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Neuronal oscillations play a crucial role in brain function, regulating processes
such as perception, cognition, and motor control. These oscillations are
characterized by frequencies that define specific neural states and interactions.
This study investigates a neuro mechanical model that emulates brain wave
frequencies using a system of five identical masses connected by springs with
variable stiffness. The mass-spring arrangement serves as an analog for neuronal
oscillations, with each spring’s stiffness adjusted to produce frequencies that
approximate the characteristic brain wave bands: Delta, Theta, Alpha, Beta,
and Gamma. The model leverages coupled oscillations to represent neural
interactions, mirroring how groups of neurons may synchronize to generate
brain rhythms. Through a three-step optimization process, the spring constants
were fine-tuned to align the system’s natural frequencies with target brain
wave frequencies. Initial settings ensured a monotonic trend in stiffness, while
the Nelder-Mead algorithm minimized the deviations from target frequencies.
The resulting model successfully matched Delta, Theta, and Alpha frequencies
closely, while Beta and Gamma bands showed moderate deviations, highlighting
the need for further refinement or an expanded system. A comparison between
this model and neural dynamics suggests that pulse transmission in a mass-
spring system resembles neuronal depolarization waves. The analogy draws
parallels between oscillatory interactions in physical and biological systems,
where each unit influences its neighbor to transmit energy or signals. The
study concludes that simplified mechanical systems can effectively approximate
brain oscillations, offering a foundation for exploring cognitive states through
physical modeling and suggesting potential avenues for neuro engineering and
cognitive research.

delta, theta, alpha, beta, gamma

Introduction

Eigenfrequencies and eigenmodes are fundamental concepts in the study of dynamic
systems. The study of a system’s eigenfrequencies and eigenmodes spans several disciplines,
offering vital insights into the behavior of complex systems. Herzog et al [1] have recently
demonstrated the importance of measuring eigenfrequencies in biological systems and more
specifically in monitoring the mechanical properties of mammalian cells, highlighting how
these parameters can provide information on their physiology. Furthermore, the Angler’s
[2] work introduced the metaphor of the ‘Symphonies of Life, arguing that biological
systems oscillate according to harmonic patterns defined by specific frequencies of their
own, analogous to what happens in physical and mechanical systems. The Kaya and
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Henry research [3] into the internal rhythms of biological systems
suggests that biological systems possess their own frequencies
that regulate their interactions and responses to external stimuli.
Understanding, therefore, the fundamental mechanisms that
regulate oscillations in large-scale brain circuits is essential for
knowledge of their role in brain processes, both under adaptive
and pathological conditions. Brain oscillations recorded by means
of electroencephalography (EEG) date back decades, when they
were initially termed “eigenstrome” [4]. Over time, it became
possible to classify brain oscillations into distinct frequency bands,
each associated with specific brain areas, functions and cognitive
states. Among the most commonly described frequency bands are
delta, theta, alpha, beta, and gamma. These oscillations represent
a key element of neural dynamics and are an important field of
study in both neuroscientific and clinical fields. Delta waves occur
mainly during deep sleep and deep meditation. They are related
to reparative processes and cell regeneration. Their presence is
indicative of states of drowsiness and lack of awareness. Theta
waves are frequently observed during the transition phase between
wakefulness and sleep, frequently during meditation and in states
of deep relaxation. They are associated with processes of getting
back in touch with deep emotions, creativity and learning abilities.
Alterations in the oscillations of the delta and theta frequency bands
have been found in pathologies such as schizophrenia and epilepsy,
suggesting dysfunctions in the neuronal circuits that mediate the
oscillations of these bands [5]. Alpha waves predominate during
states of relaxation and calm, typically when the eyes are closed
but one is not yet asleep. They are associated with states of calm
and mental clarity, and indicate reduced active thought activity
[6, 7]. Beta waves occur during phases of high cognitive activity
and attention. They are most prominent when awake and alert,
particularly during intense mental activity. These waves are shown
to correlate with states of attention, concentration and activation.
They have also been shown to increase during motor activities,
suggesting a crucial role in motor coordination and cognition [8].
Gamma waves are the higher frequency bands and are associated
with complex cognitive processes such as information processing
and sensory integration. They are believed to play a crucial role in
cognition, such as perception and consciousness [9-12].

This organization reflects how specific frequencies correlate with
different mental states and brain activities, from restful to highly
alert conditions [13, 14].

The figure provides a dual-bar horizontal plot illustrating the
frequency and amplitude ranges for each brain wave mode: Delta,
Theta, Alpha, Beta, and Gamma. Along the vertical axis, each brain
wave type is represented with frequency and amplitude ranges
shown as distinct horizontal bars.

The red bars depict the frequency ranges in Hertz (Hz) for each
mode, progressing from the lowest frequencies in Delta waves to the
highest in Gamma waves. Specifically, Delta waves range from 0 to
4 Hz, Theta waves from 4 to 7 Hz, Alpha waves from 8 to 12 Hz, Beta
waves from 13 to 30 Hz, and Gamma waves span the highest range,
from 30 to 100 Hz [15-18]. This spectrum of frequencies aligns with
the functional roles of these brain waves, from deep relaxation and
sleep to alert and high-cognitive states.

In contrast, the blue bars illustrate the amplitude ranges in
microvolts (uV) for each brain wave, which tend to decrease as
frequency increases. Delta waves, linked with deep sleep, show the
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highest amplitude range from 20 to 200 uV. Theta waves, associated
with light sleep, have an amplitude range of 5-100 uV. Alpha waves,
reflecting a relaxed but alert state, range from 10 to 60 uV in
amplitude. Beta waves, which are associated with active thinking,
exhibit a narrower amplitude range from 5 to 30 pV, while Gamma
waves, involved in high-level cognitive functions, display the lowest
amplitude range of 1-10 uV.

Each bar is labeled with its precise range, enabling a clear
reference for both frequency and amplitude across the different
brain waves. The figure highlights the inverse relationship between
frequency and amplitude; lower-frequency waves such as Delta and
Theta tend to have higher amplitudes, while higher-frequency waves
like Beta and Gamma are associated with lower amplitudes. This
visual layout effectively illustrates the functional differences among
brain wave modes, capturing the progression from low-frequency,
high-amplitude waves associated with sleep to high-frequency, low-
amplitude waves characteristic of alertness and cognitive processing.

Understanding the intricate dynamics of these oscillations and
their role in cognition [19] has led to the development of simplified
models to replicate neural oscillations.

In this context, the present work explores a model that employs
a system of five identical masses linked in sequence by springs with
variable stiffness to simulate these brain waves. This mass-spring
system serves as an analogy for coupled neuronal oscillations, with
each spring’s stiffness fine-tuned to produce oscillatory frequencies
that closely match the characteristic frequency bands observed
in brain activity. The model leverages the interaction of these
coupled oscillators to emulate how neural oscillations may arise
from synchronized neuron populations.

This mass-spring framework is particularly insightful as it not
only models individual oscillatory frequencies but also illustrates
how these frequencies interact. As each mass represents a group of
neurons, the oscillatory modes produced by their coupling mirror
the natural oscillations within the brain. The varying stiffness in each
spring allows the model to mimic different oscillatory regimes by
adjusting the mass’s resonant frequencies, enabling it to align with
specific brain wave bands: Delta, Theta, Alpha, Beta, and Gamma.
For instance, a lower stiffness may correspond to a slower frequency
like Delta, while higher stiffness produces faster oscillations akin to
Gamma waves.

The global incidence of neurodegenerative disorders is
becoming an increasingly critical issueworldwide, mainly due to
an aging population and an increase in the prevalence of chronic
diseases.In recent decades, the incidence and prevalence of these
disorders have shown a significant increase,presenting significant
challenges for health systems and societies. Among the most
prevalentdisorders are Alzheimer’s disease (AD) and Parkinson’s
disease (PD), which together account for the majority of cases of
dementia and neurodegeneration, severely affecting both cognitive
function and motor skills and patients’ quality of life [20]. According
to recent estimates, about 35 million people live with AD and
about 6 million with PD globally [21]. More broadly, the World
HealthOrganization reports that more than 55 million people
are living with a form of dementia today, witha projection that it
could reach 139 million by 2050 [22]. These statistics highlight
not only how prevalent neurodegenerative disorders already are,
but also how their prevalence is set to increase dramatically, with
an estimated growth of up to 166 percent over the next 30 years
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[23]. In addition to genetic predisposition and aging, several
environmental factors contribute to the onset and progression
of neurodegenerative disorders. In particular, it has been shown
that the presence of positive bivalent cations, such as calcium,
copper, and zinc, can modulate protein aggregation and influence
neurotoxic processes [24]. Similarly, physicochemical parameters
such as pH and ionicstrength play key roles in the stability of
amyloid proteins and their propensity to aggregate, thusaffecting
the pathogenesis of many neurodegenerative diseases [25]. Taken
together, the growing epidemiological impact and the contribution
of environmental factors underscore the urgency of developing new
theoretical and computational frameworks capable of providing a
more comprehensive understanding of brain dynamics and related
pathological rhythms, paving the way for innovative prevention and
intervention strategies.

The present work sheds light on how simplified physical
systems can help us understand complex neural oscillations
by approximating the synchronization and resonance behaviors
observed in the brain. By simulating brain wave-like behavior
in a controlled, tunable environment, this model opens up new
possibilities for exploring how various oscillatory modes interact,
transfer energy, and collectively support the brain’s vast cognitive
repertoire. As research continues to reveal the role of neural
oscillations in processes like attention, memory, and perception,
models like these contribute valuable insights into the oscillatory
nature of brain function, potentially guiding future developments in
neuroengineering and cognitive neuroscience.

The model

A system of 5 equal masses m connected by 5 identical springs
with stiffness k represents a linear chain of coupled oscillators.
Each mass is subject to forces from the neighboring springs, and
the motion of each mass influences, and is influenced by, the
neighboring masses. The dynamics of this system can be described
by a set of coupled second-order differential equations, where
the force on each mass i (except for the ends) depends on the
displacements x;_;, x;, and x;,, of the adjacent masses.

For each mass, Newton’s second law gives:

2
m% = —k(x; = x;-1) — k(x; = x;,1)

for i =1,2,3,4,5 with boundary conditions depending on whether

the ends are fixed or free. This set of differential equations can be

written in matrix form, with the displacements of each mass forming

a vector, and solved by assuming solutions of the form:

x; = A, cos (wt+¢)

This approach leads to an eigenvalue problem where the
frequencies w are the square roots of the eigenvalues of the matrix
governing the system. Solving this eigenvalue problem yields 5
distinct natural frequencies, each corresponding to a normal mode
of the system.

In a system of 5 masses connected by springs, we can calculate
the frequencies of the 5 normal modes using the following
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approximation:

nm

wy =2 \/Z sin < >
m 2(N+1)

Where N = 5 is the number of masses), n ranges from 1 to 5
(representing the normal modes), k is the spring constant, and m is
the mass of each individual mass.

Each value of n corresponds to a different normal mode with a
unique oscillation frequency, with the first mode n = 1 having the
lowest frequency and the fifth mode n = 5 the highest.

The lowest frequency mode, or fundamental mode, represents
a motion where all masses oscillate in phase, while higher modes
show increasingly complex phase differences. These solutions reveal
how energy can transfer across the masses, with implications
for understanding wave propagation, resonance, and stability in
mechanical and physical systems.

System description: five coupled
masses and variable spring constants

In the following analysis, we modeled a physical system
composed of five identical masses connected in a linear arrangement
by springs with varying stiffness, k, between each consecutive pair of
masses. The goal was to simulate the eigenfrequencies of this system,
ensuring they closely matched specific brain wave frequency bands:
Delta (2.0 Hz), Theta (5.5 Hz), Alpha (10.0 Hz), Beta (21.5 Hz), and
Gamma (65.0 Hz). More in details, each of the five masses is set to
a constant value of m = 5 107" kg, representing an approximation
based on neuronal mass. The spring constants between each pair
of masses were varied (i.e., k;, k,, ks, k,, k) to tune the system’s
eigenfrequencies to the target brain wave frequencies.

In other words, in order to align the eigenfrequencies of a 5-
mass spring system with specific target brain wave frequencies, we
implemented a systematic optimization process.

This process required balancing the spring constants k;,
ky, ks, ky, ks to produce eigenfrequencies corresponding to
Delta, Theta, Alpha, Beta, and Gamma brain wave bands. The
adopted optimization protocol combined physical constraints with
numerical optimization techniques. Since electroencephalographic
rhythms emerge from the collective activity of large neuronal
populations, our neuromechanical model is not intended to describe
single-cell processes. Instead, each mass- spring element should be
interpreted as a mesoscopic unit, bridging between local populations
and functional brain regions.

Mathematical model of the system

The employed model consists of five identical masses, arranged
linearly, with each pair connected by a spring. This setup can
be described by a system of coupled differential equations for
the displacements of the masses, which can be expressed in
matrix form as:

Mx+Kx=0

Where M is the mass matrix (diagonal matrix with mass m
on the diagonal), K is the stiffness matrix, representing the spring
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TABLE 1 Final optimized values of the spring constants k; for the 5-mass
system. The table reports the optimized values of the spring constants
ky—ks, expressed in Newtons per meter (N/m), obtained at the end of the
optimization process. These values were adjusted to align the system's
eigenfrequencies with the target brainwave frequency bands (Delta,
Theta, Alpha, Beta, Gamma). The slight non-monotonic variation
between k; and k, reflects the compromise reached by the optimization
algorithm to minimize the overall error in the simulated frequencies.

Spring constant Optimized value (N/m)

k, 1.65x 107"
k, 2.65x% 10710
ky 1.00 x 107*2
ky 9.08 x 10712
ks 6.26x 10712

connections and their respective constants ky, k,, k3, k,, ks, x is the
displacement vector of the masses.
The mass matrix, M, is diagonal, and can be expressed by:

M=mlI

where I is the identity matrix of size 5x 5,and m =5 1071 kg.
The stiffness matrix K is tridiagonal and constructed as follows:
[ ky+k,—k, 0 0 0 ]
-k, ky+ks—k; 0 0
K=| 0-k; kyj+k,~k, 0
0 0-k, ky+ks0
0 0 0-ky ks

To determine the eigenfrequencies, we solve the generalized
eigenvalue problem:

Kv=AMv

Where v is the eigenvector, A is the eigenvalue related to the
angular frequency w by w = V.

The eigenfrequencies f in Hz are then calculated from the
angular frequencies as:

w _ V)

T 2m

f

The objective was to adjust the k; values so that the
eigenfrequencies f aligned with the target brain wave frequencies
Delta (2.0 Hz), Theta (5.5 Hz), Alpha (10.0 Hz), Beta (21.5 Hz), and
Gamma (65.0 Hz).

The optimization aimed to minimize the sum of squared
deviations between the calculated eigenfrequencies and the target
frequencies. The objective function is defined as:

5
Objective Function = Z (f] = rarget J)z + Penalty
=1

Where f; are the eigenfrequencies from the system, f, ...
are the target frequencies for Delta, Theta, Alpha, Beta, and
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Gamma, and Penalty is a term added if any k; does not follow a
decreasing sequence. In particular, to maintain physical consistency,
we enforced a strictly decreasing trend in k; values by applying a
penalty whenever k;, | > k;:
4
Penalty = Z max (0,k;,; —k;)*
i=1
This penalty increases the objective value if the monotonic
constraint is violated, guiding the optimization toward a decreasing
k; sequence.
Then, we applied the optimization using a stepwise refinement
process in three steps.

i. Initial guesses: we started with an initial sequence of k; values
that decreased linearly.

ii . Objective minimization: using the Nelder-Mead optimization
algorithm, we iteratively adjusted the k; values, aiming to
minimize the objective function while satisfying a monotonic
constraint.

iii . Further Fine-Tuning: The optimization was iteratively refined
by adjusting the bounds and initial guesses, emphasizing
closer alignment with Delta, Theta, and Alpha, while reducing
deviations for Beta and Gamma.

The final optimized values of the spring constants k;
are given in Table 1.

The resulting simulated eigenfrequencies and their deviations
from the target values are given in Table 2.

In Figure 1 the target vs. simulated eigenfrequencies for the 5-
mass spring system is plotted; it shows the good alignment between
the target brain wave frequencies and the simulated eigenfrequencies
achieved after optimization.

In Figure 2 the optimized spring constants k; values for the 5-
Mass spring System are reported. This displays the trend of the
optimized k; values, which follows a monotonic decrease as required
by the model constraints.

The blue curve provides a fit of the obtained data with an
exponential model; more in details the fit curve is:

k;=7.93-1071°~10- exp (~0.0966) — 5.11-1071°

The approach used in this model can be criticized due to
the inverse relationship between the spring constant k; and the
frequency, resulting in a decreasing trend in k; as the frequency
increases. Physically, this is counterintuitive, as higher frequencies
typically correlate with stiffer springs (i.e., higher spring constants),
allowing for faster oscillations. Here the optimization produces a
decrease in k; values as frequency rises (see Figure 3), which conflicts
with conventional mechanical principles. This discrepancy raises
questions about the model’s physical accuracy and its ability to
accurately represent the dynamics of brain wave frequencies.

A refined approach

Starting from the consideration that a system of 5 masses
connected by springs, the frequencies of the 5 normal modes are
furnished by the expression:

w=2\/zsin<L>
N m 2N+1)
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TABLE 2 Comparison between target and simulated eigenfrequencies for the 5-mass spring system. The table compares the target brainwave
frequencies (Delta, Theta, Alpha, Beta, Gamma) with the corresponding eigenfrequencies obtained from the optimized mass-spring model. Deviations
are generally small for lower-frequency bands (Delta, Theta, Alpha), indicating good alignment, while larger deviations are observed for
higher-frequency bands (Beta and Gamma), suggesting the need for further refinement of the model at higher frequencies.

Brain wave mode Target frequency (Hz) Simulated frequency (Hz) Deviation (Hz)
Delta 2.2 2.45 +0.45
Theta 5.5 5.38 -0.12
Alpha 10.0 9.91 -0.09
Beta 21.5 36.73 +15.23
Gamma 65.0 54.84 -10.16
Frequency and Amplitude Ranges for Brain Wave Modes
[0 Frequency Range (Hz)
D 1-10 pv [ Amplitude Range (uV)
Gamma
Beta
13-30 Hz
10-60 pv
Alphat "
8-12 Hz
5-100 pV
Theta|
4-7 Hz
‘ 20-200 pv
Delta
F 0-4 Hz
0 25 50 75 00 125 150 75 200
Frequency (Hz) / Amplitude (pV)
FIGURE 1
Frequency and amplitude ranges for Delta, Theta, Alpha, Beta, and Gamma brain waves. Red bars represent frequency ranges (Hz), increasing from
low-frequency Delta waves to high-frequency Gamma waves. Blue bars indicate amplitude ranges (uV), showing an inverse relationship with
frequency, where lower-frequency waves have higher amplitudes. This layout highlights the functional distinctions among brain wave modes, from
relaxation and sleep to alertness and cognition.

where N = 5 is the number of masses), n ranges from 1 to 5
(representing the normal modes),

k is the spring constant, and m is the mass of each
individual mass.

To improve the correspondence, we can modify the constant the
expression in:

w,=C sin<L>
o 2(N+1)
i.e., we can introduce a transformation function that allows
to scale the formula differently for each mode instead of using a
single constant.
In this adjustment, we calculated different C, values for
each mode, which serves to scale the frequencies of the
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system to match those of the brain waves. In this context,
they are no longer physical constants but adaptation constants
to allow the model to reflect the observed brain frequencies
(see Table 3).

In this mass-spring model of brain waves, each mode
corresponds to a specific brain wave frequency and is characterized
by a compliance. The compliance values reflect the flexibility of
the spring associated with each mode, with higher compliance
corresponding to lower stiffness.

The energy of each oscillatory mode is related to its frequency.
Higher frequencies typically correspond to higher energies, as
energy in oscillatory systems is proportional to the square of the
frequency. In this model, as we move from Mode 1 (Delta) to Mode
5 (Gamma), we observe increasing frequencies: 2.25 Hz, 6.00 Hz,
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Comparison of Target and Simulated Eigenfrequencies for 5-Mass Spring System
-@ Target Frequencies (Hz) )
—— Simulated Frequencies (Hz) ,'
60
501
T 40t
>
)
c
S 30}
z 30
o
[
201
101
Ot i 1 L h i
Delta Theta Alpha Beta Gamma
FIGURE 2
Comparison of target and simulated self-frequencies for the 5-mass system. The figure compares the target frequencies associated with the Delta,
Theta, Alpha, Beta and Gamma brain bands with the self-frequencies obtained from the optimised mass-spring model. The bars show the alignment
between the target values (in red) and simulated values (in blue) for each oscillatory mode. The model accurately reproduces the lower frequencies
(Delta, Theta, Alpha), while showing more marked deviations for the high-frequency bands (Beta and Gamma), indicating the need for further structural
refinements for a more faithful representation of high-frequency brain oscillations. All values are deterministic outputs of the simulation; therefore, no
experimental variability or standard deviation bars are reported.

Optimized Spring Constants (k) for 5-Mass System with Simplified Exponential Fit

le—-10
® @® Optimized k values (provided)
25} — Simplified Exponential Fit
20f
€
£
= 151
c
8
[%)
j
o
O 10t
o
£
3
0
0.5}
0.0f © *
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Spring Index (i)

FIGURE 3

Optimised values of elastic constants ki in the 5-mass system. The figure shows the trend in the values of the elastic constants obtained at the end of
the optimisation process, with the aim of matching the system'’s self-frequencies to the brain frequency bands (Delta, Theta, Alpha, Beta, Gamma). The
values of k; show a decreasing trend, imposed as a constraint during optimisation to maintain consistency with the physical model. The blue curve
represents an exponential fit of the data, suggesting a functional relationship between the position of the spring in the chain and its stiffness. The
optimized stiffness constants correspond to the best-fit solution of the numerical algorithm. As these are simulation parameters, no variability across
experimental trials is available.
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TABLE 3 Adaptation constants C,, for each brainwave mode in the
mass-spring model. This table lists the adaptation constants C,
calculated for each oscillation mode (Delta, Theta, Alpha, Beta, Gamma)
to scale the system’s frequencies and better match the observed
brainwave frequencies. In this approach, C,, values are not physical
spring constants but fitting parameters that allow the mass-spring
model to emulate the frequency characteristics of neural oscillations.

Mode Frequency Hz C,
Mode 1 (Delta) 2.25Hz C, =8.69
Mode 2 (Theta) 6.00 Hz C,=12.00
Mode 3 (Alpha) 10.00 Hz C;=14.14
Mode 4 (Beta) 21.00 Hz C,=24.25
Mode 5 (Gamma) 65.00 Hz C5=67.29

10.00 Hz, 21.00 Hz, and 65.00 Hz. This increase in frequency
corresponds to increasing energy levels for each successive mode.

In this model, each mode represents a different brain wave
frequency: higher frequency modes, such as Gamma (65.00 Hz),
require higher rigidity, as stiffer springs support faster oscillations.
In contrast, lower frequencies like Delta (2.25Hz) correspond
to springs with lower rigidity allowing for slower oscillations
and lower energy levels. This interpretation aligns with physical
principles, where increasing the spring’s rigidity enables higher
energy oscillations at faster frequencies.

The graph shows the relationship between C, and brain
frequencies (see Figure 4). The linear fit to the data produced
the equation:

C,=0.94w,+5.63

This relationship describes how the value of C, varies as a
function of brainwave frequencies. The slope of 0.94 indicates that
Cf’l
intercept of 5.63.

increases almost linearly with increasing frequency, with an

The simplest case

In a two-mass, three-spring system with two equal masses m and
three identical springs with spring constant k, we can achieve a pulse
transfer from the first to the second mass by setting initial conditions
that activate only the “out-of-phase” normal mode. Here, a detailed
description of the physical process, explaining the initial conditions
is reported.

The system consists of two masses m, labeled as m; and m,,
and three springs with stiffness k. In particular, the leftmost spring
connects m; to a fixed wall; the middle spring connects m, and m,;
the rightmost spring connects 1, to another fixed wall.

The forces on each mass due to the springs can be derived using
Newton’s second law:

For m;:

2
mﬁ = —2kx, + kx,

dar*
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For m,:

2
m& = kx, — 2kx,
dr
where x, and x, are the displacements of m, and m, from their
equilibrium positions.
In this system, we have two characteristic oscillation frequencies
(eigenfrequencies):

i. Anin-phase mode w = \/E ; in this mode, the masses oscillate
together, both moving in the same direction simultaneously.

ii . Out-of-phase mode w = \/% ; in this mode, the two masses
oscillate in opposite directions, creating a pattern where energy
transfers between them.

To create a pulse transfer from m; to m,, one can excite only the
out-of-phase mode. This can be achieved by setting the following
initial conditions:

For displacement, lets set x,(0) = X (a positive displacement)
and x, (0) = 0.

For the velocity, set x;(0) = 0 and x;(0) = 0.

These initial conditions excite only the out-of-phase mode,
resulting in an oscillatory transfer of energy between m, and m,.

With these initial conditions, the system behaves as follows:

Att =0, m, is displaced from its equilibrium, while 1, is at rest.
This initial displacement creates a pulse centered at ;.

This generates an energy transfer to m,; due to the coupling
spring between m, and m,, energy begins to transfer from m, to m,.

Here is a series of three plots showing the initial phase of
the mass-spring system, from t = 0 up to the first maximum
elongation of the second mass m, (see Figure 5). Each plot
illustrates a key moment in the energy transfer from m; to m,,
following the out-of-phase mode. This progression visualizes how
the initial displacement of m, shifts towards m, through the coupling
spring.

The transmission of a pulse in a system of coupled masses
and springs has a striking analogy to the way depolarization waves
propagate in neurons, particularly along the axon during nerve
signal transmission. In both systems, the fundamental process
involves energy or a signal passing from one point to the next,
facilitated by the interactions between units (masses and springs in
the mechanical system, or ion channels and membrane potentials
in neurons).

A term that captures the idea of treating a network of neurons
as a system of interacting masses and springs is Neuromechanical
Network Model. This term suggests a framework that combines the
structural and dynamic properties of neural networks (neurons and
synapses) with the principles from mechanics (masses and springs)
to model the propagation of signals as wave-like interactions.
This approach acknowledges that neural dynamics can sometimes
resemble the oscillatory and propagative behaviors of coupled
oscillators, such as in a mass-spring system. In the following a
comparison among the two different systems is proposed.

In both the mass-spring system and neurons, an initial
disturbance propagates through a chain of coupled elements,
creating a wave-like transmission. In the mass-spring model,
displacing one mass (e.g., mI) sets off a disturbance that travels
along the chain as energy transfers through the elastic coupling of
the springs. Each mass influences the next, with spring stiffness k
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FIGURE 4

Relationship between adaptation constant C and brainwave frequencies. The plot illustrates the linear relationship between the adaptation constant CC
and the corresponding brainwave frequencies (Delta, Theta, Alpha, Beta, Gamma) derived from the five-mode mass-spring model. Blue dots represent
the calculated data points, while the red line shows the best linear fit, described by the equation C,, = 0.94w, + 5.63. This linear trend suggests that as
brainwave frequency increases, a proportional scaling of the system'’s stiffness is required to reproduce the corresponding oscillatory mode, reinforcing
the validity of the adapted model. The values displayed are calculated outputs of the model and are shown without error bars, given the absence of
experimental replicates.

Mass-Spring System Initial Phase: Pulse Transfer from m1 to m2
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FIGURE 5

Initial phase of energy transfer in a two-mass, three-spring system, from t = O up to the first maximum elongation of the second mass m, Att =0, m;
is displaced from its equilibrium position while m, remains at rest, setting up the initial conditions that excite only the out-of-phase normal mode. This
mode causes the two masses to oscillate in opposite directions, generating a transfer of energy from m; to m,. The plots capture three snapshots of
this process, illustrating the gradual transfer of energy and the resulting displacement of m, as it reaches its first maximum elongation. Each plot shows
both the position of m; and m, at a specific time, highlighting the oscillatory motion and energy exchange between the masses. All values are
deterministic model outputs, and no experimental variability or statistical error bars are applicable.

determining the strength and speed of this interaction. Similarly,
in neurons, an initial depolarization triggered by a stimulus causes
ion channels to open, allowing positive ions to enter and creating
a local shift in membrane potential. This charge movement then
induces neighboring segments to depolarize as well, establishing a
continuous wave-like flow along the axon.

In both systems, coupling between adjacent elements is essential
for signal transmission. In the mass-spring chain, springs connect
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neighboring masses, allowing energy to move smoothly down
the line; in neurons, voltage-gated ion channels in the axon
membrane act as links, triggering depolarization sequentially
along each segment and facilitating the spread of the action
potential.

The speed of signal propagation in each system depends on
specific factors. In the mass-spring setup, the pulse transfer rate
increases with spring stiffness and lighter masses. In neurons,
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conduction velocity is influenced by axon diameter and myelination;
myelin sheaths enable faster transmission through saltatory
conduction, where the action potential “jumps” between nodes
of Ranvier.

As energy or signal propagates, it gradually attenuates. In
the mass-spring chain, damping (like friction) causes a gradual
reduction in pulse amplitude. For neurons, each axon segment
enters a refractory period after depolarization, preventing it from
immediately reactivating and ensuring unidirectional signal flow
along the axon.

Both systems exhibit a cycle of activation and recovery at
each point, as seen in an extended mass-spring chain where an
introduced pulse propagates through oscillations driven by the
springs’ restoring forces. Similarly, in neurons, a depolarization
wave initiated at one end, such as the axon hillock, travels along
the axon with each section undergoing a cycle of depolarization,
repolarization, and refractory period.

Thus, whether initiated by pulling a mass or stimulating a
neuron, both systems rely on coupled interactions to propagate
disturbances sequentially, transmitting energy in the mass-spring
model or an action potential in the neuron.

Conclusion

The 5-mass spring model provides a simplified yet insightful
analogy for understanding brain wave frequencies in terms of
mechanical oscillations. By connecting five equal masses in a linear
chain with springs of varying stiffness, we effectively modeled
different oscillatory modes that resemble brain wave frequencies.
The choice of distinct spring constants enabled us to fine-tune each
mode’s eigenfrequency to approximate the Delta, Theta, Alpha, Beta,
and Gamma brain wave bands, which are key in describing different
mental and cognitive states.

The optimization process played a central role, employing
a three-step refinement that balanced physical constraints with
numerical techniques to achieve frequency alignment. Initially,
the system was configured with linearly decreasing spring
constants, ensuring a monotonic trend. Using the Nelder-Mead
algorithm, spring constants were iteratively adjusted to minimize
the deviation of the calculated eigenfrequencies from target brain
wave frequencies. Despite limitations in precisely aligning all
modes particularly Beta and Gamma the optimization achieved
close alignment for Delta, Theta, and Alpha bands, which reflects
the fundamental frequencies associated with lower cognitive and
restful states. The more challenging high-frequency Beta and
Gamma bands were approximated, with deviations indicating a
need for further refinement, potentially through additional mass-
spring pairs or a continuous system approach. In particular, while
the current five-mass configuration reproduces Delta, Theta, and
Alpha rhythms with good accuracy, the Beta and Gamma bands
remain only approximated, with deviations that reflect the limited
degrees of freedom of the system. Two potential strategies may help
overcome this limitation: (i) increasing the number of masses, which
would enrich the eigenmode spectrum and shift higher modes
toward the desired frequency ranges, and (ii) introducing viscous
damping, which could modulate both frequency and bandwidth,
thus improving the correspondence with Beta and Gamma rhythms.
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In terms of the physical model, each spring constant reflects
an incremental damping effect, with decreasing values representing
progressively lower resistance to oscillatory transfer. This pattern
mirrors the gradual dissipation seen in higher brain frequencies and
the persistence of low-frequency rhythms like Delta. The penalty
function introduced during optimization successfully enforced a
decreasing sequence in the spring constants, ensuring the model
adhered to realistic physical constraints.

In a single degree-of-freedom oscillator, the classical mechanical
intuition is that increasing stiffness directly increases the natural
frequency. In our multi-mass coupled system, however, the
effective frequencies emerge from the global eigenvalue structure
of the stiffness matrix. As a result, changes in a single spring
constant can shift specific modes up or down depending on
the interaction with neighboring elements and the boundary
conditions, sometimes producing counterintuitive trends. This
highlights the phenomenological nature of the present formulation
and suggests that imposing monotonic constraints on stiffness
values or introducing additional couplings may provide a refinement
that aligns more closely with classical expectations.

The importance of models lies in their ability to reduce
the complexity of the biological system while maintaining its
essential characteristics [26, 27], facilitating theoretical and applied
exploration of neural function.

In conclusion, this model offers a framework for exploring
neural oscillations using a simplified mechanical system, providing a
basis for future studies on brain wave dynamics. By simulating brain
wave frequencies with a mass-spring system, it allows researchers to
investigate the interactions of oscillatory modes and their potential
roles in cognitive functions. This approach could inspire new
methods for modeling complex neural networks and deepen our
understanding of resonance, energy transfer, and synchronization
in the brain. Additionally, the model’s tunability adjusting spring
constants to emulate different frequency bands presents a versatile
tool for examining how changes in neural oscillations may influence
cognition, paving the way for applications in neuroengineering and
computational neuroscience.

Beyond its descriptive role, the proposed neuromechanical
framework may also inspire potential applications. By tuning the
stiffness parameters, the model could mimic pathological rhythms
such as epileptic synchronization, while its intuitive mechanical
analogy may support the design of bio-inspired oscillatory devices
and provide conceptual tools for neuroengineering applications.
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