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Neuromechanical network 
model

Rosa Musotto* and  Giovanni Pioggia

Institute for Biomedical Research and Innovation, National Research Council, IRIB-CNR, Messina, Italy

Neuronal oscillations play a crucial role in brain function, regulating processes 
such as perception, cognition, and motor control. These oscillations are 
characterized by frequencies that define specific neural states and interactions. 
This study investigates a neuro mechanical model that emulates brain wave 
frequencies using a system of five identical masses connected by springs with 
variable stiffness. The mass-spring arrangement serves as an analog for neuronal 
oscillations, with each spring's stiffness adjusted to produce frequencies that 
approximate the characteristic brain wave bands: Delta, Theta, Alpha, Beta, 
and Gamma. The model leverages coupled oscillations to represent neural 
interactions, mirroring how groups of neurons may synchronize to generate 
brain rhythms. Through a three-step optimization process, the spring constants 
were fine-tuned to align the system’s natural frequencies with target brain 
wave frequencies. Initial settings ensured a monotonic trend in stiffness, while 
the Nelder-Mead algorithm minimized the deviations from target frequencies. 
The resulting model successfully matched Delta, Theta, and Alpha frequencies 
closely, while Beta and Gamma bands showed moderate deviations, highlighting 
the need for further refinement or an expanded system. A comparison between 
this model and neural dynamics suggests that pulse transmission in a mass-
spring system resembles neuronal depolarization waves. The analogy draws 
parallels between oscillatory interactions in physical and biological systems, 
where each unit influences its neighbor to transmit energy or signals. The 
study concludes that simplified mechanical systems can effectively approximate 
brain oscillations, offering a foundation for exploring cognitive states through 
physical modeling and suggesting potential avenues for neuro engineering and 
cognitive research.
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Introduction

Eigenfrequencies and eigenmodes are fundamental concepts in the study of dynamic 
systems. The study of a system’s eigenfrequencies and eigenmodes spans several disciplines, 
offering vital insights into the behavior of complex systems. Herzog et al [1] have recently 
demonstrated the importance of measuring eigenfrequencies in biological systems and more 
specifically in monitoring the mechanical properties of mammalian cells, highlighting how 
these parameters can provide information on their physiology. Furthermore, the Angler’s 
[2] work introduced the metaphor of the ‘Symphonies of Life’, arguing that biological 
systems oscillate according to harmonic patterns defined by specific frequencies of their 
own, analogous to what happens in physical and mechanical systems. The Kaya and

Frontiers in Physics 01 frontiersin.org

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2025.1656677
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2025.1656677&domain=pdf&date_stamp=
2025-09-18
mailto:rosy.musotto@irib.cnr.it
mailto:rosy.musotto@irib.cnr.it
https://doi.org/10.3389/fphy.2025.1656677
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphy.2025.1656677/full
https://www.frontiersin.org/articles/10.3389/fphy.2025.1656677/full
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Musotto and Pioggia 10.3389/fphy.2025.1656677

Henry research [3] into the internal rhythms of biological systems 
suggests that biological systems possess their own frequencies 
that regulate their interactions and responses to external stimuli. 
Understanding, therefore, the fundamental mechanisms that 
regulate oscillations in large-scale brain circuits is essential for 
knowledge of their role in brain processes, both under adaptive 
and pathological conditions. Brain oscillations recorded by means 
of electroencephalography (EEG) date back decades, when they 
were initially termed “eigenströme” [4]. Over time, it became 
possible to classify brain oscillations into distinct frequency bands, 
each associated with specific brain areas, functions and cognitive 
states. Among the most commonly described frequency bands are 
delta, theta, alpha, beta, and gamma. These oscillations represent 
a key element of neural dynamics and are an important field of 
study in both neuroscientific and clinical fields. Delta waves occur 
mainly during deep sleep and deep meditation. They are related 
to reparative processes and cell regeneration. Their presence is 
indicative of states of drowsiness and lack of awareness. Theta 
waves are frequently observed during the transition phase between 
wakefulness and sleep, frequently during meditation and in states 
of deep relaxation. They are associated with processes of getting 
back in touch with deep emotions, creativity and learning abilities. 
Alterations in the oscillations of the delta and theta frequency bands 
have been found in pathologies such as schizophrenia and epilepsy, 
suggesting dysfunctions in the neuronal circuits that mediate the 
oscillations of these bands [5]. Alpha waves predominate during 
states of relaxation and calm, typically when the eyes are closed 
but one is not yet asleep. They are associated with states of calm 
and mental clarity, and indicate reduced active thought activity 
[6, 7]. Beta waves occur during phases of high cognitive activity 
and attention. They are most prominent when awake and alert, 
particularly during intense mental activity. These waves are shown 
to correlate with states of attention, concentration and activation. 
They have also been shown to increase during motor activities, 
suggesting a crucial role in motor coordination and cognition [8]. 
Gamma waves are the higher frequency bands and are associated 
with complex cognitive processes such as information processing 
and sensory integration. They are believed to play a crucial role in 
cognition, such as perception and consciousness [9–12].

This organization reflects how specific frequencies correlate with 
different mental states and brain activities, from restful to highly 
alert conditions [13, 14].

The figure provides a dual-bar horizontal plot illustrating the 
frequency and amplitude ranges for each brain wave mode: Delta, 
Theta, Alpha, Beta, and Gamma. Along the vertical axis, each brain 
wave type is represented with frequency and amplitude ranges 
shown as distinct horizontal bars.

The red bars depict the frequency ranges in Hertz (Hz) for each 
mode, progressing from the lowest frequencies in Delta waves to the 
highest in Gamma waves. Specifically, Delta waves range from 0 to 
4 Hz, Theta waves from 4 to 7 Hz, Alpha waves from 8 to 12 Hz, Beta 
waves from 13 to 30 Hz, and Gamma waves span the highest range, 
from 30 to 100 Hz [15–18]. This spectrum of frequencies aligns with 
the functional roles of these brain waves, from deep relaxation and 
sleep to alert and high-cognitive states.

In contrast, the blue bars illustrate the amplitude ranges in 
microvolts (µV) for each brain wave, which tend to decrease as 
frequency increases. Delta waves, linked with deep sleep, show the 

highest amplitude range from 20 to 200 µV. Theta waves, associated 
with light sleep, have an amplitude range of 5–100 µV. Alpha waves, 
reflecting a relaxed but alert state, range from 10 to 60 µV in 
amplitude. Beta waves, which are associated with active thinking, 
exhibit a narrower amplitude range from 5 to 30 μV, while Gamma 
waves, involved in high-level cognitive functions, display the lowest 
amplitude range of 1–10 µV.

Each bar is labeled with its precise range, enabling a clear 
reference for both frequency and amplitude across the different 
brain waves. The figure highlights the inverse relationship between 
frequency and amplitude; lower-frequency waves such as Delta and 
Theta tend to have higher amplitudes, while higher-frequency waves 
like Beta and Gamma are associated with lower amplitudes. This 
visual layout effectively illustrates the functional differences among 
brain wave modes, capturing the progression from low-frequency, 
high-amplitude waves associated with sleep to high-frequency, low-
amplitude waves characteristic of alertness and cognitive processing.

Understanding the intricate dynamics of these oscillations and 
their role in cognition [19] has led to the development of simplified 
models to replicate neural oscillations.

In this context, the present work explores a model that employs 
a system of five identical masses linked in sequence by springs with 
variable stiffness to simulate these brain waves. This mass-spring 
system serves as an analogy for coupled neuronal oscillations, with 
each spring’s stiffness fine-tuned to produce oscillatory frequencies 
that closely match the characteristic frequency bands observed 
in brain activity. The model leverages the interaction of these 
coupled oscillators to emulate how neural oscillations may arise 
from synchronized neuron populations.

This mass-spring framework is particularly insightful as it not 
only models individual oscillatory frequencies but also illustrates 
how these frequencies interact. As each mass represents a group of 
neurons, the oscillatory modes produced by their coupling mirror 
the natural oscillations within the brain. The varying stiffness in each 
spring allows the model to mimic different oscillatory regimes by 
adjusting the mass’s resonant frequencies, enabling it to align with 
specific brain wave bands: Delta, Theta, Alpha, Beta, and Gamma. 
For instance, a lower stiffness may correspond to a slower frequency 
like Delta, while higher stiffness produces faster oscillations akin to 
Gamma waves.

The global incidence of neurodegenerative disorders is 
becoming an increasingly critical issueworldwide, mainly due to 
an aging population and an increase in the prevalence of chronic 
diseases.In recent decades, the incidence and prevalence of these 
disorders have shown a significant increase,presenting significant 
challenges for health systems and societies. Among the most 
prevalentdisorders are Alzheimer’s disease (AD) and Parkinson’s 
disease (PD), which together account for the majority of cases of 
dementia and neurodegeneration, severely affecting both cognitive 
function and motor skills and patients’ quality of life [20]. According 
to recent estimates, about 35 million people live with AD and 
about 6 million with PD globally [21]. More broadly, the World 
HealthOrganization reports that more than 55 million people 
are living with a form of dementia today, witha projection that it 
could reach 139 million by 2050 [22]. These statistics highlight 
not only how prevalent neurodegenerative disorders already are, 
but also how their prevalence is set to increase dramatically, with 
an estimated growth of up to 166 percent over the next 30 years 
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[23]. In addition to genetic predisposition and aging, several 
environmental factors contribute to the onset and progression 
of neurodegenerative disorders. In particular, it has been shown 
that the presence of positive bivalent cations, such as calcium, 
copper, and zinc, can modulate protein aggregation and influence 
neurotoxic processes [24]. Similarly, physicochemical parameters 
such as pH and ionicstrength play key roles in the stability of 
amyloid proteins and their propensity to aggregate, thusaffecting 
the pathogenesis of many neurodegenerative diseases [25]. Taken 
together, the growing epidemiological impact and the contribution 
of environmental factors underscore the urgency of developing new 
theoretical and computational frameworks capable of providing a 
more comprehensive understanding of brain dynamics and related 
pathological rhythms, paving the way for innovative prevention and 
intervention strategies.

The present work sheds light on how simplified physical 
systems can help us understand complex neural oscillations 
by approximating the synchronization and resonance behaviors 
observed in the brain. By simulating brain wave-like behavior 
in a controlled, tunable environment, this model opens up new 
possibilities for exploring how various oscillatory modes interact, 
transfer energy, and collectively support the brain’s vast cognitive 
repertoire. As research continues to reveal the role of neural 
oscillations in processes like attention, memory, and perception, 
models like these contribute valuable insights into the oscillatory 
nature of brain function, potentially guiding future developments in 
neuroengineering and cognitive neuroscience.

The model

A system of 5 equal masses m connected by 5 identical springs 
with stiffness k represents a linear chain of coupled oscillators. 
Each mass is subject to forces from the neighboring springs, and 
the motion of each mass influences, and is influenced by, the 
neighboring masses. The dynamics of this system can be described 
by a set of coupled second-order differential equations, where 
the force on each mass i (except for the ends) depends on the 
displacements xi−1, xi, and xi+1 of the adjacent masses.

For each mass, Newton’s second law gives:

m
d2xi

dt2 = −k(xi − xi−1) − k(xi − xi+1)

for i = 1,2,3,4,5 with boundary conditions depending on whether 
the ends are fixed or free. This set of differential equations can be 
written in matrix form, with the displacements of each mass forming 
a vector, and solved by assuming solutions of the form:

xi = Ai cos (ωt+φ)

This approach leads to an eigenvalue problem where the 
frequencies ω are the square roots of the eigenvalues of the matrix 
governing the system. Solving this eigenvalue problem yields 5 
distinct natural frequencies, each corresponding to a normal mode 
of the system.

In a system of 5 masses connected by springs, we can calculate 
the frequencies of the 5 normal modes using the following 

approximation:

ωN = 2√ k
m

sin( nπ
2(N+ 1)

)

Where N = 5 is the number of masses), n ranges from 1 to 5 
(representing the normal modes), k is the spring constant, and m is 
the mass of each individual mass.

Each value of n corresponds to a different normal mode with a 
unique oscillation frequency, with the first mode n = 1 having the 
lowest frequency and the fifth mode n = 5 the highest.

The lowest frequency mode, or fundamental mode, represents 
a motion where all masses oscillate in phase, while higher modes 
show increasingly complex phase differences. These solutions reveal 
how energy can transfer across the masses, with implications 
for understanding wave propagation, resonance, and stability in 
mechanical and physical systems.

System description: five coupled 
masses and variable spring constants

In the following analysis, we modeled a physical system 
composed of five identical masses connected in a linear arrangement 
by springs with varying stiffness, k, between each consecutive pair of 
masses. The goal was to simulate the eigenfrequencies of this system, 
ensuring they closely matched specific brain wave frequency bands: 
Delta (2.0 Hz), Theta (5.5 Hz), Alpha (10.0 Hz), Beta (21.5 Hz), and 
Gamma (65.0 Hz). More in details, each of the five masses is set to 
a constant value of m = 5 10−15 kg, representing an approximation 
based on neuronal mass. The spring constants between each pair 
of masses were varied (i.e., k1, k2, k3,k4, k5) to tune the system’s 
eigenfrequencies to the target brain wave frequencies.

In other words, in order to align the eigenfrequencies of a 5-
mass spring system with specific target brain wave frequencies, we 
implemented a systematic optimization process.

This process required balancing the spring constants k1, 
k2, k3, k4, k5 to produce eigenfrequencies corresponding to 
Delta, Theta, Alpha, Beta, and Gamma brain wave bands. The 
adopted optimization protocol combined physical constraints with 
numerical optimization techniques. Since electroencephalographic 
rhythms emerge from the collective activity of large neuronal 
populations, our neuromechanical model is not intended to describe 
single-cell processes. Instead, each mass– spring element should be 
interpreted as a mesoscopic unit, bridging between local populations 
and functional brain regions.

Mathematical model of the system

The employed model consists of five identical masses, arranged 
linearly, with each pair connected by a spring. This setup can 
be described by a system of coupled differential equations for 
the displacements of the masses, which can be expressed in 
matrix form as:

Mẍ+Kx = 0

Where M is the mass matrix (diagonal matrix with mass m
on the diagonal), K is the stiffness matrix, representing the spring 
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TABLE 1  Final optimized values of the spring constants ki for the 5-mass 
system. The table reports the optimized values of the spring constants 
k1–k5, expressed in Newtons per meter (N/m), obtained at the end of the 
optimization process. These values were adjusted to align the system’s 
eigenfrequencies with the target brainwave frequency bands (Delta, 
Theta, Alpha, Beta, Gamma). The slight non-monotonic variation 
between k1 and k2 reflects the compromise reached by the optimization 
algorithm to minimize the overall error in the simulated frequencies.

Spring constant Optimized value (N/m)

k1 1.65 × 10−10

k2 2.65 × 10−10

k3 1.00 × 10−12

k4 9.08 × 10−12

k5 6.26 × 10−12

connections and their respective constants k1, k2, k3, k4, k5, x is the 
displacement vector of the masses.

The mass matrix, M, is diagonal, and can be expressed by:

M =mI

where I is the identity matrix of size 5 x 5, and m = 5 10−15 kg.
The stiffness matrix K is tridiagonal and constructed as follows:

K =

[[[[[[[[[[

[

k1 + k2−k2 0 0 0

−k2 k2 + k3−k3 0 0

0−k3 k3 + k4−k4 0

0 0−k4 k4 + k5 0

0 0 0−k5 k5

]]]]]]]]]]

]

To determine the eigenfrequencies, we solve the generalized 
eigenvalue problem:

Kν = λMν

Where ν is the eigenvector, λ is the eigenvalue related to the 
angular frequency ω by ω = √λ.

The eigenfrequencies f in Hz are then calculated from the 
angular frequencies as:

f = ω
2π
=
√λ
2π

The objective was to adjust the ki values so that the 
eigenfrequencies f aligned with the target brain wave frequencies 
Delta (2.0 Hz), Theta (5.5 Hz), Alpha (10.0 Hz), Beta (21.5 Hz), and 
Gamma (65.0 Hz).

The optimization aimed to minimize the sum of squared 
deviations between the calculated eigenfrequencies and the target 
frequencies. The objective function is defined as:

ObjectiveFunction =
5

∑
j=1
( fj − ftarget,j)

2 + Penalty

Where fj are the eigenfrequencies from the system, ftarget,j
are the target frequencies for Delta, Theta, Alpha, Beta, and 

Gamma, and Penalty is a term added if any ki does not follow a 
decreasing sequence. In particular, to maintain physical consistency, 
we enforced a strictly decreasing trend in ki values by applying a 
penalty whenever ki+1 ≥ ki:

Penalty =
4

∑
i=1

max(0,ki+1 − ki)
2

This penalty increases the objective value if the monotonic 
constraint is violated, guiding the optimization toward a decreasing 
ki sequence.

Then, we applied the optimization using a stepwise refinement 
process in three steps. 

i . Initial guesses: we started with an initial sequence of ki values 
that decreased linearly.

ii . Objective minimization: using the Nelder-Mead optimization 
algorithm, we iteratively adjusted the ki values, aiming to 
minimize the objective function while satisfying a monotonic 
constraint.

iii . Further Fine-Tuning: The optimization was iteratively refined 
by adjusting the bounds and initial guesses, emphasizing 
closer alignment with Delta, Theta, and Alpha, while reducing 
deviations for Beta and Gamma.

The final optimized values of the spring constants ki
are given in Table 1.

The resulting simulated eigenfrequencies and their deviations 
from the target values are given in Table 2.

In Figure 1 the target vs. simulated eigenfrequencies for the 5-
mass spring system is plotted; it shows the good alignment between 
the target brain wave frequencies and the simulated eigenfrequencies 
achieved after optimization.

In Figure 2 the optimized spring constants ki values for the 5-
Mass spring System are reported. This displays the trend of the 
optimized ki values, which follows a monotonic decrease as required 
by the model constraints.

The blue curve provides a fit of the obtained data with an 
exponential model; more in details the fit curve is:

ki = 7.93 · 10−10 − 10 · exp (−0.0966) − 5.11 · 10−10

The approach used in this model can be criticized due to 
the inverse relationship between the spring constant ki and the 
frequency, resulting in a decreasing trend in ki as the frequency 
increases. Physically, this is counterintuitive, as higher frequencies 
typically correlate with stiffer springs (i.e., higher spring constants), 
allowing for faster oscillations. Here the optimization produces a 
decrease in ki values as frequency rises (see Figure 3), which conflicts 
with conventional mechanical principles. This discrepancy raises 
questions about the model’s physical accuracy and its ability to 
accurately represent the dynamics of brain wave frequencies.

A refined approach

Starting from the consideration that a system of 5 masses 
connected by springs, the frequencies of the 5 normal modes are 
furnished by the expression:

ωN = 2√ k
m

sin( nπ
2(N+ 1)

)
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TABLE 2  Comparison between target and simulated eigenfrequencies for the 5-mass spring system. The table compares the target brainwave 
frequencies (Delta, Theta, Alpha, Beta, Gamma) with the corresponding eigenfrequencies obtained from the optimized mass-spring model. Deviations 
are generally small for lower-frequency bands (Delta, Theta, Alpha), indicating good alignment, while larger deviations are observed for 
higher-frequency bands (Beta and Gamma), suggesting the need for further refinement of the model at higher frequencies.

Brain wave mode Target frequency (Hz) Simulated frequency (Hz) Deviation (Hz)

Delta 2.2 2.45 +0.45

Theta 5.5 5.38 −0.12

Alpha 10.0 9.91 −0.09

Beta 21.5 36.73 +15.23

Gamma 65.0 54.84 −10.16

FIGURE 1
Frequency and amplitude ranges for Delta, Theta, Alpha, Beta, and Gamma brain waves. Red bars represent frequency ranges (Hz), increasing from 
low-frequency Delta waves to high-frequency Gamma waves. Blue bars indicate amplitude ranges (µV), showing an inverse relationship with 
frequency, where lower-frequency waves have higher amplitudes. This layout highlights the functional distinctions among brain wave modes, from 
relaxation and sleep to alertness and cognition.

where N = 5 is the number of masses), n ranges from 1 to 5 
(representing the normal modes),

k is the spring constant, and m is the mass of each 
individual mass.

To improve the correspondence, we can modify the constant the 
expression in:

ωn = Cn sin( nπ
2(N+ 1)

)

i.e., we can introduce a transformation function that allows 
to scale the formula differently for each mode instead of using a 
single constant.

In this adjustment, we calculated different Cn values for 
each mode, which serves to scale the frequencies of the 

system to match those of the brain waves. In this context, 
they are no longer physical constants but adaptation constants 
to allow the model to reflect the observed brain frequencies
(see Table 3).

In this mass-spring model of brain waves, each mode 
corresponds to a specific brain wave frequency and is characterized 
by a compliance. The compliance values reflect the flexibility of 
the spring associated with each mode, with higher compliance 
corresponding to lower stiffness.

The energy of each oscillatory mode is related to its frequency. 
Higher frequencies typically correspond to higher energies, as 
energy in oscillatory systems is proportional to the square of the 
frequency. In this model, as we move from Mode 1 (Delta) to Mode 
5 (Gamma), we observe increasing frequencies: 2.25 Hz, 6.00 Hz, 
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FIGURE 2
Comparison of target and simulated self-frequencies for the 5-mass system. The figure compares the target frequencies associated with the Delta, 
Theta, Alpha, Beta and Gamma brain bands with the self-frequencies obtained from the optimised mass-spring model. The bars show the alignment 
between the target values (in red) and simulated values (in blue) for each oscillatory mode. The model accurately reproduces the lower frequencies 
(Delta, Theta, Alpha), while showing more marked deviations for the high-frequency bands (Beta and Gamma), indicating the need for further structural 
refinements for a more faithful representation of high-frequency brain oscillations. All values are deterministic outputs of the simulation; therefore, no 
experimental variability or standard deviation bars are reported.

FIGURE 3
Optimised values of elastic constants ki in the 5-mass system. The figure shows the trend in the values of the elastic constants obtained at the end of 
the optimisation process, with the aim of matching the system’s self-frequencies to the brain frequency bands (Delta, Theta, Alpha, Beta, Gamma). The 
values of ki show a decreasing trend, imposed as a constraint during optimisation to maintain consistency with the physical model. The blue curve 
represents an exponential fit of the data, suggesting a functional relationship between the position of the spring in the chain and its stiffness. The 
optimized stiffness constants correspond to the best-fit solution of the numerical algorithm. As these are simulation parameters, no variability across 
experimental trials is available.
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TABLE 3  Adaptation constants Cn for each brainwave mode in the 
mass-spring model. This table lists the adaptation constants Cn
calculated for each oscillation mode (Delta, Theta, Alpha, Beta, Gamma) 
to scale the system’s frequencies and better match the observed 
brainwave frequencies. In this approach, Cn values are not physical 
spring constants but fitting parameters that allow the mass-spring 
model to emulate the frequency characteristics of neural oscillations.

Mode Frequency Hz Cn

Mode 1 (Delta) 2.25 Hz C1 = 8.69

Mode 2 (Theta) 6.00 Hz C2 = 12.00

Mode 3 (Alpha) 10.00 Hz C3 = 14.14

Mode 4 (Beta) 21.00 Hz C4 = 24.25

Mode 5 (Gamma) 65.00 Hz C5 = 67.29

10.00 Hz, 21.00 Hz, and 65.00 Hz. This increase in frequency 
corresponds to increasing energy levels for each successive mode.

In this model, each mode represents a different brain wave 
frequency: higher frequency modes, such as Gamma (65.00 Hz), 
require higher rigidity, as stiffer springs support faster oscillations. 
In contrast, lower frequencies like Delta (2.25 Hz) correspond 
to springs with lower rigidity allowing for slower oscillations 
and lower energy levels. This interpretation aligns with physical 
principles, where increasing the spring’s rigidity enables higher 
energy oscillations at faster frequencies.

The graph shows the relationship between Cn and brain 
frequencies (see Figure 4). The linear fit to the data produced 
the equation:

Cn = 0.94ωn + 5.63

This relationship describes how the value of Cn varies as a 
function of brainwave frequencies. The slope of 0.94 indicates that 
Cn increases almost linearly with increasing frequency, with an 
intercept of 5.63.

The simplest case

In a two-mass, three-spring system with two equal masses m and 
three identical springs with spring constant k, we can achieve a pulse 
transfer from the first to the second mass by setting initial conditions 
that activate only the “out-of-phase” normal mode. Here, a detailed 
description of the physical process, explaining the initial conditions 
is reported.

The system consists of two masses m, labeled as m1 and m2, 
and three springs with stiffness k. In particular, the leftmost spring 
connects m1 to a fixed wall; the middle spring connects m1 and m2; 
the rightmost spring connects m2 to another fixed wall.

The forces on each mass due to the springs can be derived using 
Newton’s second law:

For m1:

m
d2x1

dt2 = −2kx1 + kx2

For m2:

m
d2x2

dt2 = kx1 − 2kx2

where x1 and x2 are the displacements of m1 and m2 from their 
equilibrium positions.

In this system, we have two characteristic oscillation frequencies 
(eigenfrequencies): 

i . An in-phase mode ω = √ k
m

; in this mode, the masses oscillate 
together, both moving in the same direction simultaneously.

ii . Out-of-phase mode ω = √ 3k
m

; in this mode, the two masses 
oscillate in opposite directions, creating a pattern where energy 
transfers between them.

To create a pulse transfer from m1 to m2, one can excite only the 
out-of-phase mode. This can be achieved by setting the following 
initial conditions:

For displacement, let’s set x1(0) = X (a positive displacement) 
and x2 (0) = 0.

For the velocity, set ̇x1(0) = 0 and ̇x2(0) = 0.
These initial conditions excite only the out-of-phase mode, 

resulting in an oscillatory transfer of energy between m1 and m2.
With these initial conditions, the system behaves as follows:
At t = 0, m1 is displaced from its equilibrium, while m2 is at rest. 

This initial displacement creates a pulse centered at m1.
This generates an energy transfer to m2; due to the coupling 

spring between m1 and m2, energy begins to transfer from m1 to m2.
Here is a series of three plots showing the initial phase of 

the mass-spring system, from t = 0 up to the first maximum 
elongation of the second mass m2 (see Figure 5). Each plot 
illustrates a key moment in the energy transfer from m1 to m2, 
following the out-of-phase mode. This progression visualizes how 
the initial displacement of m1 shifts towards m2 through the coupling
spring.

The transmission of a pulse in a system of coupled masses 
and springs has a striking analogy to the way depolarization waves 
propagate in neurons, particularly along the axon during nerve 
signal transmission. In both systems, the fundamental process 
involves energy or a signal passing from one point to the next, 
facilitated by the interactions between units (masses and springs in 
the mechanical system, or ion channels and membrane potentials 
in neurons).

A term that captures the idea of treating a network of neurons 
as a system of interacting masses and springs is Neuromechanical 
Network Model. This term suggests a framework that combines the 
structural and dynamic properties of neural networks (neurons and 
synapses) with the principles from mechanics (masses and springs) 
to model the propagation of signals as wave-like interactions. 
This approach acknowledges that neural dynamics can sometimes 
resemble the oscillatory and propagative behaviors of coupled 
oscillators, such as in a mass-spring system. In the following a 
comparison among the two different systems is proposed.

In both the mass-spring system and neurons, an initial 
disturbance propagates through a chain of coupled elements, 
creating a wave-like transmission. In the mass-spring model, 
displacing one mass (e.g., m1) sets off a disturbance that travels 
along the chain as energy transfers through the elastic coupling of 
the springs. Each mass influences the next, with spring stiffness k
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FIGURE 4
Relationship between adaptation constant C and brainwave frequencies. The plot illustrates the linear relationship between the adaptation constant CC 
and the corresponding brainwave frequencies (Delta, Theta, Alpha, Beta, Gamma) derived from the five-mode mass-spring model. Blue dots represent 
the calculated data points, while the red line shows the best linear fit, described by the equation Cn = 0.94ωn +5.63. This linear trend suggests that as 
brainwave frequency increases, a proportional scaling of the system’s stiffness is required to reproduce the corresponding oscillatory mode, reinforcing 
the validity of the adapted model. The values displayed are calculated outputs of the model and are shown without error bars, given the absence of 
experimental replicates.

FIGURE 5
Initial phase of energy transfer in a two-mass, three-spring system, from t = 0 up to the first maximum elongation of the second mass m2. At t = 0, m1

is displaced from its equilibrium position while m2 remains at rest, setting up the initial conditions that excite only the out-of-phase normal mode. This 
mode causes the two masses to oscillate in opposite directions, generating a transfer of energy from m1 to m2. The plots capture three snapshots of 
this process, illustrating the gradual transfer of energy and the resulting displacement of m2 as it reaches its first maximum elongation. Each plot shows 
both the position of m1 and m2 at a specific time, highlighting the oscillatory motion and energy exchange between the masses. All values are 
deterministic model outputs, and no experimental variability or statistical error bars are applicable.

determining the strength and speed of this interaction. Similarly, 
in neurons, an initial depolarization triggered by a stimulus causes 
ion channels to open, allowing positive ions to enter and creating 
a local shift in membrane potential. This charge movement then 
induces neighboring segments to depolarize as well, establishing a 
continuous wave-like flow along the axon.

In both systems, coupling between adjacent elements is essential 
for signal transmission. In the mass-spring chain, springs connect 

neighboring masses, allowing energy to move smoothly down 
the line; in neurons, voltage-gated ion channels in the axon 
membrane act as links, triggering depolarization sequentially 
along each segment and facilitating the spread of the action
potential.

The speed of signal propagation in each system depends on 
specific factors. In the mass-spring setup, the pulse transfer rate 
increases with spring stiffness and lighter masses. In neurons, 

Frontiers in Physics 08 frontiersin.org

https://doi.org/10.3389/fphy.2025.1656677
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Musotto and Pioggia 10.3389/fphy.2025.1656677

conduction velocity is influenced by axon diameter and myelination; 
myelin sheaths enable faster transmission through saltatory 
conduction, where the action potential “jumps” between nodes 
of Ranvier.

As energy or signal propagates, it gradually attenuates. In 
the mass-spring chain, damping (like friction) causes a gradual 
reduction in pulse amplitude. For neurons, each axon segment 
enters a refractory period after depolarization, preventing it from 
immediately reactivating and ensuring unidirectional signal flow 
along the axon.

Both systems exhibit a cycle of activation and recovery at 
each point, as seen in an extended mass-spring chain where an 
introduced pulse propagates through oscillations driven by the 
springs’ restoring forces. Similarly, in neurons, a depolarization 
wave initiated at one end, such as the axon hillock, travels along 
the axon with each section undergoing a cycle of depolarization, 
repolarization, and refractory period.

Thus, whether initiated by pulling a mass or stimulating a 
neuron, both systems rely on coupled interactions to propagate 
disturbances sequentially, transmitting energy in the mass-spring 
model or an action potential in the neuron.

Conclusion

The 5-mass spring model provides a simplified yet insightful 
analogy for understanding brain wave frequencies in terms of 
mechanical oscillations. By connecting five equal masses in a linear 
chain with springs of varying stiffness, we effectively modeled 
different oscillatory modes that resemble brain wave frequencies. 
The choice of distinct spring constants enabled us to fine-tune each 
mode’s eigenfrequency to approximate the Delta, Theta, Alpha, Beta, 
and Gamma brain wave bands, which are key in describing different 
mental and cognitive states.

The optimization process played a central role, employing 
a three-step refinement that balanced physical constraints with 
numerical techniques to achieve frequency alignment. Initially, 
the system was configured with linearly decreasing spring 
constants, ensuring a monotonic trend. Using the Nelder-Mead 
algorithm, spring constants were iteratively adjusted to minimize 
the deviation of the calculated eigenfrequencies from target brain 
wave frequencies. Despite limitations in precisely aligning all 
modes particularly Beta and Gamma the optimization achieved 
close alignment for Delta, Theta, and Alpha bands, which reflects 
the fundamental frequencies associated with lower cognitive and 
restful states. The more challenging high-frequency Beta and 
Gamma bands were approximated, with deviations indicating a 
need for further refinement, potentially through additional mass-
spring pairs or a continuous system approach. In particular, while 
the current five-mass configuration reproduces Delta, Theta, and 
Alpha rhythms with good accuracy, the Beta and Gamma bands 
remain only approximated, with deviations that reflect the limited 
degrees of freedom of the system. Two potential strategies may help 
overcome this limitation: (i) increasing the number of masses, which 
would enrich the eigenmode spectrum and shift higher modes 
toward the desired frequency ranges, and (ii) introducing viscous 
damping, which could modulate both frequency and bandwidth, 
thus improving the correspondence with Beta and Gamma rhythms.

In terms of the physical model, each spring constant reflects 
an incremental damping effect, with decreasing values representing 
progressively lower resistance to oscillatory transfer. This pattern 
mirrors the gradual dissipation seen in higher brain frequencies and 
the persistence of low-frequency rhythms like Delta. The penalty 
function introduced during optimization successfully enforced a 
decreasing sequence in the spring constants, ensuring the model 
adhered to realistic physical constraints.

In a single degree-of-freedom oscillator, the classical mechanical 
intuition is that increasing stiffness directly increases the natural 
frequency. In our multi-mass coupled system, however, the 
effective frequencies emerge from the global eigenvalue structure 
of the stiffness matrix. As a result, changes in a single spring 
constant can shift specific modes up or down depending on 
the interaction with neighboring elements and the boundary 
conditions, sometimes producing counterintuitive trends. This 
highlights the phenomenological nature of the present formulation 
and suggests that imposing monotonic constraints on stiffness 
values or introducing additional couplings may provide a refinement 
that aligns more closely with classical expectations.

The importance of models lies in their ability to reduce 
the complexity of the biological system while maintaining its 
essential characteristics [26, 27], facilitating theoretical and applied 
exploration of neural function.

In conclusion, this model offers a framework for exploring 
neural oscillations using a simplified mechanical system, providing a 
basis for future studies on brain wave dynamics. By simulating brain 
wave frequencies with a mass-spring system, it allows researchers to 
investigate the interactions of oscillatory modes and their potential 
roles in cognitive functions. This approach could inspire new 
methods for modeling complex neural networks and deepen our 
understanding of resonance, energy transfer, and synchronization 
in the brain. Additionally, the model’s tunability adjusting spring 
constants to emulate different frequency bands presents a versatile 
tool for examining how changes in neural oscillations may influence 
cognition, paving the way for applications in neuroengineering and 
computational neuroscience.

Beyond its descriptive role, the proposed neuromechanical 
framework may also inspire potential applications. By tuning the 
stiffness parameters, the model could mimic pathological rhythms 
such as epileptic synchronization, while its intuitive mechanical 
analogy may support the design of bio-inspired oscillatory devices 
and provide conceptual tools for neuroengineering applications.
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