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The rapid escalation in tourist visitation poses significant challenges, including
traffic congestion, overcapacity at scenic attractions, heightened risks of
safety incidents, and diminished visitor satisfaction. To optimize scenic area
management through better resource allocation and service delivery, as well
as to facilitate informed travel and visitor planning, this study proposes
a hybrid predictive model, called Secretary Bird Optimization Algorithm-
Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention
Model (SBOA-CBAM), for forecasting tourist volume within scenic areas.
The methodology involves constructing a foundational Convolutional Neural
Network-Bidirectional Gated Recurrent Unit-Attention Mechanism (CBA) model,
where input data pre-processed via the Maximal Information Coefficient (MIC)
algorithm undergoes feature extraction using Convolutional Neural Network
(CNN), followed by bidirectional temporal feature mining via BiGRU, and output
weighting via an Attention Mechanism to emphasize critical features and
generate predictions. Subsequently, the Secretary Bird Optimization Algorithm
(SBOA) is employed to autonomously identify the optimal hyperparameter
configuration for the CBA model, thereby enhancing its predictive accuracy and
computational efficiency. Comparative simulation experiments demonstrate the
high applicability of the CBA model for scenic area tourist flow forecasting and
reveal that the SBOA-optimized CBAM model achieves statistically significant
performance enhancements, namely, a 3.8966% increase in R?, alongside
reductions of 19.9025% in RMSE, 12.1726% in MAE, 8.3196% in MAPE, and
437662% in MSE. Statistical validation via the Wilcoxon signed-rank test
confirmed the significance of the improvements (RMSE: p = 0.0001; MAE: p =
0.0007), with substantial effect sizes indicated by Cohen'’s d values of 0.8982
(RMSE) and 0.7028 (MAE). These findings corroborate that the SBOA algorithm
not only substantially elevates predictive precision but also enhances model
stability and robustness against disturbances.

Baidu index, MIC, tourist flow prediction, CNN, BiGRU, attention mechanism, secretary
bird optimization algorithm

1 Introduction

Over the past few decades, China’s tourism sector has undergone exponential expansion.
Concurrently, evolving societal attitudes and lifestyle transformations have substantially
heightened travel frequency and extended durations [1]. While this growth has served as
a catalyst for economic prosperity and stimulated development in ancillary sectors, it has
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also introduced unforeseen operational risks. The unprecedented
surge in tourist volumes elevates accident probability and
exacerbates managerial complexities at destination sites. Therefore,
accurate forecasting of tourist flows has become imperative for
optimizing tourism service quality through strategic resource
allocation and proactive management frameworks.

In recent years, artificial intelligence techniques including,
Support Vector Machines, LSTM networks, Bidirectional Long
short-term memory (LSTM) networks, and improved models
developed by various researchers have been increasingly employed
in predictive research [2]. The research team led by Ni developed
a multilayer neural network model termed Spatial Principal
Component Analysis-CNN-LSTM to predict daily tourist flows
[1], Chen and colleagues proposed a hybrid CNN-Bidirectional
LSTM prediction methodology for tourism demand forecasting,
integrating the Boruta algorithm, Bidirectional LSTM, and
CNN [3]. Li’s research group proposed a novel visitor volume
prediction approach utilizing the K-means algorithm, Particle
Swarm Optimization, and Quadratic Support Vector Machines
[4]. Additionally, Qin’s team introduced the CNN-Improved
Quantum-inspired Reinforcement Learning LSTM tourist flow
prediction model [5], Meng and Dou developed an Empirical Mode
Decomposition-CNN-LSTM  short-term forecasting framework
for railway passenger traffic, incorporating empirical mode
decomposition, CNN, and LSTM models [6]. Constantino’s research
team simulated and predicted tourist flows in Mozambique
through an Artificial Neural Network model, demonstrating
superior predictive performance of artificial neural networks [7].
Wang and Liu proposed a novel multi-factor hybrid integrated
learning method designated Improved Complete Ensemble
Empirical Mode Decomposition with Adaptive Noise-Levy
Flight Black Swan Algorithm, combining Improved Complete
Ensemble Empirical Mode Decomposition with Adaptive Noise,
Least Absolute Shrinkage and Selection Operator, Autoregressive
Integrated Moving Average, Support Vector Regression, and
BiGRU for tourism demand prediction [8]. While, Lu’s research
group implemented the CNN-LSTM model for daily tourist
flow forecasting in scenic areas, employing genetic algorithms
to optimize neuron configuration within the model [9]. Li
and collaborators presented a Particle Swarm Optimization-
Least Squares Support Vector Machine method for forecasting
tourism volumes in scenic spots [4]. Gaos team developed a
Hybrid Neural Network model for scenic spot passenger flow
prediction, integrating CNN and LSTM as CNN-LSTM [10].
Chen’s research group constructed a tourism traffic prediction
framework combining Boruta, Bidirectional LSTM, and CNN [3].
Then, Gu’s team utilized a spatiotemporal CNN model to capture
spatio-temporal dependencies in tourist traffic patterns [11].

Nevertheless, LSTM networks exhibit limitations, including
structural complexity, excessive parameterization, slow convergence
rates, and prolonged training times [12]. To address these
constraints, Cho and colleagues developed the GRU, which features
a simplified architecture and enhanced training efficiency compared
to LSTM [13, 14]. As a result, GRU has gained widespread
application in short-term traffic flow forecasting [15], travel time
prediction [15], and highway speed estimation [16]. Meanwhile,
Ren’s research team employed a One-Dimensional CNN to extract
local traffic flow features, complemented by Recurrent Neural
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Network variants (including LSTM and GRU) to capture long-term
trend characteristics [17]. When, Yang’s group established in 2022
a hybrid CNN-GRU model for traffic volume prediction, where
spatial information is processed through CNN while long-term
sequential dependencies are captured via GRU [18]. As for, Yuan’s
research team, they integrated CNN and GRU to construct a unified
prediction model designed for enhanced accuracy in traffic time
series forecasting [19].

The unidirectional GRU architecture exhibits constrained
capacity for comprehensive sequential information extraction
relative to the BiGRU configuration. The Attention Mechanism
replicates the selective information processing paradigm observed
in human visual cognition. Neurological systems inherently filter
non-essential stimuli, transforming high-dimensional sensory
data into focused perceptual subsets. This biological process
facilitates efficient extraction of salient features from attended
information segments to optimize response efficiency [12, 20, 21].
Multiple research teams have developed predictive frameworks
integrating these computational architectures. For example, Ren
and colleagues developed a hybrid prediction model for power load
forecasting that integrates CNN, BiGRU, and Attention Mechanism
components [22], Nas research group proposed a combined
modeling architecture for time-series data prediction incorporating
CNN, BiGRU, and Attention Mechanism modules [23], Nius
research team established a hybrid modeling framework for multi-
energy load forecasting through integration of CNN, BiGRU, and
Attention Mechanism methodologies [24], Chai and collaborators
engineered a traffic flow forecasting system featuring CNN-based
feature extraction from traffic flow data, with BiGRU-Attention
Mechanism modules processing daily and weekly temporal traffic
patterns [20]. With, Chen’s research group put forward an improved
CBA model. This model was based on an enhanced Sparrow Search
Algorithm, aiming to boost the model’s robustness and accuracy
in the assessment of lithium-battery health status [25], Dai and his
colleague presented an enhanced variant of the whale optimization
algorithm is employed to optimize the hyperparameters in the CBA
model, leading to an elevation in the accuracy of predictions [2].
Sun’s research group employed the WOA algorithm to fine-tune
the hyper-parameters of the CBA model, this, in turn, brought
about an increase in the accuracy of satellite clock bias prediction
[26]. Wu and his team proposed a new prediction that fused the
Snow Ablation Optimization (SAO),CNN,BiGRU and Attention for
position prediction for space teleoperation, the SAO algorithm is
introduced into the hyper-parameter selection to solve the problem
that the custom selection way of hyper-parameter obviously cannot
guarantee optimality [27], and Yuan and his team proposed an
improved CBA model, which is based on the Northern Grey Wolf
Optimization Algorithm (NGO), for electricity load forecasting.
The NGO is employed to fine-tune the hyperparameters of the
BiGRU model [28].

With the advent of the Internet era, an increasing number
of netizens obtain information through clients such as computers
and mobile phones, using internet search engines to look for the
things they are interested in/or the needs they have. The changes
in the search volume of relevant information over a period of time
can indirectly reflect the future behavioral characteristics of the
events being concerned about. Therefore, scholars have incorporated
internet search information into the prediction model. Duan and
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his team combined the network search index with the GWO-
LightGBM- CEEMDAN model to develop a prediction model
for the proportion of influenza-like illnesses (ILI). The findings
indicated that the inclusion of the network search index enhanced
the model’s prediction accuracy [29]. Zhou et al investigated the
impact of the network search index on the early warning and
prediction of COVID-19 epidemic trends [30]. Guo et al merged
the network search index with the LSTM (LSTM) model to
construct a predictive model specifically designed for estimating the
incidence rate of hepatitis E. The results of this study highlighted
a subtle yet discernible correlation between the network search
index and the incidence of hepatitis E. Moreover, the trends
exhibited by the network search index were found to be largely
congruent with those of the hepatitis E incidence, suggesting a
potential utility of the network search index as an auxiliary tool for
monitoring and predicting the epidemiological patterns of hepatitis
E [31]. Dong et al proposed a GMM-CEEMD-SGIA-LSTM hybrid
carbon dioxide emission prediction model based on search engine
keyword search and carbon dioxide emission data, with the search
engine keyword search data having a strong correlation with CO,
emissions [32].

Tourists collect information such as accommodation,
transportation, weather, and travel guides through the internet
before traveling [33]. The massive data generated when tourists
use search engines is an objective reflection of their potential travel
demands [34] and a representation of their travel intentions [35],
featuring immediacy, predictability, and high accessibility.

The CNN-BiGRU-Attention Mechanism (CBA)

demonstrates efficacy in time-series forecasting. Recognizing

model

that Internet Search Index (ISI) data can reflect potential tourist
travel intent, this study proposes a CBA model incorporating
ISI to predict scenic spot tourist flow. The Maximal Information
Coefficient (MIC) algorithm is employed to screen highly relevant
features, including ISI-derived attributes. To enhance prediction
accuracy, this research integrates the Secretary Bird Optimization
Algorithm (SBOA) with CNN, BiGRU, and AM to construct a
hybrid predictive model, designated SBOA-CBAM. This model
utilizes MIC-filtered tourist flow and ISI data as input. The input
data undergoes feature vector extraction via CNN, followed
by bidirectional temporal sequence processing through BiGRU
to capture latent data characteristics. An attention mechanism
subsequently weights the BiGRU output states, emphasizing
critical tourist flow features to generate the final predictions.
The SBOA algorithm is applied to autonomously optimize the
hyperparameters of the CBA architecture, thereby augmenting
its fitting capability and predictive accuracy. Experimental results
demonstrate that the SBOA-CBAM model achieves statistically
superior performance in prediction accuracy compared to the
baseline CBA model.

1.1 Research contributions
This study presents the following main contributions:
o Integration of Search Index Data with Feature Selection:

Internet search index data, recognized as an indicator of
potential travel intent, is incorporated into the tourist flow
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prediction data set. The Maximal Information Coefficient
(MIC) algorithm is employed to rigorously screen and retain
only the most relevant features, including those derived from
the search index.

o Novel Hybrid Forecasting Architecture: A novel hybrid
architecture integrating Convolutional Neural Networks
(CNN), Bidirectional Gated Recurrent Units (BiGRU), and
an Attention Mechanism (AM), termed the CNN-BiGRU-
Attention (CBA) model, is proposed specifically for scenic
spots tourist flow forecasting.

The

Secretary Bird Optimization Algorithm (SBOA) is leveraged to

o Hyperparameter Optimization via Metaheuristics:
autonomously optimize the hyperparameters of the proposed
CBA model, thereby enhancing its predictive accuracy and
generalization capability.

o Empirical Validation and Comparative Analysis: The
effectiveness of the resulting SBOA-CNN-BiGRU-Attention
(SBOA-CBAM) model is rigorously validated using tourist
flow data from the Jiuzhaigou Scenic Area spanning 1 January
2013 to 31 July 2017. Comprehensive comparative experiments
demonstrate its superior performance over established baseline
models, including the CBA model itself, Backpropagation
Neural Networks (BP), Support Vector Machines (SVM) and
Extreme Learning Machines (ELM).

1.2 Organization

The remainder of this paper is structured as follows: Section 2
delineates the theoretical foundations and algorithmic workflow
of the Secretary Bird Optimization Algorithm (SBOA), while
the Section 3 elaborates on the formulation and implementation
procedures of the proposed SBOA-CBAM (Secretary Bird
Optimization ~ Algorithm-Convolutional =~ Neural = Network-
Unit-Attention Mechanism)
modeling framework. Section 4 empirically validates the predictive
performance of the SBOA-CBAM model. Finally, Sections5, 6
present the concluding remarks and policy implications.

Bidirectional Gated Recurrent

2 Secretary bird optimization
algorithm

The Secretary Bird Optimization Algorithm (SBOA), proposed
by Fu in 2024, is a swarm intelligence-based metaheuristic. The
algorithm’s optimization process comprises three distinct phases
which are as follows; an initialization phase, a prey hunting phase
(exploration), and a predator evasion phase (exploitation). Details
are shown as below [36, 37].

2.1 Initial preparation phase

During the early stages of SBOA deployment, the initialization
of the search domain for the Secretary bird algorithm is
implemented using Equation 1.

X;j=Ibj+rx(ubj~1b;),i=12,..,N,j=1,2,....,Dim (1)
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where Xi,j,

bird’s position, along with its upper and lower limits, respectively;

Ibj, and ub; are symbols for denoting the ith secretary

and the variable r is a random number between 0 and 1.

SBOA is a population-based method that is initially used to
optimize the number of candidate solutions through Equation 2.
Each iteration generates a random candidate solution X within the
problemss interval. The current optimal solution is approximated as
the optimal solution of each iteration.

X X Xy Xipim ]
X1 X o Xy o Xopim
X= (2)
Xz 1 Xi,2 Xi,j e Xi,Dim
LXng Xne o Xy Xnpim NxDim

Every single secretary bird denotes a possible answer to an
optimization problem. Consequently, the objective function for
which it can be calculated relied on the values of the variables
obtained from each secretary bird. On this basis, Equation 3 is
employed to turn the resulting objective function value into a vector.

[ Fy ] [ X)) ]
F=1|F, =| fX) )
“FN‘NXI 'f(XN) ~ Nx1

Here, the objective function values of secretary birds are denoted
by the vector E with F; representing the value of the ith bird’s
objective function. Evaluating the quality of a candidate solution
involves comparing these objective function values to determine the
best solution for a particular problem. In the course of each iteration,
the positions of the secretary birds and the values of the objective
function undergo updates. It is therefore crucial to continuously
identify the optimal candidate solution at each step. This iterative
process ensures that the final solution chosen is the most effective
for solving the problem at hand.

2.2 Secretary birds’ strategies of hunting
for prey (exploration phase)

Secretary birds undergo three distinct stages when hunting
snakes: locating their prey, depleting the prey’s energy, and then
attacking. The hunting process of secretary birds are evenly
divided, with each stage occupying an equal time interval, each
corresponding to one of the following bird’s hunting stages: locating,
depleting, and attacking prey.

2.2.1 Stage 1 (prey locating, t < %T)

Secretary birds initiate their hunt by seeking out likely prey, such
as snakes. Their exceptionally sharp vision allows them to detect
snakes concealed within the high grasses of the savannah swiftly.
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Consequently, the secretary bird’s positional updates method in
the prey-searching stage is modeled using the Equations 4, 5:

newP1

xi,j = xi,j + (xrandom] - xrandomz) X R1 (4)

X?ew,Pl’ifF?ew,Pl < F,‘
Xi = (5)
X;,else

where t signifies the current iteration count; T indicates the

P1 e
W refers to the new condition of

maximum limit of iterations; X?
the ith secretary bird in the early stage; xrandom1 and xrandom2
are the random candidate solutions for the initial phase iteration;
RI denotes an array that is randomly generated with dimensions

(1 x Dim), ranging from 0 to 1; Dim refers to the solution space’s

Xnew,Pl
i

signifies the fitness value of its goal.

dimension; signifies the value of its jth dimension; F/**""

2.2.2 Stage 2 (prey consuming, %T< t< %T)

When the secretary bird spots the snake, it will adopt a special
hunting method. Unlike other birds that will immediately attack
prey, the secretary bird often relies on its nimble footwork to navigate
around serpents. The secretary bird stands still, watching the snake’s
every move from above based on its sharp perception analyzing the
snake’s movements. The secretary bird hovers, jumps, and gradually
irritates the snake to consume the snake’s patience and power. In
this phase, Brownian motion (RB) is applicable for simulating the
stochastic movement of the secretary bird via Equations 6, 7.

x?jewPl = X + €xp((t/T)"4) X (RB - 0.5) x (xbest - x,-,j) (6)

X?ew’Pl,ifF?ew’Pl <Fi
Xi = (7)
X else

where, RB = randn(1,Dim),1xDim Random arrays are generated
using randn (1, Dim) following the standard normal distribution,
with xbest is the current optimal value.

2.2.3 Stage 3 (prey attacking, t > %T)

Upon the snakes exhaustion, the secretary bird discerns
the opportune moment, expeditiously engages its powerful leg
muscles, and launches an offensive against the snake. For this
reason, the secretary bird uses the following partition described in
Equations 8-12 to update its position during this.

t t
(- et

X;’lew,Pl , ifF;]ew,Pl <F.

X, = ’ ©)
X, else

The use of weighted Levy flight, known as RL, improves the
accuracy of optimization processes. This method enhances precision

by allowing for more efficient exploration of potential solutions in
the optimization process.

RL = 0.5 x Levy(Dim) (10)

Here is the function expression provided for Levy (Dim):

VX0

; (€3))

vl

Levy(D) = s x
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The equation involves fixed value s = 0.01 and n = 1.5. Random
variables U,V fall between 0 and 1. The symbol ¢ is determined by a
specific calculation process.

F(1+11)><sin(?) n
(&) (L)

In this equation, the symbol I' denotes the gamma function and

1+7y (12)

2
the parameter 7 is equal to 1.5

2.3 Secretary birds’ strategies of escaping
from predators (exploitation phase)

The secretary bird’s natural enemies are large predators. The first
strategy of escaping from predators is to run away or run fast, while
the second strategy is camouflage, making them harder for predators
to spot them.

The first strategy is modeled by the Equation 13.

2
Clszest+(2><RB—1)><(1—%) xx;;,if rand <,

new,P2 _
Xi,j =
Cyix;j+ Ry x (xrandom -Kx x,-)j),else
(13)
Equation 14 expresses the second strategy.
Xnew,PZ ianew,PZ <F.
X=4 " ' ’ (14)
X, else

where, C, denotes the strategy of environmental camouflage; C,
represents the strategy of flying or running away; r = 0.5; R,
represents the randomly-generated array which has the dimension
(I1xDim) and obeys the normal distribution, xrandom represents the
random chosen solution.

Random integer 1 or 2 represented by K, calculated
as follows Equation 15:

K =round(1 + rand(1,1)) (15)

2.4 SBOA workflow

The workflow chart of SBOA is shown in Figure 1.

2.5 Feasibility analysis of the selected
algorithms

The CEC2017 typical function set contains 29 functions,
covering unimodal, simple multimodal, hybrid, and composite
functions, and is commonly used to evaluate the performance of
optimization algorithms. To verify the feasibility of selecting the
SBOA algorithm, this paper selects 10 typical functions from it for
testing. Among them, unimodal functions F1 and F3 are chosen
to test the convergence ability of the algorithm, simple multimodal
functions F4 and F7 are selected to examine the ability to jump out of
local optima, hybrid functions F12 and F15 are picked to assess the
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capability of handling complex combined functions, and composite
functions F22, F25, F28, and F30 are selected to test the optimization
ability in highly complex scenarios. Meanwhile, comparisons are
made with the Hiking Optimization Algorithm (HOA) [38], Harris
Hawks Optimization (HHO) [39], Whale Optimization Algorithm
(WOA) [40], Particle Swarm Optimization (PSO) [41] and Genetic
Algorithm (GA) [42]. The population size is set to 30, the number
of iterations is 1,000, and the number of runs is 30. Figures 2-4
show the average convergence curves, box plots, effect radar charts,
and bar charts of the 5 algorithms when optimizing the above 10
functions.

As can be seen from Figures 2-4, when the five algorithms
including SBOA, HOA, HHO, WOA, PSO, and GA are used to
optimize 10 functions such as F1, F3, F4, F7, F12, F15, F22, F25,
F28, and F30, SBOA shows better and more stable optimization
performance.

3 SBOA-CNN-Bigru-attention model
3.1 Convolutional neural networks (CNN)

A Convolutional Neural Network (CNN) constitutes a specific
variety of feedforward neural network. It is characterized by
convolutional computations and a deep-layered architecture. CNNs
extract local features of the input data through convolutions
and generate complex feature representations via multi-layer
convolutions and pooling. The key components of a CNN include
the input layer, convolutional layer, pooling layer, and fully
connected layer, as illustrated in Figure 5. The input layer is
mainly responsible for receiving the initial samples. Meanwhile, the
convolutional and pooling layers play vital roles in dimensionality
reduction and feature extraction [43-45].

3.1.1 Convolution layer

The convolution layer is responsible for the extraction of local
features from input data via the process of convolution. Each
convolution kernel within the convolution layer is capable of
extracting a specific feature, and multiple convolution kernels can
operate in parallel to extract a variety of features. The product
operation is verified by the following Equation 16 [2, 46, 47].

H W
_ )
= Z z wi,j X xi”i,j’”

i=0i=0

I+1
1 )jl+1

X (16)

where, w; j denotes the weights derived from the convolution kernel.
it j“j represents the position coordinates of the result of the
convolution operation. For the processing to be precise, these

coordinates have to meet the subsequent Equation 17 [2, 46, 47].

0<i' <H'-H+1
0<~l+1 (o a7)
<KW -W+1

3.1.2 Pooling layer

The pooling layer constitutes an essential and fundamental
element within the framework of deep-learning neural networks.
It serves as a crucial architectural component that contributes
significantly to the overall functionality and performance of these
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: | Update Xiusing C1 Eq.(14) ‘ lUpdate Xiusing C2 Eq.(14)

Update the fitness of Xi and Xbest

le
“

End

FIGURE 1
The SBOA workflow.

Return the Xbest

networks. Frequently employed to shrink the spatial dimensions
of the initial sample, decrease the computational complexity,
mitigate overfitting and extract key features from the initial sample.
Consequently, it leads to a decreased parameter count and enhanced
computational efficiency. Crucial pooling operations, including
average pooling and max-pooling, assume central and indispensable
functions in this procedure [2, 46, 47]. The pooling Layer is
expressed as Equations 18, 19:

H W
I+1 1 ] - :
X = —— X, XH+i,jx W= (18)
o HW;FO ! j j
I+1 ! o :
X = max x,xH+ijxW+ 19
o jin = AKX j j (19)

3.1.3 Fully-connected layer

The fully-connected layer combines the features that have been
extracted from the previous layer, enabling it to carry out subsequent
tasks like classification or regression. Every neuron in this layer
forms connections with every single neuron in the layer that comes

Frontiers in Physics

before it [2, 46, 47], and modeled as Equation 20:

K = f(wxl+ b) (20)
where, the f, w, b denotes the activation function, along with the
matrix of weights and the matrix of biases.

3.2 Bidirectional gated recurrent unit
(BiGRU)

The BiGRU model introduces a bidirectional structure to
the GRU model to better capture the bidirectional dependency
of sequence data. Comprising two separate GRU units, one
for processing forward time series data and the other in a
backward time series. The BiGRU model develops a full and in-
depth understanding of the sequence. This particular architecture
facilitates the model’s ability to incorporate both the prior and
subsequent information of the data, thus facilitating better pattern
recognition and prediction accuracy. Additionally, the BiGRU
model incorporates key components such as reset gate, update gate,
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Average convergence curves of different algorithms.
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FIGURE 3
Box plots of different algorithms.

and a new candidate state, which together contribute to its superior
performance in modeling sequential data [48, 49].

3.2.1 Reset gate
The Reset Gate is expressed as Equation 21 [50]:

re=0o(W,- [y, x] +b,) (21)

Frontiers in Physics
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The symbol r, denotes the activation signal used to reset the
gate at a given moment, 0 means the S-shaped function used
for activation, W, indicates the specific weight matrix of the
reset gate, h,_; displays the concealed state of the time interval
that came before, x, implies the input vector existing at the
current time and b, represents the bias element associated with
the reset gate.
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3.2.2 Update gate h represents the potential hidden state at time t. The matrix W
The Update Gate is expressed as Equation 22 [47]: contains the weights of the candidate’s hidden state. The symbol
b stands for the bias component. The asterisk (*) indicates the
zy=0o(W,-[h_px] +b,) (22) P

Hadamard product of the elements.

z, represents the activation signal relevant to the update mechanism
at a designated time. Matrix W, indicates the weight parameters of ~ 3.2.4 Final hidden gate
the update gate. b, indicates the inherent bias of the update gate. The Equations 24-27 are related of the expression of Final
hidden gate [49].
3.2.3 Candidate hidden gate
The following Equation 23 is the expression of Candidate hy=z,+h_ +(1—z,) *h, (24)
hidden gate [12]:
h, represents the ultimate hidden state at this juncture. BiGRU is a

hy = tan h(W- [r, # hy_y,x,] + b) (23) variant of artificial neural networks that enhances the capabilities
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FIGURE 6
The Diagram of the BiGRU structure.

of GRU, enabling it to manage temporal information within data
that evolves over time. It processes data bidirectionally: from past
to present and from present to future [51].

I’_l; = GRU(xt,)f(wlxt + wzm) (25)
h_t = f(w3xt + “’sm) (26)
hy = g(w,h; + wehy) 27)

The innovative BIGRU model combines forward and backward
GRU components, allowing it to gather insights from past and
future data. Thanks to this singular structure, the model gains
an improved ability to interpret the sophisticated relationships
present in the data. Figure 6 shows the model structure. As
can be seen, h, denotes the hidden state with time step t,
which is made up of both the forward and backward hidden
states h,, h, h, determined by the current input x and the
corresponding hidden states }T,{ , }Tt determined by the current
input x and the corresponding hidden states z,,,. The details are
shown in Equations 30-32, where w (i = 1, 2 ..., 6) denotes the
interlayer weights.

3.3 Attention mechanism

The attention mechanism is based on the workings of the human
brain, where various parts are responsible for processing different
types of information. Figure7 illustrates how the attentional
mechanism works. The formula for it is shown below from the
Equations 28-30. This method enhances processing efficiency by
focusing on significant elements, much like how our brain prioritizes
information [28].

e; = utan h(wh; + b) (28)
a, = so ft max (e,) = pr—(et) (29)
ijlexp (ej)
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(30)

3.4 SBOA-MIC-CBAM Hybrid Neural
Network model

3.4.1 Maximal information coefficient

Maximal Information Coefficient (MIC) serves as a tool for
quantifying the association existing between two characteristic
variables. Its main idea is to divide the scatter plot of two related
variables into grids. The probability density of the scatter points can
be used to measure the mutual information coeflicient between the
two variables, thus capturing both linear and nonlinear associations.
It belongs to an unsupervised learning method. Different ways of
drawing grids will cause the samples to fall into different two-
dimensional grids. By counting the number of scatter points in each
grid interval and comparing it with the total number of samples, the
joint distribution p(x, y) of the grades and contents can be obtained.
Combining with the characteristic marginal distribution p(x) and
the target marginal distribution p(y), the relative entropy between
the grade of the base wine and the substance content, that is, the
mutual information I(x, y), can be calculated via Equation 31 [8, 52]:

I(x,y)
max

MIC(x,y) = T oo
(.7) xy<B(n) log, (min (x,y))

(31)
X,y represents two random variables; xy < B and B are the upper
limits of the number of grids (functions of the sample size n, usually
taking the value of B = n%%); I(x, ) is the value of mutual information
[8] expressed as the Equation 32:

p(x.y) i
pep()

Through the normalization processing of MIC, it can be
concluded that: the threshold value of MIC lies within the interval
of [0, 1]. And when the threshold value of MIC is in the range of
[0, 0.4), there is no correlation; when the threshold value of MIC is
in the range of [0.4, 0.7), there is a correlation; when the threshold

I(x,y) = jp(x,y) log2 (32)

value of MIC is in the range of [0.7, 1), there is a strong correlation.

3.4.2 SBOA-CBAM neural network model

Figure 8 depicts how the CBA model is used to predict how many
tourists will visit a scenic spot at a given time.

The SBOA-CBAM, designed for predicting tourist flow intervals
in scenic spots, has five prediction steps; the detailed workflow is
shown in Figure 9 [43].

Step 1: Data Preprocessing; Perform processing such as feature
encoding and decomposition. The data that is screened by
the MIC algorithm for importance is classified into two part,
comprising 80% and 20% of the sample, respectively, one is
used for training, and the other is used for testing. These
sets are then normalized using the mapminmax method.
This preprocessing step is crucial for effectively training and
testing machine learning models. Normalization ensures
that all data falls within a consistent range, preventing
biases in the model’s performance.
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FIGURE 7
The structure of the attention unit.
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The SBOA
parameter

Step 2: Hyperparameters
algorithm  was

model  Optimization;
employed to the
configurations for the CBA model in terms of the Initial
Learning Rate, GRU Hidden Units, Global Dropout
Probability, Attention Heads, Attention Output Dimension,
Convolutional Filters, Convolutional Kernel Size, Fully-
Connected Neurons, L2 Regularization Coefficient. After

tune

optimizing its hyperparameters with SBOA, the model was
trained and evaluated using RMSE. If the RMSE was small,
the optimal hyperparameters would be found; otherwise, the
optimal hyperparameters would not be obtained, and the
optimization process was repeated until the RMSE would
reach a better value.
Step 3: Building of the optimized network; The optimized CBA
network was built using the optimized hyperparameters
from Step 2. Training parameters were set, the network was
trained, and location prediction was performed.

Frontiers in Physics

3.5 Evaluation criteria

This study employed five distinct methods to assess the accuracy
of a tourist flow prediction model, aiming to forecast the number
of visitors a scenic spot will receive. The methods used to measure
accuracy include R?, MSE, RMSE, MAE, MAPE. The formula for
determining error can be found in sources [53, 54] and expressed by
Equations 33-37:

N N
R = I_Z(yi_);i)z Z()’z‘_;)z (33)
i=1 i=1
1 N
MSE = NZ()’;“?:‘)Z (G4
i=1
] N
RMSE = K]Z(yi— 7, (35)
i=1
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N
MAE = %Z ly, 7| € [0,+00) (36)
i=1
100% <= | ¥; =
MAPE = == (37)
izl Vi

where, y; represents the real data, y;, stands for the models
estimates, N signifies the sample size, and y is the mean of the
observed data.

4 Case analysis
4.1 Selection of fusion factors

Referring to references [4, 55], China’s Jiuzhaigou Valley was
chosen as an illustration to prove the practicality of the suggested
algorithm. The daily tourist flow data set of Jiuzhaigou Valley in
China from 2012 to 2017 was chosen as the prediction data for the
model. At the same time, factors such as the date X, season X,,
climatic characteristics X5, temperature (maximum temperature X,,
minimum temperature X5, average temperature X,), holidays X, the

Frontiers in Physics

tourist flow during the corresponding period of the previous year
X, and seven network keywords (Jiuzhaigou Valley X, Jiuzhaigou
Valley map X, scenic spots in Jiuzhaigou Valley X, hotels in
Jiuzhaigou Valley X,,, travel guides for Jiuzhaigou Valley X,
tickets for Jiuzhaigou Valley X,,, weather in Jiuzhaigou Valley X 5)
are selected as the features for predicting the tourist flow in the
scenic area.

4.1.1 Season
In order to verify whether the natural seasons of the
environment affect the accuracy of tourist flow prediction, the
12 months of every year are partitioned into four segments in
accordance with the four seasons: spring, summer, autumn, and
winter. The following “multiple dummy variables” are introduced to
represent different seasons [4], with S representing the seasons, and
its encoding results can be expressed as Equation 38.
1 Spring
2 Summer
S= (38)
3 Autumn

4 Winter

frontiersin.org


https://doi.org/10.3389/fphy.2025.1653758
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Wang et al.

4.1.2 Climatic characteristics

In order to determine whether the weather and climate affect
the accuracy of tourist flow prediction, three categories are used
to classify the weather conditions: sunny, rainy days (heavy rain,
torrential rain, sleet, light snow), and snowy days (heavy snow). The
following “multiple dummy variables” are introduced to represent
different weather conditions, with W representing the weather, and
its encoding results can be expressed as Equation 39.

1 other weather

W = 4 4 Rainy weather (39)

7 Snowy weather

4.1.3 Statutory holidays

Studies have shown that working days, weekends, statutory
holidays, etc., have a certain impact on the daily tourist flow of scenic
areas. In order to make the quantitative results better explain the
influence of different holidays, this paper distinguishes the 365 days
of the whole year according to working days, weekends, Labor Day,
Spring Festival, National Day, and other statutory holidays, and
introduces the following “multiple dummy variables” to represent
different holidays, with H representing the holidays, and its encoding
results can be expressed as Equation 40:

0 Workday
1 Weekend
H=143 Others Legal Holiday (40)
6 Labour Day
(9  Spring Festival, National Day

Special note: When weekends and statutory holidays form a
continuous vacation, this paper defines it as a statutory holiday, and
it will be processed according to the above model.

4.1.4 Baidu index

By synthesizing the keywords selected in literature such as [56],
the keywords selected in this paper are determined as follows:
Jiuzhaigou Valley (Index1), Jiuzhaigou Valley Map (Index2), Scenic
Spots in Jiuzhaigou Valley (Index3), Hotels in Jiuzhaigou Valley
(Index4), Travel Guides for Jiuzhaigou Valley (Index5), Tickets
for Jiuzhaigou Valley (Index6), and Weather in Jiuzhaigou Valley
(Index7). The daily network search data of these seven Baidu Indexes
from 2013 to 2017 were extracted, as shown in the Figure 10.

4.2 Feature screening

This study focuses on analyzing the visitor flow at the Jiuzhaigou
Valley Scenic and Historic Interest Area in China. In light of the
tragic 7.0-magnitude earthquake that struck Jiuzhaigou County in
2017, causing the area to temporarily close for restoration and
reconstruction, the Jiuzhaigou Scenic Area officially reopened on
12 July 2024. Therefore, this paper used the passenger flow of the
Jiuzhaigou Scenic Area from 1 January 2013, to 8 August 2017, as the
basic data to make the original data more convincing. The passenger
flow of the Jiuzhaigou Scenic Area from 1 January 2013, to 31 July
2017, is shown in Figure 11.
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4.2.1 Data Preprocessing
Date
Continuous variables adopt 7-day moving median imputation for

continuity validation supplements missing dates.
missing values, categorical variables implement nearest-neighbor
imputation for missing values, and the IQR method processes

anomalies.

4.2.2 Feature engineering

o Temporal features: Date variables are decomposed into
three fundamental variables: year, month, and day. Day-
of-Year (DOY) and weekday ordinal are introduced as
temporal features, with trigonometric encoding (sine/cosine
transformation) applied to both.

Meteorological features: A 5-day moving average temperature

feature is introduced. Trapezoidal membership functions

based on the pentadic temperature method calculate seasonal
probability distributions by fuzzy logic.

« Holiday features: Statutory holidays are one-hot encoded while
a dynamic window lag matrix (pre-/post-holiday markers) is
constructed.

« Baidu indices: Baidu index features undergo adaptive period
detection (ACF peak identification), STL decomposition
(trend/seasonal/residual), and residual smoothing, significantly
enhancing their information density.

o Tourist flow: Skewness detection is performed on previous-

year’s tourist flow (Prev Year) and daily tourist flow (Tourist

Flow). Features meeting threshold criteria undergo logl0

(1+x) transformation, thus effectively improving distribution

morphology.

4.2.3 Preliminary feature screening

The Maximal Information Coeflicient (MIC) calculates
nonlinear correlations between features and target variables across
different lag steps. Initially screened features meeting criteria
have their optimal lag orders extracted. The MIC coefficients
and importance degrees of each feature are shown in Figure 12.
According to literature [8] combined with the situation of the
MIC coefficients in the Figure 12, the features with correlation
coefficients greater than 0.3 are retained, and other features
are eliminated, 14 features are retained. Table 1 represents
the MIC coeflicients of each feature, the lead times and the
ranking results.

4.2 4 Feature refined screening

Based on preliminary MIC screening results, the feature
matrix is reconstructed through PACF significance test. Expanding
window cross-validation is employed to evaluate feature predictive
capability for refined screening. This process retains only lag
information from Baidu indices while forcibly preserving all derived
variables of holiday features, thus ultimately reconstructing the
final dataset.

At this stage, every input variable of the prediction model has
been settled, and the function of the prediction model can be
formulated as Equation 41.

Y = F(Xy, X5, X Xg» Xos X 13, X155 ) (41)
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4.3 Data processing

The final dataset is classified into two parts, comprising 80% and
20% of the sample, one is used for training, and the other is used
to testing, respectively. To ensure accurate analysis, a normalization
technique was implemented to standardize the data within the range
of [0,1]. The normalization equation used for this purpose can be
succinctly expressed as Equation 42:

X~ Xmin

*

X

(42)

Xmax ~ Xmin

where X* symbolizes the standardized data, x stands for the original
data, and x, denote the maxima and minim,
respectively, within the given example data.

max as well as x .

4.4 Prediction model and results

To enhance the accuracy and reliability of the proposed tourism
demand prediction model, this paper conducted a comparative
analysis involving multiple models, including the CBA model, its
SBOA-optimized variant (SBOA-CBA), BP neural network, SVM,
and ELM. Basic parameters of each model are detailed in Table 2.

The parameters of the CBA model were compared before and
after optimization, with the results displayed in Table 3. This study
highlights the significance of parameter optimization in improving
the overall performance of predictive models.

The prediction results and errors of the five models, namely,
the CBA model, SBOA-CBA, BP neural network, SVM, and ELM,
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can be observed from Figures 13-16. Specifically, Figure 13 displays
the prediction results of the five models on the training dataset,
while Figure 14 illustrates the prediction errors of the five models
for the training dataset. Figure 15 presents the prediction results of
the five models on the testing dataset, and finally Figure 16 shows
the prediction errors of the five models for the testing dataset. From
the visualizations in Figures 13-16, the performance ranking of the
models can be clearly ordered as follows: SBOA - CBA > CBA model
> SVM > BP neural network > ELM. These visuals provide valuable
insights into the performance comparison among the models.

The results of R?>, MAPE, MAE, MSE, and RMSE for the
scenic spot tourist flow prediction models established using
the Convolutional-Bidirectional-Attention Model (CBA), BP
(Backpropagation Neural Network), SVM (Support Vector
Machine), and ELM (Extreme Learning Machine) are presented
in Table 4. Figures 17-19 show the visual comparisons of the R?,
MAPE, MAE, MSE and RMSE metrics among the five models.

As can be seen from Figures 17-19 and Table 4, compared with
the BP, SVM, and ELM models, the CBA model ranks first in
both MAPE (19.75%) and R* (0.8491), indicating its significant
advantages in terms of relative error control and overall goodness of
fit. The improvement in R? shows that the CBA model can explain
more than 84% of the variation in tourist flow, providing highly
reliable inputs for subsequent resource scheduling and dynamic
pricing. The significant reduction in MAPE (a 25.3% decrease
compared with BP and a 34.5% decrease compared with ELM)
directly meets the business demand for “percentage accuracy”. In
terms of absolute error metrics, the MAE (2.5103 x 10°), MSE
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(1.7431 x 107) and RMSE (4.1751 x 10%) of the CBA model are
slightly lower than those of the SVM model but are 21.2%, 32.9% and
18.1% better than those of the ELM model, respectively. Meanwhile,
the “suboptimal” performance of the absolute error metrics (MAE
and RMSE) can be partially attributed to the natural occurrence
of abnormal peaks in scenic spot tourist flow (such as extreme
weather and emergencies). These outliers exert an asymmetric
amplifying effect on both squared losses (MSE/RMSE) and absolute
losses (MAE). Therefore, the leading performance of MAPE and
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R? is more valuable for decision-making than the absolute error
metrics. Additionally, the CBA model extracts local spatiotemporal
features of tourist flow sequences through convolutional layers, and
then uses a bidirectional attention mechanism to capture long-
range dependencies and external disturbances such as holidays.
This not only maintains the interpretability of the model but also
significantly reduces the risk of underfitting to high-dimensional
nonlinearity, which is a common issue in traditional methods. Thus,
there are sufficient theoretical and practical bases for adopting
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TABLE 1 MIC coefficients of selected feature, the lead times.

Variable name

10.3389/fphy.2025.1653758

Variable type

1 Day Of Year (DoY) — 0.5979 5 1 derived variable
2 DoY_cos — 0.5785 12 2 derived variable
3 Minimum temperature X5 0.5576 2 3 original variable
4 Index7 X15 0.5505 3 4 original variable
5 SeasonSummer — 0.5463 14 5 derived variable
6 SeasonWinter — 0.5463 14 6 derived variable
7 Month — 0.543 9 7 derived variable
8 Previous year data X8 0.5314 0 8 original variable
9 Mean temperature X6 0.5308 12 9 original variable
10 Index1 X9 0.4673 1 10 original variable
11 Maximum temperature X4 0.4623 12 11 original variable
12 SeasonSpring — 0.4236 1 12 derived variable
13 DoY_sin — 0.3347 11 13 derived variable
14 Index5 X13 0.334 5 14 original variable

TABLE 2 Basic parameters of each mode.

Model Key parameters

BP Neural Network Number of hidden layer nodes = 7, Regularization coefficient (\) = 0.3, Learning rate = 0.01, Number of iterations = 50, Hidden layer
activation function = logsig, Output layer activation function = purelin.
SVM Penalty parameter C = 0.033, Kernel parameter y = 0.027, Kernel function = RBE, Insensitivity parameter & = 0.2.
ELM Number of hidden layer nodes = 200, Activation function = sig, TYPE = Regression.

CNN-BiGRU-Attention

Convolutional kernel size = [3,1], Number of filters = 32, Number of GRU neurons = 48, Number of attention heads = 2, Attention key
dimension = 12, Dropout = 0.15, MaxEpochs = 50, MiniBatchSize = 64, InitialLearnRate = 0.01, LearnRateDropFactor = 0.5,
LearnRateDropPeriod = 15, GradientThreshold = 1, L2Regularization = le-4.

SBOA-CNN-BiGRU-Attention

Population size = 20, Maximum number of evolutionary generations = 10, Optimized parameters: Initial Learning Rate, GRU Hidden
Units, Global Dropout Probability, Attention Heads, Attention Output Dimension, Convolutional Filters, Convolutional Kernel Size,
Fully-Connected Neurons, L2 Regularization Coefficient. Network structure parameters are the same as CNN-BiGRU-Attention.

the CBA model as the benchmark model for scenic spot tourist
flow prediction.

As can be seen from Figures 17-19 and Table 4, after globally
optimizing 9 key hyperparameters of the CBA model, including
Initial Learning Rate, GRU Hidden Units, Global Dropout
Probability, Attention Heads, Attention Output Dimension,
Convolutional Filters, Convolutional Kernel Size, Fully-Connected
Neurons, and L2 Regularization Coefficient, using the Sandpiper-
Bird Optimization Algorithm (SBOA), metrics such as R%, MAPE,
MAE, MSE, and RMSE have all been improved. The R? value
increased from 0.8491 to 0.8835, with a growth rate of 3.90%,

Frontiers in Physics

17

indicating a significant enhancement in the model’s ability to
explain tourist flow fluctuations. The RMSE decreased from 4.1751
x 10% to 3.4821 x 10 (/19.90%), the MSE dropped from 1.7431
x 107 to 1.2125 x 107 (|43.77%), the MAE reduced from 2.5103
x 10° to 2.2379 x 10° (|12.17%), and the MAPE declined from
0.1975 to 0.1824 (| 8.32%). By adaptively adjusting the learning rate
and L2 regularization coeflicient, the overfitting phenomenon was
effectively suppressed. Through optimizing the convolutional kernel
size and the number of filters, the convolutional layers maintained
efficient computational performance while capturing multi-scale
spatiotemporal features. By regulating the Attention Heads and
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TABLE 3 CBA model parameters before and after optimization.

10.3389/fphy.2025.1653758

Variable name Lower bound Upper bound SBOA-CAB
Initial Learning Rate le-4 le-2 2.9e-03 1.2e-03
GRU Hidden Units 32 128 48 40
Global Dropout Probability 0.10 0.35 0.14 0.11
Attention Heads 2 8 2 2
Attention Output Dimension 8 48 8 22
Convolutional Filters 32 96 32 48
Convolutional Kernel Size 3 7 3 3
Fully-Connected Neurons 12 48 16 12
L2 Regularization Coefficient le-6 le-3 6.0e-05 3.2e-05
;e Daily Tourism Demand Prediction Results (Training Set) | 5 et Prediction Errors (Training Set)
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FIGURE 13
Predicted results (training set).

Output Dimension, the model’s sensitivity to external shocks such
as holidays and sudden weather changes was significantly enhanced.
To summarize, the CBA model had already demonstrated better
predictive performance than traditional algorithms in the initial
comparison, while the SBOA-CBAM not only further reduced the
prediction error but also significantly improved the model’s accuracy
in characterizing the spatiotemporal nonlinear coupling of scenic
spot tourist flow, providing scenic spot management departments
with a more robust and real-time decision support tool.

4.5 Model stability testing

Section 2.5 conducted a comparative analysis evaluating the
performance of SBOA, HOA, HHO, WOA, PSO and GA algorithms
on a subset of the CEC2017 benchmark test functions. The
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FIGURE 14
Predicted error (training set).

results demonstrate that SBOA achieved the top rank among the
tested functions, exhibiting superior optimization capability and
high stability. This provides theoretical justification and relevant
arguments for using SBOA to optimize the hyperparameters of
the CNN-BiGRU-Attention model. To thoroughly validate the
optimization effect and confirm that the SBOA-optimized model
delivers stable and significant performance improvements compared
to the original model, this study designed an experimental scheme of
“single optimization followed by multiple training”, more precisely:
After fixing the hyperparameters obtained via a single SBOA
optimization run, 30 independent training sessions were conducted
to compare the performance of the model before and after
optimization. The specific implementation steps are as follows:

« Single Optimization: The SBOA algorithm was executed only
once to obtain a fixed set of hyperparameters.
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Predicted results (testing set).
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Predicted error (testing set).

o Fixed Architecture and Data Partitioning: The architecture
of the  CNN-BiGRU-Attention
unchanged, and a fixed 80/20 training set/test set split

model  remained
was employed.

o Paired Initialization: Each training session utilized paired
random seeds for weight initialization, ensuring experimental
reproducibility and fair comparison.

o Statistical Evaluation: Using the test set’s Root Mean Square
Error (RMSE) and Mean Absolute Error (MAE) as paired
samples, a one-tailed Wilcoxon signed-rank test (significance
level a = 0.05, testing the direction that the optimized model
is superior) was performed. Cohen’s d effect size and its 95%
Bootstrap confidence interval were calculated to quantify the
strength of the optimization effect.

Frontiers in Physics

19

10.3389/fphy.2025.1653758

This scheme aims to comprehensively evaluate the optimized
model’s performance stability, its disturbance resistance and its
compatibility with the target architecture. The experimental results
are presented in Table 5 and Figure 20.

Figure 20 presents the error distributions of the CBA and SBOA-
CBA models across the 30 independent repeated experiments.
The boxplots demonstrate that, compared to the pre-optimization
model (red), the distributions of both RMSE and MAE for
the optimized model (blue) exhibit a median reduction of
approximately 15.39% and 9.36%, respectively. Furthermore, the
overall downward shift of the box indicates a systematic reduction
in the error.

The results from the 30 independent repeated experiments
demonstrate a significant overall reduction in error on the
test for the SBOA-optimized CNN-BiGRU-Attention
model. RMSEs Mean decreased from 4,126.1 (95% CI:
3,947.5415-4,340.0192) to 3,491 (95% CI: 3,382.1120-3,639.9699),
representing a 15.3930% reduction. Mae’s Mean decreased from
2,540.1 (95% CI: 2,455.1740-2,622.2819) to 2,302.2 (95% CI:
2,236.4925-2,381.9094), representing a 9.3626% reduction. The
Wilcoxon signed-rank test indicated that the improvements in both
metrics were highly statistically significant (RMSE: p = 0.0001; MAE:
p = 0.0007). Effect size analysis further confirmed the practical
significance of the optimization: Cohen’s d for RMSE = 0.8982
(large effect), Cohen’s d for MAE = 0.7028 (medium-to-large effect).
In conclusion, the SBOA algorithm not only significantly improved

set

the model’s prediction accuracy but also enhanced its stability and
disturbance resistance.

5 Conclusion and future work
5.1 Major contribution

The sharp increase in tourists has resulted in congestion,
overcrowding, safety-related incidents, and low tourist satisfaction.
Real-time tracking and forecasting of tourist flow data in scenic
spots can help managers plan resources more rationally, optimize
services, and increase tourist satisfaction. At the same time, it
can serve as a valuable resource for tourism planning. To address
this problem, the SBOA-CBAM tourist flow prediction model
was proposed. CNN captures the spatial feature relationship of
past passenger flow information; BiGRU detects dynamic changes
and pays attention to key features in conjunction with the
attention mechanism, while the hyperparameters of the model were
refined through the utilization of the SBAO algorithm. Ultimately,
comparative simulation trials proved the efficiency of the SBAO
- CBA algorithm. Here are the primary findings presented in
this article:

1. Compared with BP, SVM, and ELM,the CBA model has
been put forward with the aim of predicting tourist flows.
The simulation demonstrated that the constructed model
effectively captured the characteristics of tourist flow data
that is screened by the MIC algorithm, making it suitable for
this purpose.

2. The SBOA algorithm optimized the CBA parameters to
improve prediction accuracy. The CBA models evaluation
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TABLE 4 CNN-BiGRU-ATTENTION evaluation indexes before and after optimization.

10.3389/fphy.2025.1653758

MODE MAE MAPE MSE RMSE R2
BP 2.5391E+03 2.6426E-01 1.6208E+07 4.0260E+03 7.7030E-01
SVM 2.2764E+03 2.1466E-01 1.3109E+07 3.6207E+03 7.7234E-01
ELM 3.1844E+03 3.0171E-01 2.5975E+07 5.0966E+03 7.4105E-01
CBA 2.5103E+03 1.9752E-01 1.7431E+07 4.1751E+03 8.4911E-01
SBOA-CBAM 2.2379E+03 1.8235E-01 1.2125E+07 3.4821E+03 8.8354E-01
Optimization Ratio 12.1726% 8.3196% 43.7662% 19.9025% 3.8966%
MAE MAPE MSE
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FIGURE 17
Radar chart of evaluation index.

indexes include R?>, RMSE, MSE, MAE, and MAPE.
The model improved every parameter: R? increased by
3.8966%, RMSE decreased by 19.9025%, MAE decreased by
12.1726%, MAPE decreased by 8.3196%, and MSE decreased
by 43.7662%.

3. The Wilcoxon test that  the
improvements in both metrics were highly statistically

signed-rank indicated

Frontiers in Physics 20

significant (RMSE: p = 0.0001; MAE: p = 0.0007). Effect
size analysis further confirmed the practical significance
of the optimization: Cohen’s d for RMSE = 0.8982 (large
effect), Cohen’s d for MAE = 0.7028 (medium-to-large effect).
The SBOA algorithm not only significantly improved the
model’s prediction accuracy but also enhanced its stability
and disturbance resistance.
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5.2 Limitations

Despite the promising results, this study has several limitations
that warrant consideration:

1. Only the daily tourist flow data from Jiuzhaigou Scenic Area
in Sichuan Province between 2013 and 2017 were selected as
the foundational dataset for model training and testing. No
updated data was introduced for validation analysis.
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2. Only the daily tourist flow data from Jiuzhaigou Scenic Area
in Sichuan Province were used as the training set and test
set, without employing data from other regions to validate the
model’s generalizability.

5.3 Future research direction

Although this study has achieved preliminary results in the task
of predicting daily tourism demand, there are still some limitations,
which can be improved and expanded in the future from the
following directions:

1. Expanding the research scope to enhance the models
generalizability. By incorporating data from more regions,
it will be conducted an in-depth analysis of the model’s
adaptability. Building upon this foundation, will further
improve the model’s applicability to data from different regions
through various approaches, such as adjusting the model
architecture and optimizing model parameters. Specifically, the
number of layers in the model, adjust the number of neurons
in each layer, or alter the types of activation functions could
be increased to more accurately fit the data characteristics of
different regions. Furthermore, the model’s training efficiency
and accuracy can be enhanced by tuning parameters such
as the learning rate and optimization algorithms. Through
these comprehensive measures, the goal is for the model to
demonstrate stronger generalization capabilities and higher
accuracy when confronted with data from diverse regions.

2. Integrating more features to improve model accuracy. It is
essential to incorporate data from various tourist destinations,
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TABLE 5 Model Evaluation Results: Comparison Before vs. After Optimization (N = 30 Runs).

Metric Base mean + 95%ClI Optimized mean + 95% CI Improvement (%) Cohen’'s d ‘ Wilcoxon p
RMSE 4126.1 [3947.5415, 4340.0192] 3491.0 [3382.1120, 3639.9699] 115.39% 0.898 0.000136 < 0.001
MAE 2540.1 [2455.1740, 2622.2819] 2302.2 [2236.4925, 2381.9094] 19.36% 0.703 0.00072 < 0.001

Statistical Validation (30 Runs)
RMSE (Cohen's d = 0.90) MAE (Cohen's d = 0.70)
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FIGURE 20
Boxplot of the evaluation indexes (MAE, RMSE).

ensuring these destinations encompass a broad spectrum
of geographical, cultural and economic backgrounds. By
integrating this diverse data, the validity and relevance of the
data samples can be improved, thereby improving the model’s
precision. This approach will facilitate a more comprehensive
understanding and analysis of tourism market trends, tourist
demands and behavioral patterns, thus providing more
robust support and guidance for the development of the
tourism industry.

6 Policy implications

The SBOA-CBAM prediction model, integrating network
search index data, can provide accurate forecasts of tourism
demand. This capability not only serves as a valuable reference
for tourist travel planning but also assists managers in
rationally allocating resources, reducing energy consumption and
waste generation, and implementing crowd control measures.
Consequently, it helps alleviate ecological stress on scenic areas,
safeguarding the long-term sustainable development of local
tourism. Furthermore, the model provides a critical reference
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basis for scientific decision-making by tourism management
departments, thereby advancing sustainable tourism development
strategies. Specifically, it yields the following three policy
implications:

1. Tourist scenic areas can draw on the passenger flow
prediction method in this paper to establish a passenger
flow early warning model and an early warning platform,
and promptly release passenger flow prediction information
to business operators and tourists. This can effectively
guide tourists to travel during off-peak periods and
guide operators to make proper reception and response
arrangements.

. Government management departments can utilize the model
prediction to grasp the future passenger flow situation in the
region, effectively adjust the supply of the tourism market
and supervise the carrying capacity of the tourism ecological
environment.

. Tourism development departments can also analyze the
changing trends of the tourism market further by using the
passenger flow data predicted by the model and make full
preparations for the next-step tourism planning and resource
mobilization.
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