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Following the discovery of graphene, research on two-dimensional (2D)
materials has surged. To enhance the performance and broaden the applications
of these materials, heterostructures are formed by stacking two different
layered materials through van der Waals (vdW) interactions. This study,
based on first-principles calculations, explores the intriguing properties of
heterostructures made from Zr,CO,, SiC, and GeC monolayers. The results
indicate that the Zr,CO,/SiC and Zr,CO,/GeC vdW heterostructures retain
their original band structure and exhibit robust thermal stability at 300 K.
Additionally, the Zr,CO,/MC heterostructure, with an I-type band alignment,
shows promise as a light-emitting device material. Charge transfer between
Zr,CO, and SiC (or GeC) monolayers are obtained as 0.1459 |e| and 0.0425
lel, respectively. The potential drop across the interface for Zr,CO,/SiC and
Zr,CO,/GeC is 6.457 eV and 3.712 eV, respectively. Besides, the Zr,CO,/SiC
vdW heterostructure presents excellent carrier mobility along the transport
direction (about 3656 cm? V™*-s71). These heterostructures exhibit remarkable
optical absorption, further demonstrating the potential of Zr,CO,/MC for
optoelectronic applications. This study provides valuable theoretical insights for
designing photocatalytic and photovoltaic devices using heterostructures.

2D materials, heterostructure, first-principles calculation, band structure, application

Introduction

Since graphene was isolated via mechanical exfoliation in 2004 by Novoselov and
Geim, its exceptional physical and chemical features have sparked extensive interest in the
broader family of 2D materials [1-3]. Many of these exhibit outstanding properties of their
own [4, 5]. For instance, black phosphorene, a puckered-layered structure, demonstrates
high carrier mobility reaching 1000 cm?/V-s at a thickness of 10 nm and shows great
potential for transistors under ambient conditions [6]. The bandgap of arsenene can be
tuned through applied strain, even transforming into a direct bandgap semiconductor with
just 1% strain [7]. Transition metal dichalcogenides (TMDs), another important 2D family,
exhibit desirable optical, thermal, and electronic characteristics [8]. MoS,, for example,
offers excellent photodetection capabilities with high responsivity and thermal resilience
[9]. Furthermore, Janus-type TMDs break structural symmetry, greatly enhancing carrier
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mobility and separation efficiency for photogenerated charge
carriers, enabling efficient redox processes under light illumination
[10-13].

To achieve more complex or application-specific functionalities,
researchers often engineer heterostructures by stacking different 2D
layers using weak vdW interactions [14-16]. These heterostructures
exhibit novel interfacial, optical, and electronic behaviors [17].
For example, SiC-based vdW heterostructures serve as efficient
photocatalysts for water splitting [18], and PbSe/CdSe systems
exhibit near-infrared emission due to type-I band alignment [19].
In the PbI,/WS, heterostructure, comparable interlayer diffusion
rates of electrons and holes were observed [20]. Such type-
I systems hold significant promise in solar energy harvesting,
photocatalysis, and optoelectronics [21]. Recently, exfoliated MAX
phase derivatives known as MXenes have attracted attention for their
diverse properties, ranging from electrical conductivity to chemical
stability [22]. Though many MXenes are metallic, some—like
Zr,CO,—exhibit semiconducting behavior with advantageous
bandgaps. Cr,TiC,, for instance, acts as a bipolar antiferromagnetic
semiconductor and may be applied in spintronic devices [23-25].
features high carrier mobility (~1531.48 cm?/V-s) and promising
thermoelectric behavior, making it ideal for photocatalysis and
nanoelectronics. Its properties are further tunable via external strain,
and its sensitivity to gases like NH; enables substantial conductivity
changes [26]. Similarly, MC monolayers (M = Si, Ge) have recently
shown desirable mechanical, optical, and electronic traits, making
them candidates for optoelectronic integration [27-29]. Meanwhile,
ultrathin SiC is being explored for UV LEDs and laser diodes,
while GeC has been synthesized using encapsulated epitaxial
techniques and considered for applications in heterojunctions and
photocatalysis [30, 31]. Although some heterostructures involving
Zr,CO, or MC have been examined—such as Zr,CO,/WS,,
Zr,CO,/blue phosphorene, and MoS,/MC—there remains a lack of
research on heterostructures combining Zr,CO, with MC directly.
Given their complementary and tunable properties, forming
Zr,CO,/MC heterostructures is a logical step toward realizing
advanced multifunctional 2D materials.

This work utilizes density functional theory to evaluate the
structural and electronic features of Zr,CO,/MC (M = Si, Ge)
heterostructures. We assess their stability via binding energy and
ab initio molecular dynamics (AIMD) simulations. Additionally,
we characterize their band alignment, charge redistribution,
interfacial potential shifts, and light absorption properties, aiming
to understand their suitability for optoelectronic applications.

Methods

The calculations in this study are grounded in density functional
theory (DFT), carried out using the Vienna Ab initio Simulation
Package (VASP) [32, 33]. Exchange-correlation effects were treated
within the generalized gradient approximation (GGA) framework,
utilizing the Perdew-Burke-Ernzerhof (PBE) functional [34-36].
To achieve more accurate predictions of electronic bandgaps, we
employed the hybrid Heyd-Scuseria-Ernzerhof (HSE06) functional
[37]. To incorporate van der Waals interactions, the DFT-D3
correction scheme developed by Grimme was applied [38], along
with dipole corrections to address long-range dispersion forces. The
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plane-wave energy cutoff was set at 500 eV following convergence
testing. For Brillouin zone sampling, a Monkhorst-Pack k-point
mesh of 7 X 7 x 1 was used during structure optimization, whereas
denser grids (11 x 11 x 1) were employed for static and optical
calculations. A vacuum spacing of 25 A was introduced along the
z-axis to eliminate interlayer interactions arising from periodic
boundary conditions. The total energy convergence criterion was
set as 107! eV, and ionic relaxation was halted when the maximum
Hellmann-Feynman force on any atom fell below 0.01 eV AL,

Results and discussion

We initially carried out geometry optimizations for monolayered
Zr,CO,, SiC, and GeC. Their respective top and side atomic views,
along with the calculated band structures, are shown in Figures la—c.
The optimized lattice constants were determined to be 3.363 A for
Zr,CO,, 3.235 A for SiC, and 3.096 A for GeC, agreeing with the
previous research [26, 39, 40]. The bond lengths shown as Table
1 include 2.369 A for Zr-C, 2.132 A for Zr-0O, 1.805 A for Si-C,
and 1.895 A for Ge-C. Electronic structure calculations using the
HSEO06 functional confirmed semiconducting behavior for all three
monolayers, with corresponding bandgaps of 1.820 eV (Zr,CO,),
4.042 eV (SiC), and 3.354 eV (GeC), which also consistent with
previous investigations [41-43]. In the Zr,CO, monolayer, the
conduction band minimum (CBM) lies at the M point, while the
valence band maximum (VBM) appears at the I' point. For SiC and
GeC, the CBM and VBM are located at I' and K points, respectively.
These findings are consistent with previous computational results.

To create heterostructures between Zr,CO, and MC (M = Si,
Ge), six distinct stacking configurations were explored, as illustrated
in Figures 2a-f. The binding energy (E,) for each configuration was
calculated using the Equation 1 [44]:

1

E, = EZr2C02/MC -Ez5c02- Emc

where Ej,coumcr Ezmco, and Eye show the total energy
of the Zr,CO,/MC heterostructure, monolayered Zr,CO,
and MC, respectively. The smaller binding energy means the
more stable structure for the heterostructure. Among the six
configurations shwoing as Figures 2a-f, the ZM-1 stacking
arrangement exhibited the lowest binding energy, indicating it as
the most energetically favorable. For the most stable configuration,
the binding energies of the Zr,CO,/SiC and Zr,CO,/GeC
heterostructures were found to be —55.69 meV/A* and -51.33
meV/A?, respectively, which is smaller than that in graphites
about —18 meV/A™%, suggesting van der Waals (vdW) interactions
between the interface of the Zr,CO,/MC heterostructure [45].
Besides, all the obtained binding energy of the Zr,CO,/SiC and
Zr,CO,/GeC heterostructure with different stacking configurations
are demonstrated as Supplementary Table S1. As expected, the
interfacial bonding does not drastically alter the original intra-
layer bond lengths, confirming the weak yet stable coupling. The
calculated interface separations are 1.895 A for Zr,CO,/SiC and
2.254 A for Zr,CO,/GeC. Henceforth, discussions will focus on
these energetically preferred heterostructures.

To assess the thermal robustness of the Zr,CO,/MC
heterostructures, we performed ab initio molecular dynamics
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The structure and the HSE06 calculated band structure of the (a) Zr,CO,, (b) SiC and (c) GeC monolayers. The grey, black, red, pink, green balls
represent the Zr, C, O, Si and Ge atoms, respectively and the Fermi energy level is O shown by gray dashed.
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FIGURE 2

(e) (f)

Top and side views of the (a) ZM-1, (b) ZM-2, (c) ZM-3, (d) ZM-4, (e) ZM-5 and (f) ZM-6 stacking configurations of the Hf,CO,/MC heterostructure.

(AIMD) simulations using the Nosé-Hoover thermostat approach
[46]. Supercells of size 6 x 6 x 1 were constructed for both
Zr,CO,/SiC and Zr,CO,/GeC systems, encompassing a total of 252
atoms. These simulations were carried out at a constant temperature
of 300K for a duration of 10 picoseconds. Post-simulation
snapshots of the atomic configurations are displayed in Figures 3a,c,
illustrating that both heterostructures maintain structural integrity
throughout the simulation. This outcome indicates excellent thermal
stability under ambient conditions. Additionally, Figures 3b,d show
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the fluctuations in total energy as a function of time. The minor
oscillations and consistent convergence confirm that the systems
reach thermal equilibrium, further validating the reliability of the
simulations.

The projected band structures for the Zr,CO,/SiC and
Zr,CO,/GeC heterostructures are presented in Figures 4a,c,
respectively. These results reveal indirect bandgaps of 2.056 eV
for the SiC-based system and 1.902eV for the GeC-based
counterpart. In each case, the colored bands denote the individual
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FIGURE 3
The AIMD simulation results at 300 K over 10 ps, including structural snapshots of (a) Zr,CO,/SiC and (c) Zr,CO,/GeC vdWs heterostructures, along
with corresponding energy and temperature profiles shown in (b,d), respectively.

contributions from the Zr,CO, and MC layers, with red and
gray representing the MXene and MC monolayers, respectively.
(CBM) and valence
band maximum (VBM) are predominantly contributed by

Both the conduction band minimum

the Zr,CO, layer, indicating a type-I band alignment. This
conclusion is further supported by the projected density of states
(PDOS) shown in Figures 4b,d, which clearly display dominant
contributions from the MXene near the Fermi level. These
findings suggest that Zr,CO,/MC heterostructures retain the
desirable features of the constituent layers while exhibiting new
interfacial properties favorable for light-emitting and optoelectronic
devices. Furthermore, the band structures of the Zr,CO,/SiC and
Zr,C0O,/GeC vdW heterostructures by all six different stacking
configurations are obtained in Supplementary Figures S1, S2,
respectively, in the Supplementary Material.

In the Zr,CO,/MC heterostructures, the narrower bandgap of
the Zr,CO, layer compared to that of SiC or GeC positions both
its CBM and VBM within the wider gap of the MC layers, as
illustrated schematically in Figures 5a, b. This energy alignment
confirms the presence of a type-I band structure. Under external
excitation, electrons in the MC layers are promoted to their
CBM, and corresponding holes form at the VBM. Owing to the
conduction band offset (CBO) and valence band offset (VBO), these
photoexcited carriers migrate from the MC layer to the Zr,CO,
layer. For the Zr,CO,/SiC heterostructure, the CBO and VBO are
calculated as 2.458 eV and 1.779 eV, respectively. In the case of
Zr,CO,/GeC, these values are 0.447 eV and 0.336 eV. Because the
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Zr,CO, layer has a lower potential energy at both band edges,
it acts as a well that confines the carriers, thus minimizing their
leakage back into the MC layers. This characteristic is advantageous
for light-emitting applications, as it facilitates efficient radiative
recombination by concentrating electrons and holes in the same
material region.

Carrier mobility plays a crucial role in developing efficient light-
emitting applications. In this work, the electron and hole mobilities
of Zr,CO,/MC van der Waals heterostructures are investigated.
First, the effective masses (m) of the electron and hole are decided
by fitting the parabolic functions, which can be represented by

-1
m* = ih2< )

where k, E; are the wave vector and the corresponding electronic

Equation 2:

d’E,

e (2)

energy, respectively. The calculations of carrier mobility (u) are
performed using the Bardeen-Shockley model as Equation 3:

eh*Cop

= = 3
kBTm:fmd(Eil)2 ©

Hop

where e, 7, kg, T, my, and m, denote the elementary charge,
PlancK’s constant, Boltzmann constant, temperature, transport-
direction effective mass, and the average effective mass, respectively.
Here, m, is determined based on the effective mass tensor. The
deformation potential constant, E,, is obtained from the relation
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The computed projected band structures for (a) Zr,CO,/SiC and (c) Zr,CO,/GeC van der Waals heterostructures. Corresponding projected density of
states are illustrated in (b,d), respectively. The Fermi energy level is set to zero.

involving AV, which represents the energy shift between the
conduction band minimum and valence band maximum under
applied uniaxial strain. The elastic modulus for the considered
two-dimensional structure (C,p) is derived using the formula
involving AE, I, and S, where AE is the total energy difference
under strain, [ is the applied strain magnitude, and S, is
the equilibrium lattice area. The carrier transport directions
in the Zr,CO,/SiC (or Zr,CO,/GeC) vdW heterostructures are
illustrated in Figure 6a, corresponding to the armchair and zigzag
orientations, respectively. The elastic modulus is derived from
the variation in total energy (AE) under applied uniaxial strain.
The strain responses along the transport directions for both
heterostructures are shown in Figures 6b,d. Meanwhile, Figures 6¢,e
depict the modulation of the band edge positions under such strain
conditions. The calculated carrier mobilities for the Zr,CO,/MC
vdW heterostructures are presented in Table 2. Specifically, for
electron transport along the armchair direction, mobilities of
275 cm* V157! (Zr,CO,/SiC) and 388 cm? V157! (Zr,CO,/GeC)
are obtained, while in the zigzag direction, the respective values
are 278 cm® V™'.s”! and 574 cm? V™!.s7!. Regarding hole transport,
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mobilities reach 3479 cm? V™'.s”! and 283 cm? V™'.s™! along the
armchair axis, and 3656 cm® V'.s! and 337 cm? V''.s7! in the
zigzag direction for Zr,CO,/SiC and Zr,CO,/GeC, respectively. The
notably high hole mobility in Zr,CO,/SiC can be attributed to the
minimal strain dependence of its valence band maximum (VBM). In
contrast, the relatively low mobility in Zr,CO,/GeC is mainly due to
its large hole effective mass, although it still surpasses that of several
known 2D popular materials, such as monolayer MoS, [47], WS,
[48], and BlueP [49].

To gain insight into the interfacial electronic interactions,
we analyzed the charge redistribution in the Zr,CO,/MC
heterostructures. The differential charge density (Ap) was calculated
using the following Equation 4:

(4)

AP = pMXene/MC ~PMXene ~PMC

where pyixene/mc> Puixene ad pyc show the total charge density
of the Zr,CO,/SiC (or Zr,CO,/GeC) vdW heterostructure,
monolayered Zr,CO, and SiC (or GeC), respectively. Figures 7a,
6b illustrate the charge distribution at the interfaces of Zr,CO,/SiC
and Zr,CO,/GeC. It is evident that both SiC and GeC layers
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serve as electron donors upon contact, transferring charge to the
Zr,CO, layer. This electron movement leads to the emergence
of regions enriched and depleted in charge, forming distinct
dipole layers at the interface. Quantitatively, Bader charge
analysis reveals that 0.1459 |e| and 0.0425 |e| electrons are

transferred from SiC and GeC to the Zr,CO, layer, respectively.

Frontiers in Physics

Furthermore, the charge transfer between the Zr,CO,/SiC and
Zr,CO,/GeC heterostructures with other stacking structures have
been calculated as Supplementary Table S2, one can see that the
ZM-1 configuration still results maximum charge transfer. This
charge redistribution also induces a potential drop (AV) across the
interface, calculated to be 6.457 eV for Zr,CO,/SiC and 3.712 eV
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TABLE 1 The equilibrium lattice constant (a, A), bond distance (B, A), binding strength (E,, meV/A2), interfacial separation (H, A), and electronic bandgap
(Eq, eV) for Zr,CO,, SiC, GeC monolayers, as well as for Zr,CO,/SiC and Zr,CO,/GeC heterostructures.

Materials
Zr,CO, 3.294 2.427 2.132 1.820
SiC 3.235 1.805 2.874
GeC 3.096 1.895 3.354
Zr,CO,/SiC 3.228 2.425 2.145 1.911 -56.98 1.924 1.826
Zr,C0,/GeC 3.129 2.438 2.114 1.911 ~52.44 2235 1.734

TABLE 2 Effective mass (m*), elastic modulus (C), deformation potential constant (E;), and carrier mobility () of the carriers (electron and hole) along
the transport directions for the monolayered MoSSe/XN (X = Ga, Al) vdW heterostructure calculated by PBE functional at 300K.

Materials Direction Carrier m*(m,) E; (eV) C (N/m) p (cm2.v1.s7l)
armchair 222
W -1.83 0.63 3479
Zr,CO,/SiC
e 0.54 -7.34 278
zigzag 224
h -1.68 067 3656
< 0.61 -5.53 388
armchair 228
h -3.95 L15 283
71,C0,/GeC
e 0.67 -457 574
zigzag 229
W 321 115 337
( (
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The electrostatic potential profiles at the interface of (a) Zr,CO,/SiC and (b) Zr,CO,/GeC van der Waals heterostructures are illustrated. Yellow regions
indicate electron accumulation, while cyan regions represent electron depletion. An isosurface value of 0.0001 |e| has been selected for visualization.

25

for Zr,CO,/GeC. Such interfacial potential differences serve as
an internal driving force, enhancing carrier transport across the

heterostructure.

The optical characteristics of the Zr,CO,/MC heterostructures
were evaluated through absorption spectrum analysis derived from
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the complex dielectric function. The absorption coefficient a(w) was

obtained using the Equation 5:

07

a(w)

Ve
Cc

{[sf(a)) + sg(a))]ll2 - sl(a))}l/2

5)
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The HSEO06 functional obtained optical absorption spectrum for the Zr,CO,, SiC, GeC monolayers and Zr,CO,/SiC, Zr,CO,/GeC vdW heterostructures.

where w is the angular frequency, ¢ denotes the speed of light, and
€, & are the real and imaginary parts of the dielectric function,
respectively. Furthermore, ¢, (w) can be calculated by Equation 6
[50]:

2¢’n

&(q — Ophw) = e
0

> 1l ar ) xe(E - E-E) ©)
k,vsc

where the wave function, energy, and unit vector of the incident
light electric field are denoted by ¥, E, and #, respectively. The
conduction and valence bands are indicated by the superscripts (v
and ¢) in the ¥}, E; and #, labels, respectively. The complex dielectric
function is given by € (w) = ¢, (w) + ie, (w), where the real part ¢; can
be derived from ¢, using the Kramers-Kronig relation. As shown
in Figure 8, both Zr,CO,/SiC and Zr,CO,/GeC heterostructures
demonstrate broad absorption across the visible and near-infrared
(NIR) spectral regions. This response is more substantial than that
of the individual SiC, GeC, or Zr,CO, monolayers. Specifically, in
the visible range, the maximum absorption peaks reach 3.568 x
10° cm™ for Zr,CO,/SiC and 3.698 x 10° cm™ for Zr,CO,/GeC.
Additionally, secondary peaks of 1.125 x 10° cm™ and 0.879
x 10° cm™' appear near wavelengths of 441 nm and 425 nm,
respectively. These are significantly stronger than the 0.853 x
10° cm™ peak found in pristine Zr,CO,. It is worth noting
that the obtained light absorption capacity of the Zr,CO,/SiC or
Zr,CO,/GeC heterostructure is also higher than that of reported
2D heterostructure, such as CdO/Arsenene (8.47 x 10*cm™)
[51], PtS,/MoTe, (2.57 x 10° cm™") [52] and AIN/Zr,CO, (3.97 x
10° cm™) [53] etc.

Conclusion

In this work, the structural, electronic, and optical

characteristics of monolayer Zr,CO,, SiC, and GeC—as well
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as their corresponding van der Waals heterostructures—have
been comprehensively explored using first-principles calculations.
The constructed Zr,CO,/SiC and Zr,CO,/GeC heterostructures
demonstrate high thermal resilience, retaining their integrity at
300 K based on ab initio molecular dynamics simulations. These
heterostructures exhibit type-I band alignment, with indirect
bandgaps of 2.056 eV and 1.902 eV, respectively. The band edges are
mainly derived from the Zr,CO, layer, positioning these systems
as promising candidates for light-emitting applications. Interlayer
charge transfer was observed, with calculated electron donation
from the MC layers of 0.1459 |e| (SiC) and 0.0425 |e| (GeC),
inducing interfacial potential drops of 6.457 eV and 3.712 eV. These
potential differences facilitate efficient carrier transport across the
interface. Additionally, both heterostructures display significantly
improved optical absorption, particularly across visible and near-
infrared wavelengths, outperforming their monolayer counterparts.
These optical features support the use of Zr,CO,/MC systems in
energy-related optoelectronic technologies.
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