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We study a hydrodynamic Cucker-Smale-type model incorporating both time 
delays and obstacle potentials. The model governs the evolution of velocity 
and density fields of the system, where delayed interactions drive alignment 
and obstacle potentials account for responses to obstacles or predators. 
We further extend the framework to two-species systems. To numerically 
solve the model, we design a high-order finite volume method based on 
a Lax–Friedrichs numerical flux with fifth-order weighted essentially non-
oscillatory reconstruction and third-order Runge–Kutta time discretization, 
ensuring numerical stability and high-order accuracy. Numerical experiments 
confirm the stability and accuracy of the proposed scheme and illustrate how 
time delays and obstacle potentials, under specific communication kernels 
and initial conditions, affect the emergence of flocking or non-flocking
behavior.
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 1 Introduction

Flocking refers to the spontaneous emergence of coordinated collective motion among 
self-propelled agents, driven by local alignment of velocities and spatial cohesion [1,2]. This 
phenomenon is widely observed in nature, including bird flocks, fish schools, and insect 
swarms [3–6]. It also inspires algorithmic design in robotics, autonomous vehicles, and 
swarm control systems [7,8].

Classical models capturing flocking dynamics often use a particle-based framework. 
Reynolds’ Boids model [9] introduced simple behavioral rules (alignment, cohesion, 
separation) to generate realistic group motion. The Vicsek model [8] further 
simplified this by using noisy velocity alignment, revealing phase transitions between 
ordered and disordered states. The Cucker–Smale (CS) model [10] formalized 
alignment interactions using nonlocal communication kernels, laying the foundation 
for rich mathematical theory, including kinetic and hydrodynamic continuum
descriptions [11–15].

While many Cucker–Smale (CS) type models assume instantaneous interactions 
among agents, real-world agents typically respond to information from their surroundings 
with a certain processing or reaction delay τ > 0 [16]. Recent studies have increasingly 
focused on the influence of delays, with the majority of them conducted within
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the framework of particle-based models [16–20]. For instance, Du 
[21] analyzed the delayed CS system in a harmonic potential and 
showed that delay affects the conditions for flocking. Choi and 
Haskovec [18] established sufficient conditions for global regularity 
and flocking, where for non-integrable kernels the delay can be 
arbitrary, whereas for integrable kernels the results generally require 
small delays [18]. shows that sufficiently small delays are necessary 
to satisfy the flocking condition. While delayed CS models have been 
studied at the hydrodynamic level [22], most results remain purely 
analytical. In contrast, existing simulations primarily focus on the 
particle level [19,20], but numerical investigations at the continuum 
scale remain limited.

In addition to delayed alignment, repulsive potentials are key 
to realistic swarm models, maintaining spacing, avoiding obstacles, 
and simulating predator evasion [23–30]. Empirical studies show 
that fish schools and bird flocks react to static obstacles by deflecting, 
slowing down, and regrouping, while preserving cohesion and 
direction [28,30]. While previous studies have analyzed obstacle-
induced behaviors such as group splitting and path deviation in 
swarm models [26,29], the impact of obstacles in hydrodynamic 
Cucker–Smale systems remains less understood. Aung et al. [31] 
showed that obstacles and spatial heterogeneity can enhance local 
interactions and global order. In this work, we introduce stationary 
obstacles as localized repulsive potentials and focus on their 
interaction with time delay in shaping aggregation and pattern 
formation.

Incorporating both time delay and obstacle-induced repulsion 
potentials into the hydrodynamic Cucker–Smale (CS) model 
significantly increases the mathematical and numerical challenges. 
Specifically, such coupled models may develop singularities such as 
finite-time density concentration, blow-up of velocity gradients, 
or loss of regularity in the solution. Although particle-based 
simulations can capture some detailed behaviors, they typically 
suffer from high computational costs and limited scalability 
in high-dimensional or large-scale systems [32]. Therefore, 
continuum or hydrodynamic modeling offers a more feasible and 
efficient framework for simulating large-scale collective behavior. 
Several works have proposed high-order numerical methods for 
hydrodynamic CS models in the absence of time delay and obstacle 
effects [24,33,34]. However, numerical methods that simultaneously 
address both time-delayed interactions and obstacle-induced 
repulsionpotentials remain largely unexplored.

This work aims to contribute to this gap by studying 
hydrodynamic Cucker–Smale models that combine time delay 
and obstacle effects through the numerical simulation. Compared 
with existing studies that often consider these factors separately, 
we provide a numerical investigation of their joint influence and 
furthermore explore the solution behavior of the two-species 
scenario. In this work, we design a high-order finite volume scheme 
to simulate hydrodynamic Cucker–Smale models incorporating 
both time delays and obstacle-induced repulsive potentials. 
The method combines Lax–Friedrichs flux, fifth-order weighted 
essentially non-oscillatory (WENO) reconstruction, and third-
order Runge–Kutta time discretization. Nonlocal alignment terms 
are computed efficiently by using the fast Fourier transforms (FFT). 
The proposed framework provides a numerical framework to study 
delayed and obstacle-induced potential hydrodynamic flocking 

models. We apply the scheme to one-dimensional single- and two-
species systems, as well as a two-dimensional single-species setting. 
The simulations highlight how delay and obstacle interactions affect 
flocking, avoidance, and the onset of singular behavior.

Numerical experiments demonstrate that time delay can 
suppress flocking and may induce finite-time singularities, such as 
divergence in velocity gradients or blow-up of density. Repulsive 
interactions promote obstacle avoidance but tend to disrupt 
alignment, often contributing to singular behavior. Moreover, 
the presence of fixed obstacles combined with delay accelerates 
singularity onset and spatially shifts aggregation closer to the 
obstacle. These findings reveal the intricate, nonlinear interactions 
between delay and repulsion in collective behavior. These results 
illustrate the nonlinear interaction of delay and obstacle effects in 
shaping collective behavior.

The remainder of the paper is organized as follows. Section 2 
introduces the hydrodynamic Cucker–Smale model with time delays 
and repulsive obstacle potentials, including its extension to two-
species systems. Section 3 describes our high-order finite volume 
scheme, detailing the WENO reconstruction, Runge–Kutta time 
discretization, and FFT acceleration. Section 4 presents numerical 
simulations illustrating the effects of delays and repulsive potentials 
on flocking, obstacle avoidance, and singularity formation. Section 5 
concludes the paper. 

2 The model

In this section, we introduce hydrodynamic Cucker–Smale 
models incorporating both time delays and repulsive obstacle 
potentials, formulated for both single-species and two-
species systems. 

2.1 Single-species model with delay and 
obstacle

The single-species hydrodynamic Cucker–Smale system with 
time delay and obstacle-induced repulsionpotential is given by

{{
{{
{

∂t ⁢ρ+∇ ⋅ (ρu) = 0,

∂t ⁢ (ρu) +∇ ⋅ (ρu⊗ u) = ∫
ℝd

ϕ (|x− y|) ρτ ⁢ (y) ρ (x) (uτ ⁢ (y) − u (x)) dy+ ρ (x) R (x),

(1)

 for t ≥ 0 and x ∈ ℝd, where d denotes the spatial dimension. 
The functions ρ(x, t) and u(x, t) represent the density and velocity 
fields, respectively. The delayed quantities are defined as ρτ(y) ≔
ρ(y, t− τ) and uτ(y) ≔ u(y, t− τ), where τ ≥ 0 is a constant denoting 
the time delay in communication and information processing. The 
communication kernel ϕ(|x− y|) is a smooth, radially symmetric 
function encoding the strength of velocity alignment between 
agents. The term R(x) models a repulsive force field generated by 
static obstacles in the environment.

In this work, we adopt the fat-tailed communication kernel

ϕ (r) = δ
(1+ r2)θ

, (2)
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where θ > 0 controls the decay rate of interactions with respect to 
distance, and the constant δ is chosen such that ∫∞0 ϕ(r) dr = 1, 
and we model the obstacle force R(x) as the negative gradient of a 
localized Gaussian-type repulsive potential:

R (x) = −∇Φ (x) , with Φ (x) = η0 exp(−
|x− x0|2

l20
), (3)

where η0 and l0 control the strength and spatial scale of the repulsion, 
respectively, and x0 denotes the center of the obstacle.

While these specific forms are chosen in this study, alternative 
kernels and potentials (see Remark 2.1) may be considered 
depending on the modeling context or application.

Remark 2.1: (Alternative communication kernels and obstacle 
potentials). For communication kernels, besides fat-tailed ones, 
compactly supported kernels such as

ϕ (r) = (1+ r)2(1− r)2χ[0,1] (r) ,

the singular communication kernels like ϕ(r) = r−α, α > 0, and the 
exponentially decaying kernels have been widely used [1,34,35].

For obstacle potentials, Gaussian repulsion is one of several 
possible choices. A widely used alternative is the attractive–repulsive 
potential function

Φ (x) =
|x|a

a
−
|x|b

b
,

proposed in [24,36], offers a flexible shape controlling repulsion 
strength and range, and is often used in the study of obstacle 
problems. Attractive–repulsive hydrodynamics for collective 
consensus. These alternative choices affect the dynamics and 
numerical methods, and should be selected according to the specific 
application context. 

2.2 Two-species model with delay and 
obstacle

We extend the model to a two-species system, where each species 
experiences both intra-species and inter-species alignment, possibly 
with different time delays.

Let ρα(x, t) and uα(x, t) denote the density and velocity fields of 
species α. The governing equations are:

{
∂tρα +∇ ⋅ (ραuα) = 0,

∂t (ραuα) +∇ ⋅ (ραuα ⊗ uα) = Sα (x, t) ,
(4)

where the source term Sα(x, t) captures the nonlocal interactions and 
external obstacle force, given by

Sα ⁢ (x, t) ≔
2

∑
β=1
∫
ℝd

ϕαβ ⁢ (|x− y|) ρα ⁢ (x) ⁢ρβ,τβ
⁢ (y) ⁢ (uβ,τβ

⁢ (y) − uα ⁢ (x)) dy

+ ρα ⁢ (x) ⁢Rα ⁢ (x) ,

where α,β ∈ {1,2}, ρα(x) ≔ ρα(x, t) and uα(x) ≔ uα(x, t) denote the 
density and velocity of species α, respectively. The delayed terms 
are given by ρβ,τβ

(y) ≔ ρβ(y, t− τβ) and uβ,τβ
(y) ≔ uβ(y, t− τβ), with 

τβ > 0 the communication delay of species β. The kernel ϕαβ(|x− y|)
characterizes the influence of species β on α: ϕαα and ϕββ describe 

intra-species interactions, while ϕαβ and ϕβα (α ≠ β) correspond to 
inter-species alignment. Existing theoretical analyses have mostly 
focused on the symmetric interaction case (ϕαβ = ϕβα). In our 
numerical simulations, we will adopt the symmetric interactions 
ϕαβ(r) = ϕβα(r) in all examples except Example 4.8. The term Rα(x)
accounts for local repulsive effects from external obstacles. As 
in the single-species case, it is modeled by the gradient of a 
repulsive potential:

Rα (x) = −∇Φα (x) , Φα (x) = ηα exp(−
|x− xα|2

l2α
), (5)

where xα is the center of the obstacle, and ηα, lα control the strength 
and range of repulsion.

Remark 2.2: (Conservation Properties). The model preserves the 
total mass of each species under suitable boundary conditions. 
Define the total mass of species α as

M (t) ≔ ∑
α∈I

Mα (t) , with Mα (t) ≔ ∫
ℝd

ρα (x, t) dx, α ∈ I ,

where I = {1} for a single-species system and I = {1,2} for a two-
species system. Then each Mα(t) is conserved over time:

d
dt

Mα (t) = 0, ∀t > 0, ∀ α ∈ I .

Define the total momentum as

P (t) ≔ ∑
α∈I

Pα (t) , with Pα (t) ≔ ∫
ℝd

ρα (x, t)uα (x, t) dx.

In the absence of communication delays and obstacles, the 
symmetry of the interaction kernels ϕαβ guarantees conservation of 
total momentum:

d
dt

P (t) = 0, ∀t > 0.

3 Numerical scheme

In this section, we develop a numerical scheme for the 
hydrodynamic model with time delays and repulsive obstacle 
potentials. To accurately capture sharp solution features while 
minimizing numerical dissipation, we adopt a fifth-order WENO 
reconstruction combined with a local Lax–Friedrichs numerical 
flux. Time discretization is performed using a third-order 
Runge–Kutta method, which ensures stability and maintains high-
order accuracy. To efficiently compute the nonlocal alignment 
term, we employ the FFT-based convolution, significantly reducing 
computational cost. 

3.1 Finite volume method for 
one-dimensional case

Consider a one-dimensional periodic domain Ω = [a,b], divided 
into N uniform cells of width Δx = (b− a)/N. Let xj = a+ (j− 1/2)Δx
denote the center of cell j for j = 1,…,N, and define the 
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corresponding cell interval by Ij = [xj−1/2, xj+1/2] ,where xj±1/2 =
xj ±

Δx
2
.

ρj (t) ≈
1

Δx
∫

Ij

ρ (x, t) dx, mj (t) ≈
1

Δx
∫

Ij

ρ (x, t)u (x, t) dx,

with the velocity defined by uj(t) =mj(t)/ρj(t). We denote the cell-

averaged variables by Uj(t) = (
ρj(t)

mj(t)
). The semi-discrete finite 

volume formulation reads:

dUj

dt
= − 1

Δx
(Fj+1/2 − Fj−1/2) +(

0

Sj

),

where Fj±1/2 are numerical fluxes, and Sj is the source term 
incorporating nonlocal alignment and obstacle effects. For 
convenience, we define the spatial operator L(Uj) as

L(Uj) ≔ −
1

Δx
(Fj+ 1

2
− Fj− 1

2
) +(

0

Sj

). (6)

 

3.1.1 Lax–Friedrichs flux with fifth-order WENO 
reconstruction

In our scheme, we consider the pressureless Euler-type 
flux function:

f (U) = (
ρu

ρu2
), U = (

ρ

m
), u = m

ρ
.

The Lax–Friedrichs numerical flux at the cell interface xj+ 1
2

is defined by

Fj+ 1
2
= 1

2
(f(U−

j+ 1
2

)+ f(U+
j+ 1

2

))−
λj+ 1

2

2
(U+

j+ 1
2

−U−
j+ 1

2

), (7)

where U−
j+ 1

2

 and U+
j+ 1

2

 are the fifth-order WENO reconstructed values 
from the left and right, respectively, and λj+ 1

2
 is the maximum 

absolute eigenvalue of the Jacobian at the interface, defined by

λj+ 1
2
= max

U∈{U−
j+ 1

2
,U+

j+ 1
2
}

|eig( ∂f
∂U
)| = max

U∈{U−
j+ 1

2
,U+

j+ 1
2
}

|u|, (8)

where ∂f
∂U

 denotes the Jacobian matrix of the flux function f(U) with 
respect to the conserved variables U, evaluated at the intercell state 
Uj+ 1

2
, and eig(⋅) denotes the eigenvalue of a matrix.

Remark 3.1: The wave speed λj+ 1
2
 in Equation 7 can be chosen 

locally, as in Equation 8, to reduce numerical diffusion and capture 
local flow features, or globally as λ = maxj |uj|, which is more 
diffusive but more robust near strong gradients or discontinuities. 
Unless stated otherwise, we use the local wave speed to balance 
accuracy and stability.

To construct a high-order accurate scheme, we apply the fifth-
order WENO scheme component-wise to each conservative variable 
in U using a five-point stencil {Uj−2,Uj−1,Uj,Uj+1,Uj+2}, which forms 
three three-point substencils:

{Uj−2,Uj−1,Uj} , {Uj−1,Uj,Uj+1} , {Uj,Uj+1,Uj+2} .

Each substencil produces a third-order approximation qk =
pk(xj+1/2). The final reconstructed value at the interface is a 
weighted sum:

U−j+1/2 =
2

∑
k=0

ωkqk,

where the nonlinear weights ωk are computed by

ωk =
ω̃k

∑2
l=0

ω̃l

, ω̃k =
dk

(ε+ βk)
2 .

Here, dk are linear weights, ε is a small positive parameter, and 
βk are smoothness indicators as defined in [37]:

β0 =
13
12
(Uj−2 − 2Uj−1 +Uj)

2 + 1
4
(Uj−2 − 4Uj−1 + 3Uj)

2,

β1 =
13
12
(Uj−1 − 2Uj +Uj+1)

2 + 1
4
(Uj−1 −Uj+1)

2,

β2 =
13
12
(Uj − 2Uj+1 +Uj+2)

2 + 1
4
(3Uj − 4Uj+1 +Uj+2)

2.

For the right-biased value U+j+1/2, the same procedure is 
applied to the reversed stencil {Uj+3,Uj+2,Uj+1,Uj,Uj−1}. The WENO 
scheme achieves fifth-order accuracy in smooth regions while 
maintaining stability near discontinuities. The spatial order of 
accuracy has been confirmed numerically using smooth initial 
conditions; see Section 4.1. 

3.1.2 Source term: nonlocal alignment and 
obstacle force

The discrete source term evaluated at the cell interval Ij
is given by

Sj =∑
k

ϕ(|xj − xk|) ρj ρτ
k (u

τ
k − uj)Δx+ ρjRj, (9)

where ρτ
k ≔ ρk(t− τ), uτ

k ≔ uk(t− τ), and Δx denotes the uniform 
cell width of the finite volume mesh. The function ϕ(⋅) is the 
communication kernel defined in Equation 2. To facilitate efficient 
computation of the nonlocal alignment term in Equation 9, we 
introduce the auxiliary quantities:

Aj ≔∑
k

ϕ(|xj − xk|) ρτ
kuτ

kΔx, Bj ≔∑
k

ϕ(|xj − xk|) ρτ
kΔx.

Using these, the discrete source term can be reformulated as

Sj = ρj (Aj − ujBj) + ρjRj. (10)

We first focus on the efficient computation of the alignment 
contribution ρj(Aj − ujBj) in Equation 10. Under periodic boundary 
conditions, these convolutions can be efficiently evaluated using the 
discrete Fast Fourier Transform (FFT). Specifically, the convolution 
of two periodic sequences fj and gj is given by

( f ∗ g)j =∑
k

fk gj−k,

which can be computed via f ∗ g = F−1 ⁢ (F ( f) ⋅F (g)) ,

where F  and F−1 denote the discrete Fourier transform and 
its inverse, respectively, and the multiplication ⋅ is performed 
element-wise in Fourier space. This approach reduces the 
computational complexity of evaluating each convolution from 
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O(N2) to O(N log N), which is especially beneficial for large-scale 
simulations.

The second component of the source term, Rj, accounts for 
obstacle-induced repulsion potential and is modeled as the discrete 
gradient of a smooth obstacle potential field:

Rj ≔ −∂xΦ(xj) ,

where Φ(x) is given by Equation 3, and the gradient ∂xΦ is 
discretized using central finite differences. 

3.1.3 Time discretization
For the time discretization, we apply the third-order 

Runge–Kutta method of Shu and Osher (SSP-RK3) [38–40], which 
offers third-order temporal accuracy and is known for its numerical 
stability to the semi-discrete system To advance the semi-discrete 
system in time, we adopt the third-order strong stability-preserving 
Runge–Kutta (SSP-RK3) method [38], applied to the system.

dUj

dt
= L(Uj) ,

where L(Uj) is the spatial operator defined in Equation 6.
The SSP-RK3 scheme advances Uj from tn to tn+1 = tn +Δt via 

the following three-stage procedure:

U(1)j = Un
j +Δt L(Un

j ) ,

U(2)j =
3
4 Un

j +
1
4 (U
(1)
j +Δt L(U(1)j )) ,

Un+1
j =

1
3 Un

j +
2
3 (U
(2)
j +Δt L(U(2)j )) .

For stability, the time step is chosen to satisfy the CFL condition

Δt ≤ CFL ⋅Δx
maxjλj+ 1

2

, (11)

where CFL ∈ (0,1) is a prescribed constant (e.g., CFL = 0.7) and local 
wave speed λj+ 1

2
 as defined in Equation 8. This high-order scheme 

ensures third-order accuracy in time and is validated in Section 4.1 
via convergence tests with smooth initial data. 

3.2 Finite volume scheme for 
two-dimensional case

We consider a two-dimensional periodic domain Ω = [ax,bx] ×
[ay,by], which is discretized into Nx ×Ny uniform cells with mesh 
sizes Δx = (bx − ax)/Nx, Δy = (by − ay)/Ny. Denote the center of cell 
(i, j) by xi,j = (xi,yj), where xi = ax + (i− 1/2)Δx,yj = ay + (j− 1/2)Δy,
for i = 1,…,Nx, j = 1,…,Ny. The control volume Ci,j is defined as the 
rectangular cell centered at xi,j:

Ci,j = [xi −
Δx
2
, xi +

Δx
2
] × [yj −

Δy
2
, yj +

Δy
2
].

Let the cell averages of the conserved variables be defined as

Ui,j (t) =(

ρi,j (t)

mx
i,j (t)

my
i,j (t)

) ≈ 1
ΔxΔy
∬

Ci,j

(

ρ (x,y, t)

ρ (x,y, t)u (x,y, t)

ρ (x,y, t)v (x,y, t)

) dx dy.

The semi-discrete finite volume scheme is given by

d
dt

Ui,j = −
1

Δx
(Fx

i+ 1
2
,j
− Fx

i− 1
2
,j
)− 1

Δy
(Fy

i,j+ 1
2

− Fy
i,j− 1

2

)+(
0

Si,j

),

where Fx,Fy are numerical fluxes in the x- and y-directions, and 
Si,j is the discrete source term. For convenience, we define the 
two-dimensional spatial operator D(Uij) as

D (Uij) ≔ −
1

Δx
(Fx

i+ 1
2
,j
− Fx

i− 1
2
,j
)− 1

Δy
(Fy

i,j+ 1
2

− Fy
i,j− 1

2

)+(
0

Si,j

).

(12)
 

3.2.1 2D Lax–Friedrichs flux with fifth-order 
WENO reconstruction

In our scheme, we consider pressureless Euler-type fluxes with 
the conserved variable and velocity field:

U =(

ρ

mx

my

), u = 1
ρ
(

mx

my
) = (

u

v
).

The physical fluxes in the x- and y-directions are given by

Fx (U) =(

(

mx

(mx)2

ρ
mxmy

ρ

)

)

, Fy (U) =(

(

my

mxmy

ρ
(my)2

ρ

)

)

.

The Lax–Friedrichs numerical fluxes at cell interfaces are:

Fx
i+ 1

2
,j
= 1

2 [F
x(U−

i+ 1
2
,j
)+ Fx(U+

i+ 1
2
,j
)]−

λx
i+ 1

2
,j

2 (U
+
i+ 1

2
,j
−U−

i+ 1
2
,j
),

Fy
i,j+ 1

2

= 1
2 [F

y(U−
i,j+ 1

2

)+ Fy(U+
i,j+ 1

2

)]−
λy

i,j+ 1
2

2 (U
+
i,j+ 1

2

−U−
i,j+ 1

2

).

The reconstructed states U±
i± 1

2
,j
, U±

i,j± 1
2

 at each interface are 
obtained using fifth-order WENO reconstruction in the respective 
spatial direction. The local characteristic wave speeds are given by 
the largest eigenvalues of the Jacobian matrices ∂Fx

∂U
, ∂Fy

∂U
:

λx
i+ 1

2
,j
=max{|u−

i+ 1
2
,j
|, |u+

i+ 1
2
,j
|} , λy

i,j+ 1
2

=max{|v−
i,j+ 1

2

|, |v+
i,j+ 1

2

|} .

(13)

Remark 3.2: Alternatively, a global maximum wave speed

λ =max
i,j
{|ui,j|, |vi,j|}

which is more diffusive but more robust near strong gradients or 
discontinuities.

We now describe the treatment of the source term in the semi-
discrete scheme. As in the one-dimensional case, the discrete source 
term at the control volume Ci,j consists of a nonlocal alignment 
interaction and an obstacle-induced repulsion force:

Si,j =∑
k,l

ϕ(|xi,j − xk,l|) ρi,j ρτ
k,l (u

τ
k,l − ui,j)ΔxΔy+ ρi,j Ri,j, (14)
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where the delayed fields are defined by ρτ
k,l ≔ ρk,l(t− τ),uτ

k,l ≔
uk,l(t− τ). To facilitate efficient computation of the nonlocal 
alignment term in Equation 14, we introduce the auxiliary 
quantities:

Ai,j =∑
k,l

ϕ(|xi,j − xk,l|)ρ
τ
k,lu

τ
k,lΔxΔy, Bi,j =∑

k,l
ϕ(|xi,j − xk,l|)ρ

τ
k,lΔxΔy.

Using these, the source term Equation 14 can be written more 
compactly as:

Si,j = ρi,j (Ai,j − ui,jBi,j) + ρi,j Ri,j. (15)

We first focus on the alignment contribution 
ρi,j (Ai,j − ui,jBi,j) in Equation 15. Under periodic boundary 
conditions, it can be efficiently evaluated using the Fast Fourier 
Transform (FFT). Next, we consider the obstacle-induced repulsion 
force Ri,j is modeled as the negative gradient of a smooth potential 
field Φ(x), evaluated at the grid point xi,j. It is discretized using 
central finite differences:

Ri,j = −∇Φ(xi,j) .

Consistent with the one-dimensional case (see Section 3.1.3), 
we adopt the third-order strong stability-preserving Runge–Kutta 
method (SSP-RK3) [38] for temporal discretization at each cell (i, j):

U(1)i,j = Un
i,j +Δt D (Un

i,j) ,

U(2)i,j =
3
4

Un
i,j +

1
4
(U(1)i,j +Δt D(U(1)i,j )) ,

Un+1
i,j =

1
3

Un
i,j +

2
3
(U(2)i,j +Δt D(U(2)i,j )) ,

where D(Ui,j) is the spatial operator defined in Equation 12. The 
time step Δt is constrained by the CFL condition:

Δt ≤
CFL ⋅min (Δx,Δy)

max
i,j
{λx

i+ 1
2
,j
, λy

i,j+ 1
2

}
,

where the wave speed λx
i+ 1

2
,j
, λy

i,j+ 1
2

 defined in Equation 13 and CFL ∈
(0,1). 

3.3 Numerical conservation properties

In this section, we analyze the conservation properties of the 
proposed finite volume scheme. For clarity, the analysis is restricted 
to the one-dimensional case with periodic boundary conditions. 

3.3.1 Mass conservation

Theorem 3.3: (Discrete mass conservation). The proposed 
finite volume scheme with fifth-order WENO reconstruction, 
Lax–Friedrichs flux, and SSP-RK3 time discretization exactly 
preserves the total mass under periodic boundary conditions:

∑
i

ρn+1
i Δx =∑

i
ρn

i Δx.

Proof. For convenience, we denote the first (density) component 
of the update operator L(Uj) defined in Equation 6 by L1(Uj), i.e.,

L1 (Uj) ≔ −
1

Δx
(F̂1

j+ 1
2
− F̂1

j− 1
2
),

where F̂1
j± 1

2
 denotes the first component of the numerical flux 

Fj± 1
2
 defined in Equation 7, corresponding to the mass flux.
Let ρn

i  denote the cell average of density at time tn. The SSP-RK3 
updates for density read:

ρ(1)i = ρn
i +Δt L(1) (Un

i ) , (16)

ρ(2)i =
3
4

ρn
i +

1
4
(ρ(1)i +Δt L(1) (U(1)i )) , (17)

ρn+1
i =

1
3

ρn
i +

2
3
(ρ(2)i +Δt L(1) (U(2)i )) . (18)

Define the total mass at each stage as

M(∗) ≔∑
i

ρ(∗)i Δx, for∗ ∈ {n, (1) , (2) ,n+ 1} .

By using the periodic boundary condition, we have

∑
i
(F̂(1)i+1/2 − F̂(1)i−1/2) = 0,

summing Equations 16–18 over all i, we find:

M(1) =Mn, M(2) =Mn, Mn+1 =Mn.

Thus, the scheme is exactly mass conservative. 

3.3.2 Momentum conservation

Theorem 3.4: (Momentum Conservation). Under periodic 
boundary conditions and in the absence of delays and external 
forces, the proposed finite volume scheme with fifth-order 
WENO reconstruction, Lax–Friedrichs flux, and SSP-RK3 time 
discretization exactly preserves the total discrete momentum at 
each time step:

∑
i
(ρu)n+1i Δx =∑

i
(ρu)ni Δx.

Proof. We denote the second (momentum) component of the 
update operator L(Ui) defined in Equation 6 by L2(Ui), i.e.,

L2 (Ui) ≔ −
1

Δx
(F̂2

i+ 1
2
− F̂2

i− 1
2
)+ Si,

where F̂2
i± 1

2
 denotes the second component of the numerical flux 

Fi± 1
2
 defined in Equation 7, and Si is the discrete source term 

defined in Equation 9.
Let (ρu)ni  be the cell average of momentum at time tn. The SSP-

RK3 scheme updates for momentum are given by:

(ρu)(1)i = (ρu)ni +Δt L2
i (U

n) , (19)

(ρu)(2)i =
3
4
(ρu)ni +

1
4
((ρu)(1)i +Δt L2

i (U
(1))) , (20)

(ρu)n+1i =
1
3
(ρu)ni +

2
3
((ρu)(2)i +Δt L2

i (U
(2))) . (21)
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Define the total momentum at each stage as

P(∗) ≔∑
i
(ρu)(∗)i Δx, for∗ ∈ {n, (1) , (2) ,n+ 1} .

Under periodic boundary conditions, it is easy to see that:

∑
i
(F̂(2)

i+ 1
2

− F̂(2)
i− 1

2

) = 0. (22)

Therefore, the total contribution from the update operator 
reduces to the source term:

∑
i
L(2) (Ui)Δx =∑

i
SiΔx.

In the special case when τ = 0 and Ri = 0, the source term Si
defined in Equation 9 simplifies to

Si =∑
j

ϕijρiρj (uj − ui)Δx, (23)

where ϕij ≔ ϕ(|xi − xj|). Since ϕij = ϕji is symmetric in i, j, and 
(uj − ui) = − (ui − uj) is antisymmetric, the double sum satisfies

∑
i,j

ϕijρiρj (uj − ui) = −∑
i,j

ϕjiρjρi (ui − uj) = −∑
i,j

ϕijρiρj (uj − ui) .

This implies

∑
i,j

ϕijρiρj (uj − ui) = 0.

Therefore, from Equation 23 we have

∑
i

SiΔx =∑
i,j

ϕijρiρj (uj − ui)(Δx)2 = 0. (24)

Summing Equations 19–21 over all i, in view of 
Equation 22 and Equation 24, we see that the total momentum 
is conserved during the time update, i.e.,

P(1) = Pn, P(2) = Pn, Pn+1 = Pn.

Thus we obtain the conclusion. 

Remark 3.5: When delay (τ > 0) is presentτ > 0, the source term 
involves past states ρτ

j uτ
j , breaking the symmetry required for 

momentum conservation. Similarly, nonzero obstacle forces Ri ≠ 0
introduce additional asymmetries. As a result, the total momentum 
is no longer conserved. This loss of conservation is clearly observed 
in the numerical results of Example 4.3. 

Remark 3.6: (Energy fluctuation). We introduce the energy 
fluctuation [32].

ΔE (t) ≔∬
ℝd×ℝd

|u(x) − u(y)|2

2
ρ (x)ρ (y) dx dy

=M∫
ℝd
|u (x) − u∞ ⁢|2 ρ (t,x) dx,

where M = ∫ℝdρ(x) dx is the total mass and u∞ ≔
1
M
∫ℝdu(t,x)ρ(t,x) dx denotes the mass–averaged velocity. In 

numerical experiments, we plot the energy fluctuation in 
Example 4.3 (see Figure 1) and observe that it tends to zero. 
This indicates that the numerical solution is stable. It should be 
emphasized that in this work we testify the stability of the numerical 
solution only from a experimental perspective, while a rigorous 
theoretical proof of stability will be left for future study. 

4 Numerical experiments

This section presents numerical simulations. Throughout all 
simulations, the interaction kernel is chosen as ϕ(r) = δ/(1+ r2)θ,θ =
3, where the constant δ is chosen such that ∫∞0 ϕ(r) dr = 1, 
and the CFL number is taken as 0.7, unless explicitly stated 
otherwise. Periodic boundary conditions are imposed in all cases. 
In Section 4.1, we first validate the spatial fifth-order and temporal 
third-order accuracy of the proposed scheme through convergence 
tests under two different configurations. In addition, we verify 
the conservation of mass and momentum through a dedicated 
numerical experiment, and assess the numerical stability of the 
scheme by monitoring the energy fluctuation. Then, in Section 4.2, 
we apply the numerical scheme to two models, leading to several 
interesting numerical observations. In total, seven numerical 
experiments are presented to investigate the effects of the delay 
parameter τ and the presence of obstacles on the emergence of 
collective behaviors such as flocking and non-flocking in both 
single-species and two-species systems. 

4.1 Convergence and conservation tests

Example 4.1: (Spatial convergence).
To test the spatial accuracy of the fifth-order WENO 

reconstruction, we consider a smooth initial condition for the 
single-species system Equation 1, defined on the periodic domain 
[−L/2,L/2] with L = 2:

ρ0 (x) = γ1(2+ sin(πx
L
)), u0 (x) ≡ 1,

where the normalization constant γ1 is chosen such that 
∫L/2−L/2ρ0(x) dx = 1. We vary the number of cells as Nx = 10,20,40,80
and set the time step according to Δt ∼ Δx5/3, where Δx = L/Nx. We 
compute the cell averages and compare the numerical solution at 
time T = 2 with the exact solution ρref and (ρu)ref.

As shown in Table 1, the L1 errors for ρ and ρu converge 
with an order approaching 5 as the grid is refined, where ‖ρ−
ρref‖L1 = ∑iΔx|ρi − ρref,i| and ‖ρu− (ρu)ref‖L1 = ∑iΔx|(ρu)i − (ρu)ref,i|. 
This confirms that the scheme achieves fifth-order spatial accuracy, 
consistent with the WENO reconstruction employed in the spatial 
discretization. 

Example 4.2: (Temporal convergence). To assess the temporal 
accuracy of the third-order Runge–Kutta method, we consider a 
smooth initial condition for the single-species system Equation 1, 
defined on the periodic domain [−L/2,L/2] with L = 2:

ρ0 (x) = γ2[exp(−
(x+ L/4)2

σ2 )+ exp(−
(x− L/4)2

σ2 )], u0 (x) ≡ 1,

 where σ = 0.2, and the normalization constant γ2 is chosen such 
that ∫L/2−L/2ρ0(x) dx = 1. We fix the number of spatial cells at Nx =
2000 and vary the time step Δt by adjusting the CFL number 
defined in Equation 11 accordingly.

As shown in Table 2, the L1 errors converge with an order 
approaching 3 as the CFL number decreases, confirming the third-
order temporal accuracy of the Runge–Kutta scheme. The observed 
convergence order aligns well with the theoretical order of the time 
discretization. 
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FIGURE 1
Time evolution of total mass, momentum, and energy fluctuation for the three configurations considered in Example 4.3.

TABLE 1  Accuracy test for Example 4.1 at t = 2.

Nx ‖ρ− ρref‖L1 Order ‖ρu− (ρu)ref‖L1 Order

10 1.5205E-02 – 1.5205E-02 –

20 7.3828E-04 4.36 7.3828E-04 4.36

40 2.3166E-05 4.99 2.3166E-05 4.99

80 7.2296E-07 5.00 7.2299E-07 5.00

TABLE 2  Accuracy test for Example 4.2 at t = 0.2.

CFL ‖ρ− ρref‖L1 Order ‖ρu− (ρu)ref‖L1 Order

0.8 1.8514E-07 – 1.8514E-07 –

0.4 2.9040E-08 2.67 2.9040E-08 2.67

0.2 3.7531E-09 2.95 3.7531E-09 2.95

0.1 4.6885E-10 3.00 4.6885E-10 3.00

Example 4.3: (Verification of conservation properties). To verify 
the theoretical results in Theorems 3.3 and 3.4, we present numerical 
simulations for the single-species system Equation 1 under three 
configurations: (a) without delay or obstacle, (b) with delay but no 
obstacle, and (c) with an obstacle force but no delay.

The initial data are set as

ρ (x,0) = γ3 cos(πx
L
), u (x,0) = −c cos(πx

L
),

where the normalization constant γ3 is chosen so that 
∫L/2−L/2ρ0(x) dx = 1, and c = 0.1 controls the velocity amplitude. The 
simulation is conducted on a periodic domain x ∈ [−1,1] (i.e., L =
2), with spatial resolution Nx = 1800.

In the third scenario, we introduce an obstacle modeled 
as the gradient of a repulsive potential centered at x0 = 0, as 
defined in Equation 3:

R (x) = −∇Φ (x) , with Φ (x) = η0 exp(−
|x− x0|2

l20
),

with repulsion parameters η0 = 0.01 and l0 = 0.5.
Figure 1 shows the time evolution of total mass, momentum, 

and energy fluctuation ΔE (defined in Remark 3.6) for each 
configuration, with the top, middle, and bottom panels 
displaying mass M(t) ≔ ∫L/2−L/2ρ(x, t) dx, momentum P(t) ≔

∫L/2−L/2ρ(x, t)u(x, t) dx, and ΔE, respectively. Figure 1 displays the 
time evolution of total mass and momentum for each configuration. 
In each subfigure, the top panel shows the total mass M(t) ≔
∫L/2−L/2ρ(x, t) dx, and the bottom panel shows the total momentum 
P(t) ≔ ∫L/2−L/2ρ(x, t)u(x, t) dx. The results confirm the theoretical 
predictions: mass is conserved with high accuracy in all cases, 
in agreement with Theorem 3.3. Momentum is preserved only in 
the absence of delay and obstacle, as stated in Theorem 3.4. In the 
presence of delay or obstacle force, the loss of symmetry in the 
source term leads to gradual momentum deviation, as anticipated 
in the accompanying Remark 3.5. Furthermore, Figure 1 illustrates 
the evolution of ΔE. In panels (a) and (b), ΔE approaches to zero 
by T = 10, while in panel (c) it tends to zero around T = 60. These 
results suggest that the scheme exhibits stable behavior under the 
considered scenarios. 

4.2 Effects of delay and obstacle on 
flocking dynamics

4.2.1 Effects of delay and obstacle for 
single-species

First, we examine the effects of the time delay τ and obstacle force 
on the collective behavior and regularity of solutions in the single-
species system Equation 1. The initial data is given by

ρ (x,0) = γ3 cos(πx
L
), u (x,0) = −c sin(2πx

L
),

where the normalization constant γ3 is chosen such that 
∫L/2−L/2ρ(x,0) dx = 1, and the parameter c > 0 controls the amplitude 
of the initial velocity. The simulation is performed on the periodic 
domain [−1,1],
i.e., L = 2, with the number of cell Nx = 1800.

Two Examples 4.4 and 4.5 are presented below. In the first, 
no obstacle is introduced, and we focus on the effects of delay 
with varying initial velocity amplitudes. In the second, an obstacle 
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FIGURE 2
Time evolution of density ρ and velocity u for τ = 0, 0.5, 3 with fixed c = 0.1 (Example 4.4).

is included to study the combined effects of delay and obstacle
forces.

Example 4.4: (Effects of delay without obstacle). We consider two 
initial velocity amplitudes: c = 0.10 and c = 0.17. For each case, we 
vary the delay parameter τ ∈ {0,0.5,3} to examine its influence on 
the long-time behavior.

Figure 2 presents the density and velocity (ρ,u) at final time T =
15 for c = 0.10. In all delay settings, the solution remains globally 
smooth, and the density stays bounded. As the delay increases, 
the alignment process becomes slower and the density profile 
exhibits mild increase, but no signs of instability or singularity
are observed.

In contrast, Figure 3 presents the results for c = 0.17. When 
τ = 0, the solution remains smooth throughout the simulation. 
However, as τ increases, the density begins to concentrate more 
sharply. In particular, for τ = 3, we observe that the solution develops 
a near-singular profile: the density becomes highly concentrated 
around t ≈ 4.79, and the velocity field exhibits a steep gradient. 
These observations suggest the emergence of near-singular behavior, 
potentially indicating the onset of instability or breakdown driven by 
the delay effect.

These numerical results show that the influence of delay τ
on the single-species system strongly depends on the choice of 
initial conditions. For mild initial configurations, delay mainly 
slows down the flocking convergence without causing instability or 
loss of regularity. However, when the initial velocity is sufficiently 
large, the same delay can intensify velocity gradients and density 
concentrations, eventually leading to a breakdown of smoothness 
or finite-time singularity beyond a critical delay threshold. This 
highlights a nonlinear interplay between initial conditions and 

time delay in determining the long-time stability and regularity of 
the system. 

Example 4.5: (Effects of delay with obstacle). In this
example, we introduce an obstacle modeled as the gradient 
of a repulsive potential centered at x0 = 0, as defined
in Equation 3:

R (x) = −∇Φ (x) , with Φ (x) = η0 exp(−
|x− x0|2

l20
),

with repulsion parameters η0 = 0.02 and l0 = 0.2. The 
initial velocity amplitude is set to c = 0.17, and we 
examine the impact of varying the delay parameter τ ∈
{0,0.5,3}.

Figure 4 shows the density and velocity fields at the moments 
when the system reaches its peak aggregation for different delays. In 
all three cases, the density is observed to concentrate sharply at two 
distinct points symmetrically located on either side of the obstacle. 
Correspondingly, the velocity field exhibits steep gradients precisely 
at these points.

Notably, the time at which this concentrated state emerges 
becomes earlier as the delay increases: t = 3.95 for τ = 0, t = 3.68 for 
τ = 0.5, and t = 3.00 for τ = 3. Furthermore, the aggregation points 
move progressively closer to the obstacle as the delay increases, 
suggesting that larger delays enhance the effective attraction toward 
the obstacle and accelerate the localization process. Under the 
current setting of the communication kernel and repulsive potential, 
these findings indicate a synergistic interaction between delay 
and obstacle: the presence of delay not only triggers earlier 
aggregation but also intensifies density concentration near the
obstacle. 
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FIGURE 3
Time evolution of density ρ and velocity u for τ = 0, 0.5, 3 with fixed c = 0.17 (Example 4.4).

4.2.2 Effects of delay and obstacle for 
two-species

To investigate the effects of time delay and obstacles 
in a two-species setting, we simulate the system Equation 4 
with the following different initial conditions for the two
species:

ρ1 (x,0) = λ1 [0.1+ exp(−x2)] , u1 (x,0) = −c1 sin(2πx
L
),

ρ2 (x,0) = λ2 cos(πx
L
), u2 (x,0) = −c2 sin(2πx

L
),

with L = 2 and constants c1 = 0.3,c2 = 0.32. The normalization 
constants λ1,λ2 are chosen such that ∫L/2−L/2ρi(x) dx =
1, i = 1,2. The simulation is conducted using a periodic 
domain discretized with the number of cell Nx = 1800
and a CFL number of 0.7, running from t = 0 to t =
15.

For this setting, we provide three examples. Examples 4.6 and 4.7 
are presented first. In the first Example 4.6, no obstacle is introduced, 
and we focus on the effect of delay on the collective dynamics of 
the two-species system. In the second Example 4.7, an obstacle is 
included to study the combined effects of delay and obstacle forces.

To further extend the study, the last Example 4.8 is designed 
similarly to Example 4.6, but with asymmetric inter-species kernels.

Example 4.6: (Effects of delay without obstacle). In this example, 
we vary the delay parameter τ ∈ {0, 0.5, 3} to examine its influence 
on the long-time behavior of the two-species system.

According to the numerical analysis in Example 4.4, both of 
the initial conditions (ρ1,u1) and (ρ2,u2), if evolved independently 
in a single-species setting, would lead to finite-time singularity, 
regardless of the presence of delay. However, our numerical results 
show that when τ = 0, the two-species system remains smooth and 

well-behaved for all time (see Figures 5a-d). This indicates that 
cross-species interaction can regularize the system.

As the delay τ increases, the solution exhibits progressively 
sharper spatial structures: velocity gradients steepen, and the 
density profile becomes increasingly concentrated over time (see 
Figures 5a–c for density; Figures 5d–f for velocity). In particular, 
at time t = 2.70, Figures 5c-f show pronounced density localization 
near a single point and steep velocity gradients. These phenomena 
indicate a growing tendency toward instability and suggest a 
potential breakdown of collective coherence.

Our numerical experiments indicate that there may exist a 
critical delay threshold τc, beyond which the system exhibits a loss 
of regularity and a breakdown of coordinated motion. 

Remark 4.1: A possible mechanism for this loss of regularity is 
that the use of delayed velocity information in the interaction term 
introduces misalignment between agents, potentially weakening the 
stabilizing of the alignment mechanism. Moreover, the time-lagged 
nonlocal feedback causes the system’s response to deviate from the 
current state, amplifying local gradients and driving the system 
toward instability. 

Example 4.7: (Effects of delay with obstacle). In this 
example, we introduce an obstacle modeled as the gradient 
of a repulsive potential centered at xα = 0, as defined
in Equation 5:

Rα (x) = −∇Φα (x) , Φα (x) = ηα exp(−
|x− xα|2

l2α
),

with repulsion parameters ηα = 0.1 and lα = 0.2, α = 1,2. The 
obstacle force is taken to be the same for both species, i.e., 
R1 = R2. Figure 6 illustrates the evolution of the two-species 
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FIGURE 4
Time evolution of density ρ and velocity u for τ = 0, 0.5, 3 with fixed c = 0.17 (Example 4.5).

FIGURE 5
Time evolution of density ρ and velocity u for τ = 0, 0.5, 3 (Example 4.6).

density ρ(x, t) and velocity field u(x, t) in the presence of 
a fixed obstacle force and varying delay parameters τ = 0, 
0.5, and 3.

Across all cases, we observe the emergence of symmetric, highly 
concentrated density peaks on both sides of the obstacle. These are 
accompanied by steep gradients in the velocity field, suggesting the 

formation of localized structures with near-singular behavior, as in 
the single-species case (Example 4.5).

As the delay parameter τ increases, the formation of these 
concentrated structures occurs earlier in time: at t = 1.60 for τ = 0, 
t = 1.43 for τ = 0.5, and t = 1.34 for τ = 3. Moreover, the aggregation 
regions become more sharply localized and shift closer to the 
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FIGURE 6
Time evolution of density ρ and velocity u for τ = 0, 0.5, 3 (Example 4.7).

obstacle center as τ increases. These trends indicate that the time 
delay not only enhances the spatial focusing induced by the obstacle 
but also accelerates the onset of singular-like configurations.

The numerical results reveal that, similar to the single-species 
scenario and under the current settings of the communication 
kernel and repulsive potential, the interaction between delay and 
the obstacle plays a significant role in promoting rapid localization 
and potential loss of regularity. Although the two-species system 
introduces additional inter-species interactions and complexity, the 
observed trends persist: increasing delay leads to earlier aggregation 
and sharper density concentration near the obstacle. 

Example 4.8: (Effects of delay with asymmetric inter-
species kernels). In this example, we adopt the same 
setting as in Example 4.6, but modify the communication kernels by 
choosing θ11 = θ12 = θ22 = 3 and θ21 = 1.2. Hence, species 1 applies 
the same exponent θ = 3 for both self- and cross-interactions, while 
species 2 interacts with species 1 through the smaller exponent θ21 =
1.2. This asymmetry highlights the effect of asymmetric inter-species 
interactions on the collective dynamics.

For the different initial conditions (ρ1(x,0) ≠ ρ2(x,0)) chosen for 
the two species, we observe that when τ = 0 and 0.5, the solution 
behavior is similar to that in Example 4.6. However, when τ = 3, 
Examples 4.6 and 4.8 show that the aggregation levels of ρ1 and ρ2
differ significantly (see Figures 5c, 7c). We also find that asymmetric 
and symmetric kernels affect the solution behavior differently, and a 
more detailed study will be left for future work. 

4.2.3 Effects of delay and obstacle in 2D
Now, we consider the two-dimensional single-

species system Equation 1, incorporating both communication 
delay and a repulsive obstacle potential. The simulation is conducted 

on a periodic square domain [− L
2
, L

2
]2 with L = 1.2, uniformly 

discretized using Nx = Ny = 120 grid points. The CFL number is 
set to 0.012. The initial conditions are specified as follows:

ρ0 (x,y) = γ cos(πx
L
)cos(

πy
L
),

u0 (x,y) = −c sin(2πx
L
), v0 (x,y) = −c sin(

2πy
L
).

where the normalization constant γ is selected such that 
∬[− L

2
, L

2
]2ρ0(x,y) dx dy = 1 and the initial velocity parameter c =

0.12. We investigate the long-time evolution of the system for various 
delay values τ = 0,0.5,1,5.

Example 4.9: (Effects of delay without obstacle). In this example, 
we examine the system without repulsive potential. This analysis 
demonstrates the influence of increasing delay on collective 
dynamics and pattern formation in the 2D setting.

For c = 0.12, the two-dimensional single-species system remains 
smooth and appears to converge toward a steady state in the absence 
of delay (τ = 0), as shown in Figure 8. Both the density and velocity 
fields gradually stabilize, with the velocity field exhibiting alignment 
and the density approaching a spatially symmetric configuration.

As the delay parameter τ increases, the system displays more 
pronounced dynamical behavior. As illustrated in Figures 9a–c, the 
density gradually becomes more concentrated near the center of the 
domain. This tendency appears to be enhanced with larger values of 
τ, suggesting that communication delay enhances aggregation in the 
density field. Meanwhile, the velocity fields shown in Figures 9d–f 
exhibit growing misalignment and irregularities over time, in 
contrast to the more coordinated behavior observed when τ = 0.

These numerical observations indicate the possible existence of 
a critical delay threshold τc, beyond which the global regularity of 

Frontiers in Physics 12 frontiersin.org

https://doi.org/10.3389/fphy.2025.1657927
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Zheng et al. 10.3389/fphy.2025.1657927

FIGURE 7
Time evolution of density ρ and velocity u for τ = 0, 0.5, 3 (Example 4.8).

the solution may deteriorate and the system may begin to exhibit 
signs of instability. This behavior is consistent with similar trends 
reported in one-dimensional single- and two-species models, where 
increased communication delay can exert a destabilizing influence 
on the dynamics. The observed mismatch between the rapid central 
concentration of density and the slower alignment of the velocity 
fields suggests that increasing delay may impair the system’s ability 
to maintain coherent collective dynamics and stable spatial patterns. 

Example 4.10: (Effects of delay with obstacle). We introduce an 
obstacle force R(x) modeled as the gradient of a repulsive potential 
centered at the obstacle location, as defined in Equation 3:

R (x) = −∇Φ (x) , with Φ (x) = η0 exp(−
|x− x0|2

l20
).

In our numerical example, we consider a single obstacle located 
at x0 = (0,0), with repulsion parameters η0 = 0.01 and l0 = 0.1.

Figure 10 presents the full temporal evolution of the one-species 
density field under zero delay (τ = 0), while Figure 11 displays the 
final-time density distributions for increasing delays τ = 0.5, 1, and 
5. In all cases, the obstacle potential remains fixed, and only the delay 
parameter varies.

The introduction of the obstacle induces a characteristic spatial 
segregation: the density splits into two symmetric high-density 
regions located on either side of the obstacle. This behavior is 
consistent with earlier observations in the one-dimensional single-
species case with obstacle (Example 4.5) and the one-dimensional 
two-species case with obstacle (Example 4.7), indicating a persistent 
effect of obstacle-induced localization across dimensions and system 
complexity.

As the delay τ increases, two systematic trends are observed. 
First, the system develops sharply concentrated density states at 

progressively earlier times. Specifically, the onset of significant 
aggregation shifts forward from t = 8.68 for τ = 0 to t = 7.02 for τ =
0.5, t = 5.89 for τ = 1, and t = 4.17 for τ = 5, as shown in Figure 11. 
This confirms that communication delay accelerates the aggregation 
process. Second, the spatial location of these dense regions moves 
consistently closer to the obstacle as τ increases. As depicted in 
Figures 10c, 11a–c, the high-density zones not only become more 
sharply localized but also shift toward the center of the obstacle.

Taken together, under the current setting of the communication 
kernel and repulsive potentials, the findings from all three 
settings—1D single species with obstacle (Example 4.5), 1D 
two species with obstacle (Example 4.7), and 2D single species 
with obstacle—reveal a consistent mechanism: increasing 
communication delay (i) advances the onset of strong aggregation 
and (ii) enhances spatial localization near repulsive obstacles. This 
delay-obstacle interplay appears to persist across spatial dimensions 
and system configurations.

Theoretically, in the hydrodynamic setting, Choi 
and Haskovec [22] established sufficient conditions for global 
regularity and flocking under normalized communication weights: 
(a) For a fixed integral influence function, it is necessary to choose 
τ sufficiently small in order to satisfy the flocking condition; (b) 
For the fat-tailed kernel 1/(1+ r2)θ with θ ∈ (0,1/2), any τ can 
satisfy the flocking condition. We extend the theoretical case to 
the scenario with obstacles and two species. In our work, we 
intend to investigate the case (a) of an integral kernel of the 
form ϕ(r) = δ/(1+ r2)θ with θ > 1/2. Our numerical experiments 
show that small delays do not affect system alignment, but large 
delays can lead to steep gradients and high-density peaks, which 
appear numerically as near-singular behavior. Moreover, in the 
presence of obstacles, delays accelerate the aggregation of the system, 
and as the delay increases, the aggregation center moves closer 
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FIGURE 8
Time evolution of density ρ and velocity u field u for τ = 0 (Example 4.9). In 2D, the velocity field u is represented by its speed |u| (color) and 
direction (arrows).

FIGURE 9
Final-time density ρ and velocity u field u for τ = 0.5, 1, 5 (Example 4.9).

to the obstacle. Furthermore, we also examine the two-species 
case with delays and obstacles. These observations are based on 
numerical evidence under specified parameters (e.g., potential 
shape, strength, and initial conditions). Nonetheless, it should be 
noted that these results are obtained under specified parameters 

(e.g., potential shape, strength, and initial conditions) in each 
example. While the trends are consistent across scenarios, further 
investigation is needed to assess their generality under broader 
modeling assumptions and in more realistic biological or physical 
systems. Rigorous analysis, such as establishing precise thresholds 
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FIGURE 10
Time evolution of density ρ and velocity u field u for τ = 0 (Example 4.10).

FIGURE 11
Final-time density ρ and velocity u field u for τ = 0.5, 1, 5 (Example 4.10).

for finite-time singularity or delay-induced blow-up, is left for
future work. 

Remark 4.2: This work focuses on fat-tailed kernels. We also test 
compactly supported kernels (such as ϕ(r) = δ 1{|r|<d}), and we find 
that as the delay increases, the density tends to concentrate locally 
and the velocity gradient becomes large, similar to Example 4.4 
in the single-species case. However, the behavior of the solutions 
remains different under the fat-tailed and compactly supported 

kernels, we will investigate compactly supported kernels in more 
detail in future work. 

5 Conclusion

This study examines the influence of time delay and obstacle 
on the collective dynamics of non-local kinetic models in one- and 
two-dimensional settings for both single- and two-species systems.
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The numerical results of six representative cases reveal that the long-
term behavior of the system is highly sensitive to initial conditions, 
with different initial states that lead to different outcomes, such as 
global regularity, aggregation or finite-time singularity formation. 
Increasing the time delay generally reduces stability, promoting 
earlier formation of singularities. Moreover, the presence of static 
obstacles combined with delay accelerates singularity onset and 
spatially shifts aggregation closer to the obstacle. These findings 
highlight the intricate interplay between initial data, delay, species 
interactions, and environmental heterogeneity in shaping emergent 
patterns. While our numerical experiments focus on fat-tailed 
kernels and isotropic Gaussian obstacles, the framework is readily 
applicable to other types of interaction kernels and potential 
functions. Future work will extend the model to include singular 
kernels, dynamic or reactive obstacles such as moving predators, and 
asymmetric inter-species interactions and anisotropic obstacles to 
explore richer collective dynamics, so as to better capture realistic 
ecological scenarios. Analytical characterization of critical delay 
thresholds and singularity formation also remains an important 
avenue for further research.
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