8V, is always higher
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exceptionally low or A = 13 high.

At this point, it is useful to introduce an empirical quantity
related to SVPn,
interactions. It is basically a differential of 6V,

but which is more sensitive to details of the p-n
. If we expect the
nuclear structures of the mirror isobaric nuclei to be nearly identical,
then we expect the 8V, values of these nuclei to be quite close to
each other. Although the 6V, values of these mirror isobaric nuclei
appear to be close to each other in Figure 2, the difference between
two experimental 8V, values of T, = -1/2 and T, = 1/2 is quite
interesting. This quantity, A(6V,), is defined as follows:

T,

=1/2
=6V,

A(8V,,)(Z.N) =8V V2 @)

frontiersin.org


https://doi.org/10.3389/fphy.2025.1653635
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Cakirli et al. 10.3389/fphy.2025.1653635
Energy (MeV)
12" — —_—12 77 512" —— .
2.254 6- i
5/2F —
— 5 51 12—
7/2" —— — (72
1.50 - /29 4 - 512" — 5/2*
3/2 —
X 3. 12 ——
3/2" — —_— 3 12¢
0.75 21
12— .
—1/2 14
0.00 - 52 —— - 52° 01 12— — 1/
PMg A@V,,)=034(32) Al Bo A(BV,,)=-562(3) BN
FIGURE 4

also given in keV.

(Color online) Low-lying levels and spin-parity assignments [2] for A = 25 (left) and A = 13 (right), T, = +1/2 mirror nuclei are shown. A(dV,,,) values are
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FIGURE 5
(Color online) Similar to Figure 4 for more cases of consistency between small values of AdV,,, and level schemes that are very similar.
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(Color online) Similar to Figure 4 but with cases of consistency between dissimilar excitation spectra and a large A(8V,,) value.
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FIGURE 7

(Color online) Similar to Figure 4 but with cases of disagreement between the value of A(6V,,,) and the excitation spectra. A = 7 shows similar level
schemes and a large A((WPN) value. All the other panels show small ( < 50 keV) A((SVM) values and spectra of mirror nuclei that either disagree with each
other or where further data on levels and J” assignments are needed to evaluate the level of agreement.

Equation 4 and a similar approach as presented here have  anomalous, the pink bars (for odd-Z, T, = 1/2) are always positive

recently been discussed in Refs. [24-26]. Here, however, we (in some cases the values are very close to zero where uncertainties

investigate which nuclei have isospin symmetry by looking at  generally overlap with zero). The blue bars (for even-Z T, =-1/2) are

both the A(8V,,) values and some of the lowest excited states in  always negative, except in a few cases above A = 50 where the data

mirror pairs. has large uncertainties that again overlap with zero. There are also

The A(6V,,) results are shown in Figure 3. There are some  some other interesting features. As can be seen in the figure, there

clear trends in the results. Except for A = 7, which seems highly  are quite high negative A(§V),,,) values for a few mass numbers such
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(Color online) Cases in which mirror level schemes and A(BVW) values cannot be compared due to the need for more fully known level schemes (both

levels and J7) values.

as ~-600 keV for A = 13. The largest differences are seen at A = 7,
9,13 and 17. A 50 keV band around zero is shaded as a reference to
guide the eye. Most of the bars are within this 50 keV band. Note that
the largest errors are at A = 7, 57, 63, 67 and 71. We see results for
A((?Vp,,) closest to zero in many cases such as A = 15, 25, 37, 59, etc.
Due to the lack of experimental mass values, there are no A(6V,,)
values at A = 61, 65 and 69 (see also Figure 2).

What can we learn about the nuclear structure of mirror nuclei
from these A((SVPn) values? Does a small value hint to a similar
structure between mirror pairs? In other words, can A(6V,,) be
used as a measure of isospin symmetry and/or its breaking? For
example, in Figure 3, the A(5Vpn) value of the mirror nuclei A = 25,
2Mg and 2°Al, is approximately zero, while the A(8V,,) value of
mirror nuclei A = 13, °C and N, is approximately —600 keV. In
this case, is the nuclear structure of A = 25 T, = +1/2 mirror nuclei
more similar to each other compared to the nuclear structure of A
=13 T, = +1/2 mirror nuclei? The rest of this paper looks at this
possibility in greater detail.

Each panel of Figure 4 shows some low-lying excited levels of a
pair of mirror nuclei A = 25 (left) and A = 13 (right). As can be clearly
seen, there is almost perfect similarity between the level schemes of
2>Mg and *Al, while there is very little similarity between '*C and
BN. In fact, the isospin symmetry between Mg and ?* Al has been
experimentally demonstrated [27]. This correlates very well with the
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A(S Vpn) result. On the other hand, Ref. [3] shows isospin breaking
in *C using pion inelastic scattering. The A = 13 spectra are very
dissimilar and A(8V),,,) is large. This pair of examples suggests that
A(8V,,,,) may be useful as a filter or signature for the goodness of
isospin, or its breaking. To study if this approach is accidental or not,
one should look at each example of A(6V),,,) shown above in Figure 3.
Of course, the absolute binding energies of the two mirror nuclei
are different because of the Coulomb interaction. But, this does
not play a role in the figure since we normalize the ground state
energies to zero.

Figure 5 shows all pairs of mirror nuclei with level schemes
that are very similar, including A = 23 from Figure 1 but not A
= 25 just shown in Figure 4. Here, similarity in the level schemes,
the energy difference between the excited states (level spacing)
and the fact that these similar states have the same spin-parity
are used as criteria. Besides the fact that the level schemes of
these nuclei are very similar, their A(6V),,) values are quite small.
The nuclei with the largest A(6V,,) in Figure 5 are the A = 19
mirror nuclei with 50.0 (3) keV and the A = 29 mirror nuclei
with 44 (5) keV. The others have maximum A((SVpn) values of
~25 keV.

These results confirm that small A(8 Vpn) values might be a useful
filter for mirror nuclei with small isospin symmetry breaking. We
will see below that there are some exceptions to this that need to be
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TABLE 2 The successive columns of the table show 4V, values for experimentally known nuclei with large errors, the mass excess errors for those
nuclei contributing the largest uncertainties to 6V,,,, and half-lives. The nuclei with unknown §V,,, are also listed in Unknown §V,,, column. Experimental
masses are taken from Refs. [22, 23].

Z N |V, Unknown Needed Mass excess
8 Vpn Mass Error (keV)
29 | 28 | 'Cu 29 | 26 | *Cu 160 55.9 (15) ms
30 | 29 ¥Zn 30 | 28 ®zZn 50 86.0 (20) ms
31 32 SGa 31 30 %1Ga 21 166.0 (20) ms
32 | 31 %Ge 32 30 “Ge 37 73.5 (1) ms
33 34 T As 32 34 %Ge 30 226 (4)h
33 32 | %As 42 130.3 (6) ms
34 33 7Se 34 32 %Ge 61 51.0 (40) ms
36 | 35 | "'Kr 36 | 34 | Kr 140 45.19 (14) ms
36 35 7Kr 24 95.0 (4) ms
38 | 37 5Sr 38 37 | TS 150 85.2 (22) ms
38 | 36 Tisr - 27.6 (26) ms
39 | 38 Yy 39 38 | 7Y - -
39 36 =Y - _
38 36 748y - 27.6 (26) ms
38 34 728r (unknown) - -

studied further. In some cases, like A = 55 and 59, further study of
experimental spectra would be useful.

This idea can be tested in an inverse way. The A = 9 and 17 cases
are shown in Figure 6 and have both incompatible level schemes
and A(8V,,,) values that are rather large. At first glance, there seems
to be no serious difference between the two level schemes in each
pair but, for example, if we look at the level spacing in 7O and '"F
carefully, there is about a factor of two difference in the energies of
their first excited levels. The large A(6V),,,), ~-500 keV; also points
to this disagreement. Indeed, in Ref. [4] A = 17 isospin breaking has
been discussed on the basis of quark-meson coupling. Thus, we again
see the use of A(V),,,) values as a signature, in this case of symmetry
breaking. Note that °B has an unbound proton, therefore a large
A(8V,,,) may be expected. However, the mass 9B is used not only for
(SVPn(gB) but also for 6Vpn(11B). In Figure 5, a small A((SVPn) value
is given together with nice agreement on the level schemes of ''B
and ''C. Clearly, the effects of extended proton radial distributions
in proton unbound nuclei need further study.

While this correlation of A(§V,,) and the degree of similarity
in mirror pair level schemes is suggestive of a new tool to assess
isospin symmetry, however, there are also a few counter examples
that may hint to its limitations. Figure 7 shows one case of similar
level schemes but a large A(8VP,,) for A =7, —185 (35) keV, and a
number of T, = +1/2 mirror nuclei with dissimilar level schemes
but low A(8V),,) values. There is no noticeable anomaly in the 6V,
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results for the “Li and "Be nuclei, except for mass error of about
50 keV for both °Li and *He. If A(§ Vpn) is a reliable filter for isospin
breaking, one would expect more consistency of spectraand A(6V,)
values. This needs further investigation.

The rest of Figure 7 shows cases of dissimilar level schemes. Most
of these are in heavier nuclei compared to the nuclei in Figure 5.
As the mass number increases, the A(6V,,) filter may simply break
down. As mentioned in the beginning of this paper, isospin breaking
occurs when the mass number increases due to Coulomb force
among protons. Also, especially in heavier nuclei, there can be states
of higher T( > 1/2) at higher energies, which are part of extended
isospin multiplets, and there can also be isospin mixing in complex
states. This could lead to some differences in spectra.

Finally, there are a number of nuclei with insufficient data to
assess the correlations. In these cases, either further spectroscopic
or mass data would be highly useful. We first consider cases of
insufficient level scheme information. In some nuclei, spin-parity of
the excited levels is unknown or not fully known, and their A(§ Vpn)
values are small. Such nuclei are shown in Figure 8. These nuclei
should be studied by y-ray spectroscopy. If the experimental data of
these nuclei are clarified, further tests of the usefulness of A(SVpn)
as a signature of isospin symmetry may emerge.

A recent y-ray spectroscopic study focusing on isospin
symmetry breaking is Ref. [28]. The study finds evidence for the
breaking of isospin symmetry in the mirror system ”'Kr and "'Br
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by B-decay. As seen in Figure 3, A(§V},) of A = 71 has a large error.
Therefore, in order to test our approach here with A(6V,,), 79Kr and
even maybe 7' Kr mass excess values should be improved. There are a
number of other cases where additional mass measurements would
be helpful to further study the use of §V,,, to assess the degree of
isospin symmetry breaking. These are listed in Table 2 and provide
motivation for further experimental mass measurements.

As seen in Figure 2, there are no V), values at A =61 T, =
-1/2, 'Ga, A = 65 T, = -1/2, ®As, and A = 69 T, = -1/2, “Br.
Since the half-lives of *Ga, ®*As and “Br are in the order of
nanoseconds, it is impossible to measure the masses of these nuclei
today. Finally, the 8V, values for 7Sr and 7Y are experimentally
not known due to missing masses, as seen in Table 2. They are the
heaviest nuclei suggested here where we can possibly test isospin
symmetry/breaking with A(§V,,). The other nuclei in the table have
0V, values but their errors can be improved. The masses needed for
this purpose are also listed. The A =79 T = 1/2 mirror nuclei do not
have any §V,,,, value for either T, = 1/2 or T, = -1/2 nuclei.

4 Conclusion

We have discussed a possible correlation between isospin
symmetry in mirror nuclei and its breaking and empirical measures
of the average proton-neutron interaction. The correlation is
suggestive but not perfect, and breakdowns in it need to be further
investigated by both y-ray spectroscopy and mass spectrometry. For
the latter, possible nuclides of interest are listed in Table 2.
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