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The rapid escalation in tourist visitation poses significant challenges, including 
traffic congestion, overcapacity at scenic attractions, heightened risks of 
safety incidents, and diminished visitor satisfaction. To optimize scenic area 
management through better resource allocation and service delivery, as well 
as to facilitate informed travel and visitor planning, this study proposes 
a hybrid predictive model, called Secretary Bird Optimization Algorithm-
Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention 
Model (SBOA-CBAM), for forecasting tourist volume within scenic areas. 
The methodology involves constructing a foundational Convolutional Neural 
Network-Bidirectional Gated Recurrent Unit-Attention Mechanism (CBA) model, 
where input data pre-processed via the Maximal Information Coefficient (MIC) 
algorithm undergoes feature extraction using Convolutional Neural Network 
(CNN), followed by bidirectional temporal feature mining via BiGRU, and output 
weighting via an Attention Mechanism to emphasize critical features and 
generate predictions. Subsequently, the Secretary Bird Optimization Algorithm 
(SBOA) is employed to autonomously identify the optimal hyperparameter 
configuration for the CBA model, thereby enhancing its predictive accuracy and 
computational efficiency. Comparative simulation experiments demonstrate the 
high applicability of the CBA model for scenic area tourist flow forecasting and 
reveal that the SBOA-optimized CBAM model achieves statistically significant 
performance enhancements, namely, a 3.8966% increase in R2, alongside 
reductions of 19.9025% in RMSE, 12.1726% in MAE, 8.3196% in MAPE, and 
43.7662% in MSE. Statistical validation via the Wilcoxon signed-rank test 
confirmed the significance of the improvements (RMSE: p = 0.0001; MAE: p = 
0.0007), with substantial effect sizes indicated by Cohen’s d values of 0.8982 
(RMSE) and 0.7028 (MAE). These findings corroborate that the SBOA algorithm 
not only substantially elevates predictive precision but also enhances model 
stability and robustness against disturbances.

KEYWORDS
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 1 Introduction

Over the past few decades, China’s tourism sector has undergone exponential expansion. 
Concurrently, evolving societal attitudes and lifestyle transformations have substantially 
heightened travel frequency and extended durations [1]. While this growth has served as 
a catalyst for economic prosperity and stimulated development in ancillary sectors, it has
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also introduced unforeseen operational risks. The unprecedented 
surge in tourist volumes elevates accident probability and 
exacerbates managerial complexities at destination sites. Therefore, 
accurate forecasting of tourist flows has become imperative for 
optimizing tourism service quality through strategic resource 
allocation and proactive management frameworks.

In recent years, artificial intelligence techniques including, 
Support Vector Machines, LSTM networks, Bidirectional Long 
short-term memory (LSTM) networks, and improved models 
developed by various researchers have been increasingly employed 
in predictive research [2]. The research team led by Ni developed 
a multilayer neural network model termed Spatial Principal 
Component Analysis-CNN-LSTM to predict daily tourist flows 
[1], Chen and colleagues proposed a hybrid CNN-Bidirectional 
LSTM prediction methodology for tourism demand forecasting, 
integrating the Boruta algorithm, Bidirectional LSTM, and 
CNN [3]. Li’s research group proposed a novel visitor volume 
prediction approach utilizing the K-means algorithm, Particle 
Swarm Optimization, and Quadratic Support Vector Machines 
[4]. Additionally, Qin’s team introduced the CNN-Improved 
Quantum-inspired Reinforcement Learning LSTM tourist flow 
prediction model [5], Meng and Dou developed an Empirical Mode 
Decomposition-CNN-LSTM short-term forecasting framework 
for railway passenger traffic, incorporating empirical mode 
decomposition, CNN, and LSTM models [6]. Constantino’s research 
team simulated and predicted tourist flows in Mozambique 
through an Artificial Neural Network model, demonstrating 
superior predictive performance of artificial neural networks [7]. 
Wang and Liu proposed a novel multi-factor hybrid integrated 
learning method designated Improved Complete Ensemble 
Empirical Mode Decomposition with Adaptive Noise-Levy 
Flight Black Swan Algorithm, combining Improved Complete 
Ensemble Empirical Mode Decomposition with Adaptive Noise, 
Least Absolute Shrinkage and Selection Operator, Autoregressive 
Integrated Moving Average, Support Vector Regression, and 
BiGRU for tourism demand prediction [8]. While, Lu’s research 
group implemented the CNN-LSTM model for daily tourist 
flow forecasting in scenic areas, employing genetic algorithms 
to optimize neuron configuration within the model [9]. Li 
and collaborators presented a Particle Swarm Optimization-
Least Squares Support Vector Machine method for forecasting 
tourism volumes in scenic spots [4]. Gao’s team developed a 
Hybrid Neural Network model for scenic spot passenger flow 
prediction, integrating CNN and LSTM as CNN-LSTM [10]. 
Chen’s research group constructed a tourism traffic prediction 
framework combining Boruta, Bidirectional LSTM, and CNN [3]. 
Then, Gu’s team utilized a spatiotemporal CNN model to capture 
spatio-temporal dependencies in tourist traffic patterns [11].

Nevertheless, LSTM networks exhibit limitations, including 
structural complexity, excessive parameterization, slow convergence 
rates, and prolonged training times [12]. To address these 
constraints, Cho and colleagues developed the GRU, which features 
a simplified architecture and enhanced training efficiency compared 
to LSTM [13, 14]. As a result, GRU has gained widespread 
application in short-term traffic flow forecasting [15], travel time 
prediction [15], and highway speed estimation [16]. Meanwhile, 
Ren’s research team employed a One-Dimensional CNN to extract 
local traffic flow features, complemented by Recurrent Neural 

Network variants (including LSTM and GRU) to capture long-term 
trend characteristics [17]. When, Yang’s group established in 2022 
a hybrid CNN-GRU model for traffic volume prediction, where 
spatial information is processed through CNN while long-term 
sequential dependencies are captured via GRU [18]. As for, Yuan’s 
research team, they integrated CNN and GRU to construct a unified 
prediction model designed for enhanced accuracy in traffic time 
series forecasting [19].

The unidirectional GRU architecture exhibits constrained 
capacity for comprehensive sequential information extraction 
relative to the BiGRU configuration. The Attention Mechanism 
replicates the selective information processing paradigm observed 
in human visual cognition. Neurological systems inherently filter 
non-essential stimuli, transforming high-dimensional sensory 
data into focused perceptual subsets. This biological process 
facilitates efficient extraction of salient features from attended 
information segments to optimize response efficiency [12, 20, 21]. 
Multiple research teams have developed predictive frameworks 
integrating these computational architectures. For example, Ren 
and colleagues developed a hybrid prediction model for power load 
forecasting that integrates CNN, BiGRU, and Attention Mechanism 
components [22], Na’s research group proposed a combined 
modeling architecture for time-series data prediction incorporating 
CNN, BiGRU, and Attention Mechanism modules [23], Niu’s 
research team established a hybrid modeling framework for multi-
energy load forecasting through integration of CNN, BiGRU, and 
Attention Mechanism methodologies [24], Chai and collaborators 
engineered a traffic flow forecasting system featuring CNN-based 
feature extraction from traffic flow data, with BiGRU-Attention 
Mechanism modules processing daily and weekly temporal traffic 
patterns [20]. With, Chen’s research group put forward an improved 
CBA model. This model was based on an enhanced Sparrow Search 
Algorithm, aiming to boost the model’s robustness and accuracy 
in the assessment of lithium-battery health status [25], Dai and his 
colleague presented an enhanced variant of the whale optimization 
algorithm is employed to optimize the hyperparameters in the CBA 
model, leading to an elevation in the accuracy of predictions [2]. 
Sun’s research group employed the WOA algorithm to fine-tune 
the hyper-parameters of the CBA model, this, in turn, brought 
about an increase in the accuracy of satellite clock bias prediction 
[26]. Wu and his team proposed a new prediction that fused the 
Snow Ablation Optimization (SAO),CNN,BiGRU and Attention for 
position prediction for space teleoperation, the SAO algorithm is 
introduced into the hyper-parameter selection to solve the problem 
that the custom selection way of hyper-parameter obviously cannot 
guarantee optimality [27], and Yuan and his team proposed an 
improved CBA model, which is based on the Northern Grey Wolf 
Optimization Algorithm (NGO), for electricity load forecasting. 
The NGO is employed to fine-tune the hyperparameters of the 
BiGRU model [28].

With the advent of the Internet era, an increasing number 
of netizens obtain information through clients such as computers 
and mobile phones, using internet search engines to look for the 
things they are interested in/or the needs they have. The changes 
in the search volume of relevant information over a period of time 
can indirectly reflect the future behavioral characteristics of the 
events being concerned about. Therefore, scholars have incorporated 
internet search information into the prediction model. Duan and 
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his team combined the network search index with the GWO-
LightGBM- CEEMDAN model to develop a prediction model 
for the proportion of influenza-like illnesses (ILI). The findings 
indicated that the inclusion of the network search index enhanced 
the model’s prediction accuracy [29]. Zhou et al investigated the 
impact of the network search index on the early warning and 
prediction of COVID-19 epidemic trends [30]. Guo et al merged 
the network search index with the LSTM (LSTM) model to 
construct a predictive model specifically designed for estimating the 
incidence rate of hepatitis E. The results of this study highlighted 
a subtle yet discernible correlation between the network search 
index and the incidence of hepatitis E. Moreover, the trends 
exhibited by the network search index were found to be largely 
congruent with those of the hepatitis E incidence, suggesting a 
potential utility of the network search index as an auxiliary tool for 
monitoring and predicting the epidemiological patterns of hepatitis 
E [31]. Dong et al proposed a GMM-CEEMD-SGIA-LSTM hybrid 
carbon dioxide emission prediction model based on search engine 
keyword search and carbon dioxide emission data, with the search 
engine keyword search data having a strong correlation with CO2
emissions [32].

Tourists collect information such as accommodation, 
transportation, weather, and travel guides through the internet 
before traveling [33]. The massive data generated when tourists 
use search engines is an objective reflection of their potential travel 
demands [34] and a representation of their travel intentions [35], 
featuring immediacy, predictability, and high accessibility.

The CNN-BiGRU-Attention Mechanism (CBA) model 
demonstrates efficacy in time-series forecasting. Recognizing 
that Internet Search Index (ISI) data can reflect potential tourist 
travel intent, this study proposes a CBA model incorporating 
ISI to predict scenic spot tourist flow. The Maximal Information 
Coefficient (MIC) algorithm is employed to screen highly relevant 
features, including ISI-derived attributes. To enhance prediction 
accuracy, this research integrates the Secretary Bird Optimization 
Algorithm (SBOA) with CNN, BiGRU, and AM to construct a 
hybrid predictive model, designated SBOA-CBAM. This model 
utilizes MIC-filtered tourist flow and ISI data as input. The input 
data undergoes feature vector extraction via CNN, followed 
by bidirectional temporal sequence processing through BiGRU 
to capture latent data characteristics. An attention mechanism 
subsequently weights the BiGRU output states, emphasizing 
critical tourist flow features to generate the final predictions. 
The SBOA algorithm is applied to autonomously optimize the 
hyperparameters of the CBA architecture, thereby augmenting 
its fitting capability and predictive accuracy. Experimental results 
demonstrate that the SBOA-CBAM model achieves statistically 
superior performance in prediction accuracy compared to the
baseline CBA model. 

1.1 Research contributions

This study presents the following main contributions:

• Integration of Search Index Data with Feature Selection: 
Internet search index data, recognized as an indicator of 
potential travel intent, is incorporated into the tourist flow 

prediction data set. The Maximal Information Coefficient 
(MIC) algorithm is employed to rigorously screen and retain 
only the most relevant features, including those derived from 
the search index.

• Novel Hybrid Forecasting Architecture: A novel hybrid 
architecture integrating Convolutional Neural Networks 
(CNN), Bidirectional Gated Recurrent Units (BiGRU), and 
an Attention Mechanism (AM), termed the CNN-BiGRU-
Attention (CBA) model, is proposed specifically for scenic 
spots tourist flow forecasting.

• Hyperparameter Optimization via Metaheuristics: The 
Secretary Bird Optimization Algorithm (SBOA) is leveraged to 
autonomously optimize the hyperparameters of the proposed 
CBA model, thereby enhancing its predictive accuracy and 
generalization capability.

• Empirical Validation and Comparative Analysis: The 
effectiveness of the resulting SBOA-CNN-BiGRU-Attention 
(SBOA-CBAM) model is rigorously validated using tourist 
flow data from the Jiuzhaigou Scenic Area spanning 1 January 
2013 to 31 July 2017. Comprehensive comparative experiments 
demonstrate its superior performance over established baseline 
models, including the CBA model itself, Backpropagation 
Neural Networks (BP), Support Vector Machines (SVM) and 
Extreme Learning Machines (ELM).

1.2 Organization

The remainder of this paper is structured as follows: Section 2 
delineates the theoretical foundations and algorithmic workflow 
of the Secretary Bird Optimization Algorithm (SBOA), while 
the Section 3 elaborates on the formulation and implementation 
procedures of the proposed SBOA-CBAM (Secretary Bird 
Optimization Algorithm-Convolutional Neural Network-
Bidirectional Gated Recurrent Unit-Attention Mechanism) 
modeling framework. Section 4 empirically validates the predictive 
performance of the SBOA-CBAM model. Finally, Sections 5, 6 
present the concluding remarks and policy implications. 

2 Secretary bird optimization 
algorithm

The Secretary Bird Optimization Algorithm (SBOA), proposed 
by Fu in 2024, is a swarm intelligence-based metaheuristic. The 
algorithm’s optimization process comprises three distinct phases 
which are as follows; an initialization phase, a prey hunting phase 
(exploration), and a predator evasion phase (exploitation). Details 
are shown as below [36, 37]. 

2.1 Initial preparation phase

During the early stages of SBOA deployment, the initialization 
of the search domain for the Secretary bird algorithm is 
implemented using Equation 1.

Xi,j = lbj + r× (ubj − lbj), i = 1,2,…,N, j = 1,2,…,Dim (1)
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where Xi,j, lbj, and ubj are symbols for denoting the ith secretary 
bird’s position, along with its upper and lower limits, respectively; 
and the variable r is a random number between 0 and 1.

SBOA is a population-based method that is initially used to 
optimize the number of candidate solutions through Equation 2. 
Each iteration generates a random candidate solution X within the 
problem’s interval. The current optimal solution is approximated as 
the optimal solution of each iteration.

X =

[[[[[[[[[[[[[

[

X1,1 X1,2 ⋯ X1,j ⋯ X1,Dim

X2,1 X2,2 ⋯ X2,j ⋯ X2,Dim

⋮ ⋮ ⋱ ⋮ ⋱ ⋮

Xi,1 Xi,2 ⋯ Xi,j ⋯ Xi,Dim

⋮ ⋮ ⋱ ⋮ ⋱ ⋮

XN,1 XN,2 ⋯ XN,j ⋯ XN,Dim

]]]]]]]]]]]]]

]N×Dim

(2)

Every single secretary bird denotes a possible answer to an 
optimization problem. Consequently, the objective function for 
which it can be calculated relied on the values of the variables 
obtained from each secretary bird. On this basis, Equation 3 is 
employed to turn the resulting objective function value into a vector.

F =

[[[[[[[[[[

[

F1

⋮

F2

⋮

FN

]]]]]]]]]]

]N×1

=

[[[[[[[[[[

[

f(X1)

⋮

f(X2)

⋮

f(XN)

]]]]]]]]]]

]N×1

(3)

Here, the objective function values of secretary birds are denoted 
by the vector F, with Fi representing the value of the ith bird’s 
objective function. Evaluating the quality of a candidate solution 
involves comparing these objective function values to determine the 
best solution for a particular problem. In the course of each iteration, 
the positions of the secretary birds and the values of the objective 
function undergo updates. It is therefore crucial to continuously 
identify the optimal candidate solution at each step. This iterative 
process ensures that the final solution chosen is the most effective 
for solving the problem at hand. 

2.2 Secretary birds’ strategies of hunting 
for prey (exploration phase)

Secretary birds undergo three distinct stages when hunting 
snakes: locating their prey, depleting the prey’s energy, and then 
attacking. The hunting process of secretary birds are evenly 
divided, with each stage occupying an equal time interval, each 
corresponding to one of the following bird’s hunting stages: locating, 
depleting, and attacking prey. 

2.2.1 Stage 1 (prey locating, t < 1
3
T)

Secretary birds initiate their hunt by seeking out likely prey, such 
as snakes. Their exceptionally sharp vision allows them to detect 
snakes concealed within the high grasses of the savannah swiftly.

Consequently, the secretary bird’s positional updates method in 
the prey-searching stage is modeled using the Equations 4, 5:

xnewP1
i,j = xi,j + (xrandom1

− xrandom2
) ×R1 (4)

Xi =
{
{
{

Xnew,P1
i , if Fnew,P1

i < Fi

Xi,else
(5)

where t signifies the current iteration count; T indicates the 
maximum limit of iterations; Xnew,P1

i  refers to the new condition of 
the ith secretary bird in the early stage; xrandom1 and xrandom2 
are the random candidate solutions for the initial phase iteration; 
R1 denotes an array that is randomly generated with dimensions 
(1 × Dim), ranging from 0 to 1; Dim refers to the solution space’s 
dimension; Xnew,P1

i,j  signifies the value of its jth dimension; Fnew,P1
i

signifies the fitness value of its goal. 

2.2.2 Stage 2 (prey consuming, 1
3
T < t < 2

3
T)

When the secretary bird spots the snake, it will adopt a special 
hunting method. Unlike other birds that will immediately attack 
prey, the secretary bird often relies on its nimble footwork to navigate 
around serpents. The secretary bird stands still, watching the snake’s 
every move from above based on its sharp perception analyzing the 
snake’s movements. The secretary bird hovers, jumps, and gradually 
irritates the snake to consume the snake’s patience and power. In 
this phase, Brownian motion (RB) is applicable for simulating the 
stochastic movement of the secretary bird via Equations 6, 7.

xnewP1
i,j = xbest + exp((t/T)∧4) × (RB− 0.5) × (xbest − xi,j) (6)

Xi =
{
{
{

Xnew,P1
i , ifFnew,P1

i < Fi

Xi,else
(7)

where, RB = randn(1,Dim),1×Dim Random arrays are generated 
using randn (1, Dim) following the standard normal distribution, 
with xbest is the current optimal value. 

2.2.3 Stage 3 (prey attacking, t > 2
3
T)

Upon the snake’s exhaustion, the secretary bird discerns 
the opportune moment, expeditiously engages its powerful leg 
muscles, and launches an offensive against the snake. For this 
reason, the secretary bird uses the following partition described in 
Equations 8–12 to update its position during this.

xnewP1
i,j = xbest +((1−

t
T
)∧(2× t

T
))× xi,j ×RL (8)

Xi =
{
{
{

Xnew,P1
i , ifFnew,P1

i < Fi

Xi,else
(9)

The use of weighted Levy flight, known as RL, improves the 
accuracy of optimization processes. This method enhances precision 
by allowing for more efficient exploration of potential solutions in 
the optimization process.

RL = 0.5× Levy(Dim) (10)

Here is the function expression provided for Levy (Dim):

Levy(D) = s× υ× σ

|ν|
1
η

(11)
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The equation involves fixed value s = 0.01 and n = 1.5. Random 
variables U,V fall between 0 and 1. The symbol σ is determined by a 
specific calculation process.

σ = (
Γ(1+ η) × sin( πη

2
)

Γ( 1+η
2
) × η× 2( η−1

2
)
)

1/η

(12)

In this equation, the symbol Γ denotes the gamma function and 
the parameter η is equal to 1.5 

2.3 Secretary birds’ strategies of escaping 
from predators (exploitation phase)

The secretary bird’s natural enemies are large predators. The first 
strategy of escaping from predators is to run away or run fast, while 
the second strategy is camouflage, making them harder for predators 
to spot them.

The first strategy is modeled by the Equation 13.

Xnew,P2
i,j =
{{
{{
{

C1:xbest + (2×RB− 1) × (1− t
T
)

2
× xi,j, if rand < ri

C2:xi,j +R2 × (xrandom −K× xi,j),else
(13)

Equation 14 expresses the second strategy.

Xi =
{
{
{

Xnew,P2
i , ifFnew,P2

i < Fi

Xi,else
(14)

where, C1 denotes the strategy of environmental camouflage; C2
represents the strategy of flying or running away; r = 0.5; R2
represents the randomly-generated array which has the dimension 
(1×Dim) and obeys the normal distribution, xrandom represents the 
random chosen solution.

Random integer 1 or 2 represented by K, calculated 
as follows Equation 15:

K = round(1+ rand(1,1)) (15)
 

2.4 SBOA workflow

The workflow chart of SBOA is shown in Figure 1.

2.5 Feasibility analysis of the selected 
algorithms

The CEC2017 typical function set contains 29 functions, 
covering unimodal, simple multimodal, hybrid, and composite 
functions, and is commonly used to evaluate the performance of 
optimization algorithms. To verify the feasibility of selecting the 
SBOA algorithm, this paper selects 10 typical functions from it for 
testing. Among them, unimodal functions F1 and F3 are chosen 
to test the convergence ability of the algorithm, simple multimodal 
functions F4 and F7 are selected to examine the ability to jump out of 
local optima, hybrid functions F12 and F15 are picked to assess the 

capability of handling complex combined functions, and composite 
functions F22, F25, F28, and F30 are selected to test the optimization 
ability in highly complex scenarios. Meanwhile, comparisons are 
made with the Hiking Optimization Algorithm (HOA) [38], Harris 
Hawks Optimization (HHO) [39], Whale Optimization Algorithm 
(WOA) [40], Particle Swarm Optimization (PSO) [41] and Genetic 
Algorithm (GA) [42]. The population size is set to 30, the number 
of iterations is 1,000, and the number of runs is 30. Figures 2–4 
show the average convergence curves, box plots, effect radar charts, 
and bar charts of the 5 algorithms when optimizing the above 10 
functions.

As can be seen from Figures 2–4, when the five algorithms 
including SBOA, HOA, HHO, WOA, PSO, and GA are used to 
optimize 10 functions such as F1, F3, F4, F7, F12, F15, F22, F25, 
F28, and F30, SBOA shows better and more stable optimization 
performance. 

3 SBOA-CNN-Bigru-attention model

3.1 Convolutional neural networks (CNN)

A Convolutional Neural Network (CNN) constitutes a specific 
variety of feedforward neural network. It is characterized by 
convolutional computations and a deep-layered architecture. CNNs 
extract local features of the input data through convolutions 
and generate complex feature representations via multi-layer 
convolutions and pooling. The key components of a CNN include 
the input layer, convolutional layer, pooling layer, and fully 
connected layer, as illustrated in Figure 5. The input layer is 
mainly responsible for receiving the initial samples. Meanwhile, the 
convolutional and pooling layers play vital roles in dimensionality 
reduction and feature extraction [43–45].

3.1.1 Convolution layer
The convolution layer is responsible for the extraction of local 

features from input data via the process of convolution. Each 
convolution kernel within the convolution layer is capable of 
extracting a specific feature, and multiple convolution kernels can 
operate in parallel to extract a variety of features. The product 
operation is verified by the following Equation 16 [2, 46, 47].

xl+1
il+1,jl+1 =

H

∑
i=0

W

∑
i=0

ωi,j × xl
il+i ,jl+j

(16)

where, ωi,j denotes the weights derived from the convolution kernel. 
il+i, jl+j represents the position coordinates of the result of the 
convolution operation. For the processing to be precise, these 
coordinates have to meet the subsequent Equation 17 [2, 46, 47].

0 ⩽ il+1 <Hl −H+ 1

0 ⩽ jl+1 <Wl −W+ 1
(17)

 

3.1.2 Pooling layer
The pooling layer constitutes an essential and fundamental 

element within the framework of deep-learning neural networks. 
It serves as a crucial architectural component that contributes 
significantly to the overall functionality and performance of these 
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FIGURE 1
The SBOA workflow.

networks. Frequently employed to shrink the spatial dimensions 
of the initial sample, decrease the computational complexity, 
mitigate overfitting and extract key features from the initial sample. 
Consequently, it leads to a decreased parameter count and enhanced 
computational efficiency. Crucial pooling operations, including 
average pooling and max-pooling, assume central and indispensable 
functions in this procedure [2, 46, 47]. The pooling Layer is 
expressed as Equations 18, 19:

xl+1
il+1,jl+1 =

1
HW

H

∑
i=0

W

∑
j=0

xl
il ×H+ i, jl ×W = j (18)

xl+1
il+1,jl+1 = max

i<H,0⩽j<W
xl

il ×H+ i, jl ×W+ j (19)

 

3.1.3 Fully-connected layer
The fully-connected layer combines the features that have been 

extracted from the previous layer, enabling it to carry out subsequent 
tasks like classification or regression. Every neuron in this layer 
forms connections with every single neuron in the layer that comes 

before it [2, 46, 47], and modeled as Equation 20:

xl+1 = f(wxl + b) (20)

where, the f, w , b denotes the activation function, along with the 
matrix of weights and the matrix of biases. 

3.2 Bidirectional gated recurrent unit 
(BiGRU)

The BiGRU model introduces a bidirectional structure to 
the GRU model to better capture the bidirectional dependency 
of sequence data. Comprising two separate GRU units, one 
for processing forward time series data and the other in a 
backward time series. The BiGRU model develops a full and in-
depth understanding of the sequence. This particular architecture 
facilitates the model’s ability to incorporate both the prior and 
subsequent information of the data, thus facilitating better pattern 
recognition and prediction accuracy. Additionally, the BiGRU 
model incorporates key components such as reset gate, update gate, 
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FIGURE 2
Average convergence curves of different algorithms.
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FIGURE 3
Box plots of different algorithms.

and a new candidate state, which together contribute to its superior 
performance in modeling sequential data [48, 49]. 

3.2.1 Reset gate
The Reset Gate is expressed as Equation 21 [50]:

rt = σ(Wr · [ht−1,xt] + br) (21)

The symbol rt denotes the activation signal used to reset the 
gate at a given moment, σ means the S-shaped function used 
for activation, Wr indicates the specific weight matrix of the 
reset gate, ht−1 displays the concealed state of the time interval 
that came before, xt implies the input vector existing at the 
current time and br represents the bias element associated with
the reset gate. 
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FIGURE 4
Radar charts and bar charts of optimization effects of different algorithms. (a) Radar charts (b) bar charts.

FIGURE 5
Basic structure of CNNS.

3.2.2 Update gate
The Update Gate is expressed as Equation 22 [47]:

zt = σ(Wz · [ht−1,xt] + bz) (22)

zt represents the activation signal relevant to the update mechanism 
at a designated time. Matrix Wz indicates the weight parameters of 
the update gate. bz indicates the inherent bias of the update gate. 

3.2.3 Candidate hidden gate
The following Equation 23 is the expression of Candidate 

hidden gate [12]:

̃ht = tan h(W · [rt ∗ ht−1,xt] + b) (23)

h represents the potential hidden state at time t. The matrix W
contains the weights of the candidate’s hidden state. The symbol 
b stands for the bias component. The asterisk (∗) indicates the 
Hadamard product of the elements. 

3.2.4 Final hidden gate
The Equations 24–27 are related of the expression of Final 

hidden gate [49].

ht = zt ∗ ht−1 + (1− zt) ∗ ht (24)

ht represents the ultimate hidden state at this juncture. BiGRU is a 
variant of artificial neural networks that enhances the capabilities 
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FIGURE 6
The Diagram of the BiGRU structure.

of GRU, enabling it to manage temporal information within data 
that evolves over time. It processes data bidirectionally: from past 
to present and from present to future [51].

h⃗t = GRU(xt,) f(ω1xt +ω2h⃗t−1) (25)

h⃖t = f(ω3xt +ω5h⃖t+1) (26)

ht = g(ω4h⃗t +ω6h⃖t) (27)

The innovative BiGRU model combines forward and backward 
GRU components, allowing it to gather insights from past and 
future data. Thanks to this singular structure, the model gains 
an improved ability to interpret the sophisticated relationships 
present in the data. Figure 6 shows the model structure. As 
can be seen, ht denotes the hidden state with time step t, 
which is made up of both the forward and backward hidden 
states h⃗t, h⃖t, h⃗t determined by the current input x and the 
corresponding hidden states h⃗t−1, h⃖t determined by the current 
input x and the corresponding hidden states h⃖t+1. The details are 
shown in Equations 30–32, where w (i = 1, 2 …, 6) denotes the 
interlayer weights.

3.3 Attention mechanism

The attention mechanism is based on the workings of the human 
brain, where various parts are responsible for processing different 
types of information. Figure 7 illustrates how the attentional 
mechanism works. The formula for it is shown below from the 
Equations 28–30. This method enhances processing efficiency by 
focusing on significant elements, much like how our brain prioritizes 
information [28].

ei = u tan h(ωhi + b) (28)

αt = so ft max(et) =
exp(et)

∑m
j=1

exp(ej)
(29)

C =
m

∑
j=1

αjhj (30)

3.4 SBOA-MIC-CBAM Hybrid Neural 
Network model

3.4.1 Maximal information coefficient
Maximal Information Coefficient (MIC) serves as a tool for 

quantifying the association existing between two characteristic 
variables. Its main idea is to divide the scatter plot of two related 
variables into grids. The probability density of the scatter points can 
be used to measure the mutual information coefficient between the 
two variables, thus capturing both linear and nonlinear associations. 
It belongs to an unsupervised learning method. Different ways of 
drawing grids will cause the samples to fall into different two-
dimensional grids. By counting the number of scatter points in each 
grid interval and comparing it with the total number of samples, the 
joint distribution p(x,y) of the grades and contents can be obtained. 
Combining with the characteristic marginal distribution p(x) and 
the target marginal distribution p(y), the relative entropy between 
the grade of the base wine and the substance content, that is, the 
mutual information I(x,y), can be calculated via Equation 31 [8, 52]:

MIC(x,y) = max
xy<B(n)

I(x,y)
log2(min (x,y))

(31)

x,y represents two random variables; xy < B and B are the upper 
limits of the number of grids (functions of the sample size n, usually 
taking the value of B = n0.6); I(x,y) is the value of mutual information 
[8] expressed as the Equation 32:

I(x,y) = ∫p(x,y) log2
p(x,y)

p(x)p(y)
dxdy (32)

Through the normalization processing of MIC, it can be 
concluded that: the threshold value of MIC lies within the interval 
of [0, 1]. And when the threshold value of MIC is in the range of 
[0, 0.4), there is no correlation; when the threshold value of MIC is 
in the range of [0.4, 0.7), there is a correlation; when the threshold 
value of MIC is in the range of [0.7, 1), there is a strong correlation. 

3.4.2 SBOA-CBAM neural network model
Figure 8 depicts how the CBA model is used to predict how many 

tourists will visit a scenic spot at a given time.
The SBOA-CBAM, designed for predicting tourist flow intervals 

in scenic spots, has five prediction steps; the detailed workflow is 
shown in Figure 9 [43]. 

Step 1: Data Preprocessing; Perform processing such as feature 
encoding and decomposition. The data that is screened by 
the MIC algorithm for importance is classified into two part, 
comprising 80% and 20% of the sample, respectively, one is 
used for training, and the other is used for testing. These 
sets are then normalized using the mapminmax method. 
This preprocessing step is crucial for effectively training and 
testing machine learning models. Normalization ensures 
that all data falls within a consistent range, preventing 
biases in the model’s performance.
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FIGURE 7
The structure of the attention unit.

FIGURE 8
The structure of CNN-BiGRU-Attention model.

Step 2: Hyperparameters model Optimization; The SBOA 
algorithm was employed to tune the parameter 
configurations for the CBA model in terms of the Initial 
Learning Rate, GRU Hidden Units, Global Dropout 
Probability, Attention Heads, Attention Output Dimension, 
Convolutional Filters, Convolutional Kernel Size, Fully-
Connected Neurons, L2 Regularization Coefficient. After 
optimizing its hyperparameters with SBOA, the model was 
trained and evaluated using RMSE. If the RMSE was small, 
the optimal hyperparameters would be found; otherwise, the 
optimal hyperparameters would not be obtained, and the 
optimization process was repeated until the RMSE would 
reach a better value.

Step 3: Building of the optimized network; The optimized CBA 
network was built using the optimized hyperparameters 
from Step 2. Training parameters were set, the network was 
trained, and location prediction was performed.

3.5 Evaluation criteria

This study employed five distinct methods to assess the accuracy 
of a tourist flow prediction model, aiming to forecast the number 
of visitors a scenic spot will receive. The methods used to measure 
accuracy include R2, MSE, RMSE, MAE, MAPE. The formula for 
determining error can be found in sources [53, 54] and expressed by 
Equations 33–37:

R2 = 1−
N

∑
i=1
(yi − ̂yi)

2/
N

∑
i=1
(yi − y)2 (33)

MSE = 1
N

N

∑
i=1
(yi − ̂yi)

2 (34)

RMSE = √ 1
N

N

∑
i=1
(yi − ̂yi)

2 (35)
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FIGURE 9
The workflow of SBOA-CBAM.

MAE = 1
N

N

∑
i=1
|yi − ̂yi| ∈ [0,+∞) (36)

MAPE = 100%
N

N

∑
i=1
|

yi − ̂yi

yi
| (37)

where, yi represents the real data, ̂yi stands for the model’s 
estimates, N signifies the sample size, and y is the mean of the
observed data. 

4 Case analysis

4.1 Selection of fusion factors

Referring to references [4, 55], China’s Jiuzhaigou Valley was 
chosen as an illustration to prove the practicality of the suggested 
algorithm. The daily tourist flow data set of Jiuzhaigou Valley in 
China from 2012 to 2017 was chosen as the prediction data for the 
model. At the same time, factors such as the date X1, season X2, 
climatic characteristics X3, temperature (maximum temperature X4, 
minimum temperature X5, average temperature X6), holidays X7, the 

tourist flow during the corresponding period of the previous year 
X8, and seven network keywords (Jiuzhaigou Valley X9, Jiuzhaigou 
Valley map X10, scenic spots in Jiuzhaigou Valley X11, hotels in 
Jiuzhaigou Valley X12, travel guides for Jiuzhaigou Valley X13, 
tickets for Jiuzhaigou Valley X14, weather in Jiuzhaigou Valley X15) 
are selected as the features for predicting the tourist flow in the 
scenic area. 

4.1.1 Season
In order to verify whether the natural seasons of the 

environment affect the accuracy of tourist flow prediction, the 
12 months of every year are partitioned into four segments in 
accordance with the four seasons: spring, summer, autumn, and 
winter. The following “multiple dummy variables” are introduced to 
represent different seasons [4], with S representing the seasons, and 
its encoding results can be expressed as Equation 38.

S =

{{{{{{{
{{{{{{{
{

1 Spring

2 Summer

3 Autumn

4 Winter

(38)
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4.1.2 Climatic characteristics
In order to determine whether the weather and climate affect 

the accuracy of tourist flow prediction, three categories are used 
to classify the weather conditions: sunny, rainy days (heavy rain, 
torrential rain, sleet, light snow), and snowy days (heavy snow). The 
following “multiple dummy variables” are introduced to represent 
different weather conditions, with W representing the weather, and 
its encoding results can be expressed as Equation 39.

W =
{{{{
{{{{
{

1 other weather

4 Rainy weather

7 Snowy weather

(39)

 

4.1.3 Statutory holidays
Studies have shown that working days, weekends, statutory 

holidays, etc., have a certain impact on the daily tourist flow of scenic 
areas. In order to make the quantitative results better explain the 
influence of different holidays, this paper distinguishes the 365 days 
of the whole year according to working days, weekends, Labor Day, 
Spring Festival, National Day, and other statutory holidays, and 
introduces the following “multiple dummy variables” to represent 
different holidays, with H representing the holidays, and its encoding 
results can be expressed as Equation 40:

H =

{{{{{{{{{{
{{{{{{{{{{
{

0 Workday

1 Weekend

3 Others Legal Holiday

6 Labour Day

9 Spring Festival,National Day

(40)

Special note: When weekends and statutory holidays form a 
continuous vacation, this paper defines it as a statutory holiday, and 
it will be processed according to the above model. 

4.1.4 Baidu index
By synthesizing the keywords selected in literature such as [56], 

the keywords selected in this paper are determined as follows: 
Jiuzhaigou Valley (Index1), Jiuzhaigou Valley Map (Index2), Scenic 
Spots in Jiuzhaigou Valley (Index3), Hotels in Jiuzhaigou Valley 
(Index4), Travel Guides for Jiuzhaigou Valley (Index5), Tickets 
for Jiuzhaigou Valley (Index6), and Weather in Jiuzhaigou Valley 
(Index7). The daily network search data of these seven Baidu Indexes 
from 2013 to 2017 were extracted, as shown in the Figure 10.

4.2 Feature screening

This study focuses on analyzing the visitor flow at the Jiuzhaigou 
Valley Scenic and Historic Interest Area in China. In light of the 
tragic 7.0-magnitude earthquake that struck Jiuzhaigou County in 
2017, causing the area to temporarily close for restoration and 
reconstruction, the Jiuzhaigou Scenic Area officially reopened on 
12 July 2024. Therefore, this paper used the passenger flow of the 
Jiuzhaigou Scenic Area from 1 January 2013, to 8 August 2017, as the 
basic data to make the original data more convincing. The passenger 
flow of the Jiuzhaigou Scenic Area from 1 January 2013, to 31 July 
2017, is shown in Figure 11.

4.2.1 Data Preprocessing
Date continuity validation supplements missing dates. 

Continuous variables adopt 7-day moving median imputation for 
missing values, categorical variables implement nearest-neighbor 
imputation for missing values, and the IQR method processes 
anomalies. 

4.2.2 Feature engineering

• Temporal features: Date variables are decomposed into 
three fundamental variables: year, month, and day. Day-
of-Year (DOY) and weekday ordinal are introduced as 
temporal features, with trigonometric encoding (sine/cosine 
transformation) applied to both.

• Meteorological features: A 5-day moving average temperature 
feature is introduced. Trapezoidal membership functions 
based on the pentadic temperature method calculate seasonal 
probability distributions by fuzzy logic.

• Holiday features: Statutory holidays are one-hot encoded while 
a dynamic window lag matrix (pre-/post-holiday markers) is 
constructed.

• Baidu indices: Baidu index features undergo adaptive period 
detection (ACF peak identification), STL decomposition 
(trend/seasonal/residual), and residual smoothing, significantly 
enhancing their information density.

• Tourist flow: Skewness detection is performed on previous-
year’s tourist flow (Prev Year) and daily tourist flow (Tourist 
Flow). Features meeting threshold criteria undergo log10 
(1+x) transformation, thus effectively improving distribution 
morphology.

4.2.3 Preliminary feature screening
The Maximal Information Coefficient (MIC) calculates 

nonlinear correlations between features and target variables across 
different lag steps. Initially screened features meeting criteria 
have their optimal lag orders extracted. The MIC coefficients 
and importance degrees of each feature are shown in Figure 12. 
According to literature [8] combined with the situation of the 
MIC coefficients in the Figure 12, the features with correlation 
coefficients greater than 0.3 are retained, and other features 
are eliminated, 14 features are retained. Table 1 represents 
the MIC coefficients of each feature, the lead times and the
ranking results.

4.2.4 Feature refined screening
Based on preliminary MIC screening results, the feature 

matrix is reconstructed through PACF significance test. Expanding 
window cross-validation is employed to evaluate feature predictive 
capability for refined screening. This process retains only lag 
information from Baidu indices while forcibly preserving all derived 
variables of holiday features, thus ultimately reconstructing the
final dataset.

At this stage, every input variable of the prediction model has 
been settled, and the function of the prediction model can be 
formulated as Equation 41.

Y = F(X4,X5,X6,X8,X9,X13,X15,…) (41)
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FIGURE 10
Network search data. (a) Jiuzhaigou Valley (Index1) (b) Jiuzhaigou Valley Map (Index2) (c) Scenic Spots in Jiuzhaigou Valley (Index3) (d) Hotels in 
Jiuzhaigou Valley (Index4) (e) Travel Guides for Jiuzhaigou Valley (Index5) (f) Tickets for Jiuzhaigou Valley (Index6) (g) Weather in Jiuzhaigou 
Valley (Index7).
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FIGURE 11
Passenger flow of Jiuzhaigou Valley Scenic and Historic Interest Area from 1 January 2013, to 31 July 2017, 2017.

4.3 Data processing

The final dataset is classified into two parts, comprising 80% and 
20% of the sample, one is used for training, and the other is used 
to testing, respectively. To ensure accurate analysis, a normalization 
technique was implemented to standardize the data within the range 
of [0,1]. The normalization equation used for this purpose can be 
succinctly expressed as Equation 42:

x∗ =
x− xmin

xmax − xmin
(42)

where x∗ symbolizes the standardized data, x stands for the original 
data, and xmax as well as xmin denote the maxima and minim, 
respectively, within the given example data. 

4.4 Prediction model and results

To enhance the accuracy and reliability of the proposed tourism 
demand prediction model, this paper conducted a comparative 
analysis involving multiple models, including the CBA model, its 
SBOA-optimized variant (SBOA-CBA), BP neural network, SVM, 
and ELM. Basic parameters of each model are detailed in Table 2.

The parameters of the CBA model were compared before and 
after optimization, with the results displayed in Table 3. This study 
highlights the significance of parameter optimization in improving 
the overall performance of predictive models.

The prediction results and errors of the five models, namely, 
the CBA model, SBOA-CBA, BP neural network, SVM, and ELM, 

can be observed from Figures 13–16. Specifically, Figure 13 displays 
the prediction results of the five models on the training dataset, 
while Figure 14 illustrates the prediction errors of the five models 
for the training dataset. Figure 15 presents the prediction results of 
the five models on the testing dataset, and finally Figure 16 shows 
the prediction errors of the five models for the testing dataset. From 
the visualizations in Figures 13–16, the performance ranking of the 
models can be clearly ordered as follows: SBOA - CBA > CBA model 
> SVM > BP neural network > ELM. These visuals provide valuable 
insights into the performance comparison among the models.

The results of R2, MAPE, MAE, MSE, and RMSE for the 
scenic spot tourist flow prediction models established using 
the Convolutional-Bidirectional-Attention Model (CBA), BP 
(Backpropagation Neural Network), SVM (Support Vector 
Machine), and ELM (Extreme Learning Machine) are presented 
in Table 4. Figures 17–19 show the visual comparisons of the R2, 
MAPE, MAE, MSE and RMSE metrics among the five models.

As can be seen from Figures 17–19 and Table 4, compared with 
the BP, SVM, and ELM models, the CBA model ranks first in 
both MAPE (19.75%) and R2 (0.8491), indicating its significant 
advantages in terms of relative error control and overall goodness of 
fit. The improvement in R2 shows that the CBA model can explain 
more than 84% of the variation in tourist flow, providing highly 
reliable inputs for subsequent resource scheduling and dynamic 
pricing. The significant reduction in MAPE (a 25.3% decrease 
compared with BP and a 34.5% decrease compared with ELM) 
directly meets the business demand for “percentage accuracy”. In 
terms of absolute error metrics, the MAE (2.5103 × 103), MSE 
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FIGURE 12
The MIC coefficients and importance degrees of each feature.

(1.7431 × 107) and RMSE (4.1751 × 103) of the CBA model are 
slightly lower than those of the SVM model but are 21.2%, 32.9% and 
18.1% better than those of the ELM model, respectively. Meanwhile, 
the “suboptimal” performance of the absolute error metrics (MAE 
and RMSE) can be partially attributed to the natural occurrence 
of abnormal peaks in scenic spot tourist flow (such as extreme 
weather and emergencies). These outliers exert an asymmetric 
amplifying effect on both squared losses (MSE/RMSE) and absolute 
losses (MAE). Therefore, the leading performance of MAPE and 

R2 is more valuable for decision-making than the absolute error 
metrics. Additionally, the CBA model extracts local spatiotemporal 
features of tourist flow sequences through convolutional layers, and 
then uses a bidirectional attention mechanism to capture long-
range dependencies and external disturbances such as holidays. 
This not only maintains the interpretability of the model but also 
significantly reduces the risk of underfitting to high-dimensional 
nonlinearity, which is a common issue in traditional methods. Thus, 
there are sufficient theoretical and practical bases for adopting 

Frontiers in Physics 16 frontiersin.org

https://doi.org/10.3389/fphy.2025.1653758
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Wang et al. 10.3389/fphy.2025.1653758

TABLE 1  MIC coefficients of selected feature, the lead times.

Order Variable name Symbol R Lag period Rank Variable type

1 Day Of Year (DoY) — 0.5979 5 1 derived variable

2 DoY_cos — 0.5785 12 2 derived variable

3 Minimum temperature X5 0.5576 2 3 original variable

4 Index7 X15 0.5505 3 4 original variable

5 SeasonSummer — 0.5463 14 5 derived variable

6 SeasonWinter — 0.5463 14 6 derived variable

7 Month — 0.543 9 7 derived variable

8 Previous year data X8 0.5314 0 8 original variable

9 Mean temperature X6 0.5308 12 9 original variable

10 Index1 X9 0.4673 1 10 original variable

11 Maximum temperature X4 0.4623 12 11 original variable

12 SeasonSpring — 0.4236 1 12 derived variable

13 DoY_sin — 0.3347 11 13 derived variable

14 Index5 X13 0.334 5 14 original variable

TABLE 2  Basic parameters of each mode.

Model Key parameters

BP Neural Network Number of hidden layer nodes = 7, Regularization coefficient (λ) = 0.3, Learning rate = 0.01, Number of iterations = 50, Hidden layer 
activation function = logsig, Output layer activation function = purelin.

SVM Penalty parameter C = 0.033, Kernel parameter γ = 0.027, Kernel function = RBF, Insensitivity parameter ε = 0.2.

ELM Number of hidden layer nodes = 200, Activation function = sig, TYPE = Regression.

CNN-BiGRU-Attention Convolutional kernel size = [3,1], Number of filters = 32, Number of GRU neurons = 48, Number of attention heads = 2, Attention key 
dimension = 12, Dropout = 0.15, MaxEpochs = 50, MiniBatchSize = 64, InitialLearnRate = 0.01, LearnRateDropFactor = 0.5, 
LearnRateDropPeriod = 15, GradientThreshold = 1, L2Regularization = 1e-4.

SBOA-CNN-BiGRU-Attention Population size = 20, Maximum number of evolutionary generations = 10, Optimized parameters: Initial Learning Rate, GRU Hidden 
Units, Global Dropout Probability, Attention Heads, Attention Output Dimension, Convolutional Filters, Convolutional Kernel Size, 
Fully-Connected Neurons, L2 Regularization Coefficient. Network structure parameters are the same as CNN-BiGRU-Attention.

the CBA model as the benchmark model for scenic spot tourist
flow prediction.

As can be seen from Figures 17–19 and Table 4, after globally 
optimizing 9 key hyperparameters of the CBA model, including 
Initial Learning Rate, GRU Hidden Units, Global Dropout 
Probability, Attention Heads, Attention Output Dimension, 
Convolutional Filters, Convolutional Kernel Size, Fully-Connected 
Neurons, and L2 Regularization Coefficient, using the Sandpiper-
Bird Optimization Algorithm (SBOA), metrics such as R2, MAPE, 
MAE, MSE, and RMSE have all been improved. The R2 value 
increased from 0.8491 to 0.8835, with a growth rate of 3.90%, 

indicating a significant enhancement in the model’s ability to 
explain tourist flow fluctuations. The RMSE decreased from 4.1751 
× 103 to 3.4821 × 103 (↓19.90%), the MSE dropped from 1.7431 
× 107 to 1.2125 × 107 (↓43.77%), the MAE reduced from 2.5103 
× 103 to 2.2379 × 103 (↓12.17%), and the MAPE declined from 
0.1975 to 0.1824 (↓8.32%). By adaptively adjusting the learning rate 
and L2 regularization coefficient, the overfitting phenomenon was 
effectively suppressed. Through optimizing the convolutional kernel 
size and the number of filters, the convolutional layers maintained 
efficient computational performance while capturing multi-scale 
spatiotemporal features. By regulating the Attention Heads and 
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TABLE 3  CBA model parameters before and after optimization.

Variable name Lower bound Upper bound CBA SBOA-CAB

Initial Learning Rate 1e-4 1e-2 2.9e-03 1.2e-03

GRU Hidden Units 32 128 48 40

Global Dropout Probability 0.10 0.35 0.14 0.11

Attention Heads 2 8 2 2

Attention Output Dimension 8 48 8 22

Convolutional Filters 32 96 32 48

Convolutional Kernel Size 3 7 3 3

Fully-Connected Neurons 12 48 16 12

L2 Regularization Coefficient 1e-6 1e-3 6.0e-05 3.2e-05

FIGURE 13
Predicted results (training set).

Output Dimension, the model’s sensitivity to external shocks such 
as holidays and sudden weather changes was significantly enhanced. 
To summarize, the CBA model had already demonstrated better 
predictive performance than traditional algorithms in the initial 
comparison, while the SBOA-CBAM not only further reduced the 
prediction error but also significantly improved the model’s accuracy 
in characterizing the spatiotemporal nonlinear coupling of scenic 
spot tourist flow, providing scenic spot management departments 
with a more robust and real-time decision support tool. 

4.5 Model stability testing

Section 2.5 conducted a comparative analysis evaluating the 
performance of SBOA, HOA, HHO, WOA, PSO and GA algorithms 
on a subset of the CEC2017 benchmark test functions. The 

FIGURE 14
Predicted error (training set).

results demonstrate that SBOA achieved the top rank among the 
tested functions, exhibiting superior optimization capability and 
high stability. This provides theoretical justification and relevant 
arguments for using SBOA to optimize the hyperparameters of 
the CNN-BiGRU-Attention model. To thoroughly validate the 
optimization effect and confirm that the SBOA-optimized model 
delivers stable and significant performance improvements compared 
to the original model, this study designed an experimental scheme of 
“single optimization followed by multiple training”, more precisely: 
After fixing the hyperparameters obtained via a single SBOA 
optimization run, 30 independent training sessions were conducted 
to compare the performance of the model before and after 
optimization. The specific implementation steps are as follows:

• Single Optimization: The SBOA algorithm was executed only 
once to obtain a fixed set of hyperparameters.
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FIGURE 15
Predicted results (testing set).

FIGURE 16
Predicted error (testing set).

• Fixed Architecture and Data Partitioning: The architecture 
of the CNN-BiGRU-Attention model remained 
unchanged, and a fixed 80/20 training set/test set split
was employed.

• Paired Initialization: Each training session utilized paired 
random seeds for weight initialization, ensuring experimental 
reproducibility and fair comparison.

• Statistical Evaluation: Using the test set’s Root Mean Square 
Error (RMSE) and Mean Absolute Error (MAE) as paired 
samples, a one-tailed Wilcoxon signed-rank test (significance 
level α = 0.05, testing the direction that the optimized model 
is superior) was performed. Cohen’s d effect size and its 95% 
Bootstrap confidence interval were calculated to quantify the 
strength of the optimization effect.

This scheme aims to comprehensively evaluate the optimized 
model’s performance stability, its disturbance resistance and its 
compatibility with the target architecture. The experimental results 
are presented in Table 5 and Figure 20.

Figure 20 presents the error distributions of the CBA and SBOA-
CBA models across the 30 independent repeated experiments. 
The boxplots demonstrate that, compared to the pre-optimization 
model (red), the distributions of both RMSE and MAE for 
the optimized model (blue) exhibit a median reduction of 
approximately 15.39% and 9.36%, respectively. Furthermore, the 
overall downward shift of the box indicates a systematic reduction
in the error.

The results from the 30 independent repeated experiments 
demonstrate a significant overall reduction in error on the 
test set for the SBOA-optimized CNN-BiGRU-Attention 
model. RMSE’s Mean decreased from 4,126.1 (95% CI: 
3,947.5415–4,340.0192) to 3,491 (95% CI: 3,382.1120–3,639.9699), 
representing a 15.3930% reduction. Mae’s Mean decreased from 
2,540.1 (95% CI: 2,455.1740–2,622.2819) to 2,302.2 (95% CI: 
2,236.4925–2,381.9094), representing a 9.3626% reduction. The 
Wilcoxon signed-rank test indicated that the improvements in both 
metrics were highly statistically significant (RMSE: p = 0.0001; MAE: 
p = 0.0007). Effect size analysis further confirmed the practical 
significance of the optimization: Cohen’s d for RMSE = 0.8982 
(large effect), Cohen’s d for MAE = 0.7028 (medium-to-large effect). 
In conclusion, the SBOA algorithm not only significantly improved 
the model’s prediction accuracy but also enhanced its stability and 
disturbance resistance. 

5 Conclusion and future work

5.1 Major contribution

The sharp increase in tourists has resulted in congestion, 
overcrowding, safety-related incidents, and low tourist satisfaction. 
Real-time tracking and forecasting of tourist flow data in scenic 
spots can help managers plan resources more rationally, optimize 
services, and increase tourist satisfaction. At the same time, it 
can serve as a valuable resource for tourism planning. To address 
this problem, the SBOA-CBAM tourist flow prediction model 
was proposed. CNN captures the spatial feature relationship of 
past passenger flow information; BiGRU detects dynamic changes 
and pays attention to key features in conjunction with the 
attention mechanism, while the hyperparameters of the model were 
refined through the utilization of the SBAO algorithm. Ultimately, 
comparative simulation trials proved the efficiency of the SBAO 
- CBA algorithm. Here are the primary findings presented in
this article: 

1. Compared with BP, SVM, and ELM,the CBA model has 
been put forward with the aim of predicting tourist flows. 
The simulation demonstrated that the constructed model 
effectively captured the characteristics of tourist flow data 
that is screened by the MIC algorithm, making it suitable for 
this purpose.

2. The SBOA algorithm optimized the CBA parameters to 
improve prediction accuracy. The CBA model’s evaluation 

Frontiers in Physics 19 frontiersin.org

https://doi.org/10.3389/fphy.2025.1653758
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Wang et al. 10.3389/fphy.2025.1653758

TABLE 4  CNN-BiGRU-ATTENTION evaluation indexes before and after optimization.

MODE MAE MAPE MSE RMSE R2

BP 2.5391E+03 2.6426E-01 1.6208E+07 4.0260E+03 7.7030E-01

SVM 2.2764E+03 2.1466E-01 1.3109E+07 3.6207E+03 7.7234E-01

ELM 3.1844E+03 3.0171E-01 2.5975E+07 5.0966E+03 7.4105E-01

CBA 2.5103E+03 1.9752E-01 1.7431E+07 4.1751E+03 8.4911E-01

SBOA-CBAM 2.2379E+03 1.8235E-01 1.2125E+07 3.4821E+03 8.8354E-01

Optimization Ratio 12.1726% 8.3196% 43.7662% 19.9025% 3.8966%

FIGURE 17
Radar chart of evaluation index.

indexes include R2, RMSE, MSE, MAE, and MAPE. 
The model improved every parameter: R2 increased by 
3.8966%, RMSE decreased by 19.9025%, MAE decreased by 
12.1726%, MAPE decreased by 8.3196%, and MSE decreased
by 43.7662%.

3. The Wilcoxon signed-rank test indicated that the 
improvements in both metrics were highly statistically 

significant (RMSE: p = 0.0001; MAE: p = 0.0007). Effect 
size analysis further confirmed the practical significance 
of the optimization: Cohen’s d for RMSE = 0.8982 (large 
effect), Cohen’s d for MAE = 0.7028 (medium-to-large effect). 
The SBOA algorithm not only significantly improved the 
model’s prediction accuracy but also enhanced its stability 
and disturbance resistance.
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FIGURE 18
Histogram of evaluation indexes (MAE, MAPE, RMSE).

FIGURE 19
Scatter diagram of the evaluation indexes (R2, MAE).

5.2 Limitations

Despite the promising results, this study has several limitations 
that warrant consideration: 

1. Only the daily tourist flow data from Jiuzhaigou Scenic Area 
in Sichuan Province between 2013 and 2017 were selected as 
the foundational dataset for model training and testing. No 
updated data was introduced for validation analysis.

2. Only the daily tourist flow data from Jiuzhaigou Scenic Area 
in Sichuan Province were used as the training set and test 
set, without employing data from other regions to validate the 
model’s generalizability.

5.3 Future research direction

Although this study has achieved preliminary results in the task 
of predicting daily tourism demand, there are still some limitations, 
which can be improved and expanded in the future from the 
following directions: 

1. Expanding the research scope to enhance the model’s 
generalizability. By incorporating data from more regions, 
it will be conducted an in-depth analysis of the model’s 
adaptability. Building upon this foundation, will further 
improve the model’s applicability to data from different regions 
through various approaches, such as adjusting the model 
architecture and optimizing model parameters. Specifically, the 
number of layers in the model, adjust the number of neurons 
in each layer, or alter the types of activation functions could 
be increased to more accurately fit the data characteristics of 
different regions. Furthermore, the model’s training efficiency 
and accuracy can be enhanced by tuning parameters such 
as the learning rate and optimization algorithms. Through 
these comprehensive measures, the goal is for the model to 
demonstrate stronger generalization capabilities and higher 
accuracy when confronted with data from diverse regions.

2. Integrating more features to improve model accuracy. It is 
essential to incorporate data from various tourist destinations, 
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TABLE 5  Model Evaluation Results: Comparison Before vs. After Optimization (N = 30 Runs).

Metric Base mean ± 95%CI Optimized mean ± 95% CI Improvement (%) Cohen’s d Wilcoxon p

RMSE 4126.1 [3947.5415, 4340.0192] 3491.0 [3382.1120, 3639.9699] ↓15.39% 0.898 0.000136 < 0.001

MAE 2540.1 [2455.1740, 2622.2819] 2302.2 [2236.4925, 2381.9094] ↓ 9.36% 0.703 0.00072 < 0.001

FIGURE 20
Boxplot of the evaluation indexes (MAE, RMSE).

ensuring these destinations encompass a broad spectrum 
of geographical, cultural and economic backgrounds. By 
integrating this diverse data, the validity and relevance of the 
data samples can be improved, thereby improving the model’s 
precision. This approach will facilitate a more comprehensive 
understanding and analysis of tourism market trends, tourist 
demands and behavioral patterns, thus providing more 
robust support and guidance for the development of the 
tourism industry.

6 Policy implications

The SBOA-CBAM prediction model, integrating network 
search index data, can provide accurate forecasts of tourism 
demand. This capability not only serves as a valuable reference 
for tourist travel planning but also assists managers in 
rationally allocating resources, reducing energy consumption and 
waste generation, and implementing crowd control measures. 
Consequently, it helps alleviate ecological stress on scenic areas, 
safeguarding the long-term sustainable development of local 
tourism. Furthermore, the model provides a critical reference 

basis for scientific decision-making by tourism management 
departments, thereby advancing sustainable tourism development 
strategies. Specifically, it yields the following three policy 
implications: 

1. Tourist scenic areas can draw on the passenger flow 
prediction method in this paper to establish a passenger 
flow early warning model and an early warning platform, 
and promptly release passenger flow prediction information 
to business operators and tourists. This can effectively 
guide tourists to travel during off-peak periods and 
guide operators to make proper reception and response
arrangements.

2. Government management departments can utilize the model 
prediction to grasp the future passenger flow situation in the 
region, effectively adjust the supply of the tourism market 
and supervise the carrying capacity of the tourism ecological 
environment.

3. Tourism development departments can also analyze the 
changing trends of the tourism market further by using the 
passenger flow data predicted by the model and make full 
preparations for the next-step tourism planning and resource 
mobilization.
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