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Hydrodynamic Cucker-Smale
model with time delay and
obstacle avoidance
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We study a hydrodynamic Cucker-Smale-type model incorporating both time
delays and obstacle potentials. The model governs the evolution of velocity
and density fields of the system, where delayed interactions drive alignment
and obstacle potentials account for responses to obstacles or predators.
We further extend the framework to two-species systems. To numerically
solve the model, we design a high-order finite volume method based on
a Lax-Friedrichs numerical flux with fifth-order weighted essentially non-
oscillatory reconstruction and third-order Runge—Kutta time discretization,
ensuring numerical stability and high-order accuracy. Numerical experiments
confirm the stability and accuracy of the proposed scheme and illustrate how
time delays and obstacle potentials, under specific communication kernels
and initial conditions, affect the emergence of flocking or non-flocking
behavior.
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1 Introduction

Flocking refers to the spontaneous emergence of coordinated collective motion among
self-propelled agents, driven by local alignment of velocities and spatial cohesion [1,2]. This
phenomenon is widely observed in nature, including bird flocks, fish schools, and insect
swarms [3-6]. It also inspires algorithmic design in robotics, autonomous vehicles, and
swarm control systems [7,8].

Classical models capturing flocking dynamics often use a particle-based framework.
Reynolds’ Boids model [9] introduced simple behavioral rules (alignment, cohesion,
separation) to generate realistic group motion. The Vicsek model [8] further
simplified this by using noisy velocity alignment, revealing phase transitions between
ordered and disordered states. The Cucker-Smale (CS) model [10] formalized
alignment interactions using nonlocal communication kernels, laying the foundation
for rich mathematical theory, including kinetic and hydrodynamic continuum
descriptions [11-15].

While many Cucker-Smale (CS) type models assume instantaneous interactions
among agents, real-world agents typically respond to information from their surroundings
with a certain processing or reaction delay 7> 0 [16]. Recent studies have increasingly
focused on the influence of delays, with the majority of them conducted within
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the framework of particle-based models [16-20]. For instance, Du
[21] analyzed the delayed CS system in a harmonic potential and
showed that delay affects the conditions for flocking. Choi and
Haskovec [18] established sufficient conditions for global regularity
and flocking, where for non-integrable kernels the delay can be
arbitrary, whereas for integrable kernels the results generally require
small delays [18]. shows that sufficiently small delays are necessary
to satisfy the flocking condition. While delayed CS models have been
studied at the hydrodynamic level [22], most results remain purely
analytical. In contrast, existing simulations primarily focus on the
particle level [19,20], but numerical investigations at the continuum
scale remain limited.

In addition to delayed alignment, repulsive potentials are key
to realistic swarm models, maintaining spacing, avoiding obstacles,
and simulating predator evasion [23-30]. Empirical studies show
that fish schools and bird flocks react to static obstacles by deflecting,
slowing down, and regrouping, while preserving cohesion and
direction [28,30]. While previous studies have analyzed obstacle-
induced behaviors such as group splitting and path deviation in
swarm models [26,29], the impact of obstacles in hydrodynamic
Cucker-Smale systems remains less understood. Aung etal. [31]
showed that obstacles and spatial heterogeneity can enhance local
interactions and global order. In this work, we introduce stationary
obstacles as localized repulsive potentials and focus on their
interaction with time delay in shaping aggregation and pattern
formation.

Incorporating both time delay and obstacle-induced repulsion
potentials into the hydrodynamic Cucker-Smale (CS) model
significantly increases the mathematical and numerical challenges.
Specifically, such coupled models may develop singularities such as
finite-time density concentration, blow-up of velocity gradients,
or loss of regularity in the solution. Although particle-based
simulations can capture some detailed behaviors, they typically
suffer from high computational costs and limited scalability
in high-dimensional or large-scale systems [32]. Therefore,
continuum or hydrodynamic modeling offers a more feasible and
efficient framework for simulating large-scale collective behavior.
Several works have proposed high-order numerical methods for
hydrodynamic CS models in the absence of time delay and obstacle
effects [24,33,34]. However, numerical methods that simultaneously
address both time-delayed interactions and obstacle-induced
repulsionpotentials remain largely unexplored.

This work aims to contribute to this gap by studying
hydrodynamic Cucker-Smale models that combine time delay
and obstacle effects through the numerical simulation. Compared
with existing studies that often consider these factors separately,
we provide a numerical investigation of their joint influence and
furthermore explore the solution behavior of the two-species
scenario. In this work, we design a high-order finite volume scheme
to simulate hydrodynamic Cucker-Smale models incorporating
both time delays and obstacle-induced repulsive potentials.
The method combines Lax-Friedrichs flux, fifth-order weighted
essentially non-oscillatory (WENO) reconstruction, and third-
order Runge-Kutta time discretization. Nonlocal alignment terms
are computed efficiently by using the fast Fourier transforms (FFT).
The proposed framework provides a numerical framework to study
delayed and obstacle-induced potential hydrodynamic flocking
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models. We apply the scheme to one-dimensional single- and two-
species systems, as well as a two-dimensional single-species setting.
The simulations highlight how delay and obstacle interactions affect
flocking, avoidance, and the onset of singular behavior.

Numerical experiments demonstrate that time delay can
suppress flocking and may induce finite-time singularities, such as
divergence in velocity gradients or blow-up of density. Repulsive
interactions promote obstacle avoidance but tend to disrupt
alignment, often contributing to singular behavior. Moreover,
the presence of fixed obstacles combined with delay accelerates
singularity onset and spatially shifts aggregation closer to the
obstacle. These findings reveal the intricate, nonlinear interactions
between delay and repulsion in collective behavior. These results
illustrate the nonlinear interaction of delay and obstacle effects in
shaping collective behavior.

The remainder of the paper is organized as follows. Section 2
introduces the hydrodynamic Cucker-Smale model with time delays
and repulsive obstacle potentials, including its extension to two-
species systems. Section 3 describes our high-order finite volume
scheme, detailing the WENO reconstruction, Runge-Kutta time
discretization, and FFT acceleration. Section 4 presents numerical
simulations illustrating the effects of delays and repulsive potentials
on flocking, obstacle avoidance, and singularity formation. Section 5
concludes the paper.

2 The model

In this section, we introduce hydrodynamic Cucker-Smale
models incorporating both time delays and repulsive obstacle
formulated for both two-

potentials, single-species and

species systems.

2.1 Single-species model with delay and
obstacle

The single-species hydrodynamic Cucker-Smale system with
time delay and obstacle-induced repulsionpotential is given by

0,p+V-(pu)=0,
9,(pu) + V- (pusu) = JRd¢(Ix—yI) P(y) p () (u (y)-u(x) dy+p (x) R(x),

1

for t>0 and x € R%, where d denotes the spatial dimension.
The functions p(x,t) and u(x,t) represent the density and velocity
fields, respectively. The delayed quantities are defined as p_(y) =
p(y,t—1) and u,(y) == u(y, - 1), where 7> 0 is a constant denoting
the time delay in communication and information processing. The
communication kernel ¢(|x—y|) is a smooth, radially symmetric
function encoding the strength of velocity alignment between
agents. The term R(x) models a repulsive force field generated by
static obstacles in the environment.

In this work, we adopt the fat-tailed communication kernel

0
=—, 2
$0= @
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where 6> 0 controls the decay rate of interactions with respect to
distance, and the constant § is chosen such that f§°¢(r) dr=1,
and we model the obstacle force R(x) as the negative gradient of a
localized Gaussian-type repulsive potential:

>, ©)

where 77, and [, control the strength and spatial scale of the repulsion,

2
[x — x|

Iy

R(x)=-V®(x), with ®(x)=7,exp <—

respectively, and x, denotes the center of the obstacle.

While these specific forms are chosen in this study, alternative
kernels and potentials (see Remark 2.1) may be considered
depending on the modeling context or application.

Remark 2.1: (Alternative communication kernels and obstacle
potentials). For communication kernels, besides fat-tailed ones,
compactly supported kernels such as

¢(r) = (1 + r)z(l - r)ZX[O’l] (7'),

the singular communication kernels like ¢(r) =%, a > 0, and the
exponentially decaying kernels have been widely used [1,34,35].

For obstacle potentials, Gaussian repulsion is one of several
possible choices. A widely used alternative is the attractive-repulsive
potential function

x|’

b

D)= |x[*

proposed in [24,36], offers a flexible shape controlling repulsion
strength and range, and is often used in the study of obstacle
problems. Attractive-repulsive hydrodynamics for collective
consensus. These alternative choices affect the dynamics and
numerical methods, and should be selected according to the specific
application context.

2.2 Two-species model with delay and
obstacle

We extend the model to a two-species system, where each species
experiences both intra-species and inter-species alignment, possibly
with different time delays.

Let p,(x,t) and u,(x,t) denote the density and velocity fields of
species a. The governing equations are:

1

where the source term S, (x, f) captures the nonlocal interactions and

atpu+v'(P(xua)=O’ (4)
at (P(xua) +V: (puua®ua) = Soc 1),

external obstacle force, given by

2

S.00= Y [ dusllxyD) P, @00y, ) (g, () -, 9) dy

pe1” R
+p, ()R, (x),

where «,f € {1,2}, p,(x) = p,(x,1) and u,(x) = u,(x,1) denote the
density and velocity of species a, respectively. The delayed terms
are given by Pﬂ,r,;(y) = pg(y,t =~ 75) and uﬁ’rﬁ(y) = ug(y, £ - 7p), with
7 > 0 the communication delay of species . The kernel ¢,5(|x - y1)
characterizes the influence of species  on a: ¢,,, and ¢ describe
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intra-species interactions, while ¢,; and ¢, (& # ) correspond to
inter-species alignment. Existing theoretical analyses have mostly
focused on the symmetric interaction case ($,3=¢g,). In our
numerical simulations, we will adopt the symmetric interactions
¢ aﬁ(r) = (/)ﬁa(r) in all examples except Example 4.8. The term R (x)
accounts for local repulsive effects from external obstacles. As
in the single-species case, it is modeled by the gradient of a

>, )

where x,, is the center of the obstacle, and [, control the strength

repulsive potential:

2
|x—x,|

L

R,(x) =-VO,(x), @,(x)=r,exp <—

and range of repulsion.

Remark 2.2: (Conservation Properties). The model preserves the
total mass of each species under suitable boundary conditions.
Define the total mass of species « as

M(t)= Y M,(H, with M,(t) ==J p,(x.1) dx, ael,
acl R?
where Z = {1} for a single-species system and Z = {1,2} for a two-
species system. Then each M (t) is conserved over time:
d

—M, (1) =0,

vVt >0,
dt

Vael.
Define the total momentum as

P()= Y P, (0, with P, ==j b, (6 DUy (x.1) dx.
R4
acl
In the absence of communication delays and obstacles, the
symmetry of the interaction kernels ¢,,; guarantees conservation of
total momentum:

dpw=o,

Vit > 0.
dt

3 Numerical scheme

In this section, we develop a numerical scheme for the
hydrodynamic model with time delays and repulsive obstacle
potentials. To accurately capture sharp solution features while
minimizing numerical dissipation, we adopt a fifth-order WENO
reconstruction combined with a local Lax-Friedrichs numerical
flux. Time discretization is performed using a third-order
Runge-Kutta method, which ensures stability and maintains high-
order accuracy. To efficiently compute the nonlocal alignment
term, we employ the FFT-based convolution, significantly reducing
computational cost.

3.1 Finite volume method for
one-dimensional case

Consider a one-dimensional periodic domain Q = [g, b], divided

into N uniform cells of width Ax = (b —a)/N. Let xj=a+ (j—-1/2)Ax
denote the center of cell j for j=1,...,N, and define the
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corresponding cell interval by ;= [xj_l 2 X1 /2],wherex+1/2 =

Ax
+ =,
xJ_ 2

1 1
py ()~ EL” (8) dx, m(h) = EL}P (oD u(n) dy

with the velocity defined by uj(t) = mj(t) / pj(t). We denote the cell-
pi(t)

averaged variables by Uj(f) = (
mj(t)

>. The semi-discrete finite
volume formulation reads:
0

m)+(8j>,

where Fj;,/, are numerical fluxes, and §; is the source term

du;
j 1
& = s B

incorporating nonlocal alignment and obstacle effects. For
convenience, we define the spatial operator £L(U) as
1 0
)=-Ean)(]) e
i

3.1.1 Lax—Friedrichs flux with fifth-order WENO
reconstruction

In our scheme, we consider the pressureless Euler-type
flux function:

u
fo=( "), u=("), u=m
pu? m P
The Lax-Friedrichs numerical flux at the cell interface X1
is defined by '
=20, )o1())- 2 (v -0,). o)
372 j+l j+l 2 \ s i)

where lf and UJr are the fifth-order WENO reconstructed values

from the left and rlght respectively, and A;,1 is the maximum
absolute eigenvalue of the Jacobian at the 1nterface defined by

of
)Lj+% = max ‘ g( 8U)| ma |ul, (8)
Ue{Ufl,Ufl]» UE{U’I,U*l}
Jty Jt3 IAl A

where ;—lf] denotes the Jacobian matrix of the flux function f(U) with
respect to the conserved variables U, evaluated at the intercell state
U; 4 1, and eig(-) denotes the eigenvalue of a matrix.

A;

it
locally, as in Equation 8, to reduce numerical diffusion and capture

Remark 3.1: The wave speed in Equation 7 can be chosen
local flow features, or globally as A = maxj|uj|, which is more
diffusive but more robust near strong gradients or discontinuities.
Unless stated otherwise, we use the local wave speed to balance
accuracy and stability.

To construct a high-order accurate scheme, we apply the fifth-
order WENO scheme component-wise to each conservative variable
Ui, Up Ui U

in U using a five-point stencil {U;_,, U /i+1> Ujpo ) which forms

three three-point substencils:

U Up Ui {Up Upens Ujia}

1

U2 U Ul |
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Each substencil produces a third-order approximation g, =
Pi(xj.172). The final reconstructed value at the interface is a
weighted sum:

2
Uip = Z Wik
k=0
where the nonlinear weights w, are computed by
o = - dy
. Z,zzod’z, (e+B)Y

Here, d, are linear weights, ¢ is a small positive parameter, and
B, are smoothness indicators as defined in [37]:

o= 15 (U =20+ U) + (U= 40, +30)°
/31=%(Uj— ~20;+ U ) + 3 (U1 - U )
B, = (U 2(]]+1+(J]+2) +}1(3U 4UJ+1+U]+2)~

For the right-biased value U+1 »
applied to the reversed stencil {U;,3, Uj..,,

the same procedure is
Ui1,U;, Uy ). The WENO
scheme achieves fifth-order accuracy in smooth regions while
maintaining stability near discontinuities. The spatial order of
accuracy has been confirmed numerically using smooth initial

conditions; see Section 4.1.

3.1.2 Source term: nonlocal alignment and
obstacle force
The discrete source term evaluated at the cell interval I

is given by
%:%(/)(lx xl) p; pi(u —u)Ax+p] i 9)
where p; = p,(t= 1), up = w(t- 1), and Ax denotes the uniform

cell width of the finite volume mesh. The function ¢(-) is the
communication kernel defined in Equation 2. To facilitate efficient
computation of the nonlocal alignment term in Equation 9, we
introduce the auxiliary quantities:

A= o (I -xd) pp
k

Using these, the discrete source term can be reformulated as

wAx, B;: Zgb(lx xk|) prAx.

u]Bj) +ijj. (10)

We first focus on the efficient computation of the alignment
contribution p : (A; - u;B;) in Equation 10. Under periodic boundary

szpj(A]

conditions, these convolutions can be efficiently evaluated using the
discrete Fast Fourier Transform (FFT). Specifically, the convolution
of two periodic sequences f; and g; is given by

= ;f k 8j-k>

which can be computed via

(f*g)j
frg=F "(F (N -F(9),

where F and F ! denote the discrete Fourier transform and
its inverse, respectively, and the multiplication - is performed
element-wise in Fourier space. This approach reduces the

computational complexity of evaluating each convolution from
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O(N*) to O(Nlog N), which is especially beneficial for large-scale
simulations.

The second component of the source term, R;, accounts for
obstacle-induced repulsion potential and is modeled as the discrete
gradient of a smooth obstacle potential field:

Ry= 0,0 (x)),

where ®(x) is given by Equation 3, and the gradient 0,® is
discretized using central finite differences.

3.1.3 Time discretization

For the time discretization, we apply the third-order
Runge-Kutta method of Shu and Osher (SSP-RK3) [38-40], which
offers third-order temporal accuracy and is known for its numerical
stability to the semi-discrete system To advance the semi-discrete
system in time, we adopt the third-order strong stability-preserving
Runge-Kutta (SSP-RK3) method [38], applied to the system.

du,
@ “£(v):

where £(U}) is the spatial operator defined in Equation 6.
The SSP-RK3 scheme advances U; from " to " = 7 4 At via
the following three-stage procedure:
)
vl v (),
) 3 1D D
3073 (v e(0),

47
= du (7 ar(0),

For stability, the time step is chosen to satisfy the CFL condition

CFL- Ax
< == =

At < >
rna.xj)tﬁ%

(11)

where CFL € (0, 1) is a prescribed constant (e.g., CFL = 0.7) and local
wave speed A, Las defined in Equation 8. This high-order scheme
ensures third-order accuracy in time and is validated in Section 4.1
via convergence tests with smooth initial data.

3.2 Finite volume scheme for
two-dimensional case

We consider a two-dimensional periodic domain Q = [a,,b,] x
[a},, by], which is discretized into N, x Ny uniform cells with mesh
sizes Ax = (b, —a,)/N,, Ay = (by - ay)/Ny. Denote the center of cell
(i,/)byx;; = (x;,;), where x; = a, + (- 1/2) Ax,y; = a, + (j— 1/2) Ay,
fori=1,...,N,,j=1,...,N,. The control volume C;; is defined as the
rectangular cell centered at x; ;:

C,-J-:[xi— , X+ T,y].+ 5

Ax Ax Ay Ay
PR Ei 2

Let the cell averages of the conserved variables be defined as

P,‘J‘(t) p(x,y,t)
N 1

Uy =| mio | AxAy”q, pleyulopt) | dxdy.
m, S Py v(x,p,1)
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The semi-discrete finite volume scheme is given by

0
dEUlJ:—L(F’(l_Fil)_L(F}’ l_F}'/;l>+ >
t Ax \ i+3J i34 Ay \ iit; by Sij

where F*,F are numerical fluxes in the x- and y-directions, and
Sij
two-dimensional spatial operator D(Uy;) as

0
D(Ul):—i<Fx1_FX1>_i<Fy 1_F)-’» 1>+ :
g Ax \ it5i i3/ Ay \ ity b3 Si

(12)

is the discrete source term. For convenience, we define the

3.2.1 2D Lax—Friedrichs flux with fifth-order
WENO reconstruction

In our scheme, we consider pressureless Euler-type fluxes with
the conserved variable and velocity field:

P X
1 m u
U=| m“ |, u=- = .

w

The physical fluxes in the x- and y-directions are given by

m* m’
(m")? e
FO=| 5 | PO=|
m*m’ (m’)?
P P
The Lax-Friedrichs numerical fluxes at cell interfaces are:

AX

X _l X - X + _ i*%J + 1
FH%J‘Z[F (Uf+i>f>+F <Uf+%>f>] 2 (UH%J UH%J)’
A}’
il
F =%[Fy<U.‘. 1)+Fy<U.*. )]— — <U,+. -0 )
i+ ijt+s ijt+s it i+

The reconstructed states U* | , U* | at each interface are
it=,j ij+~

2 Y2
obtained using fifth-order WENO reconstruction in the respective
spatial direction. The local characteristic wave speeds are given by

. . oo OB O
the largest eigenvalues of the Jacobian matrices =, =
A ,=maX{|u,_ bl ,I}, X =maX{IV,_. v II}-
i+= i+, i+, ij+ - i+ ij+ -
2 2 2 2 2 2

(13)
Remark 3.2: Alternatively, a global maximum wave speed
A= N
H{?X{l”wl |V1J|}

which is more diffusive but more robust near strong gradients or
discontinuities.

We now describe the treatment of the source term in the semi-
discrete scheme. As in the one-dimensional case, the discrete source
term at the control volume C;; consists of a nonlocal alignment
interaction and an obstacle-induced repulsion force:

Si,j = Z ¢(|Xi,j - xk,l|) Pij P;,; (“;,1 - uLj) AxAy + Pij Ri,j’ (14)
&l
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where the delayed fields are defined by p;,=p; (t-17),u; =
u (t—1). To facilitate efficient computation of the nonlocal
alignment term in Equation 14, we introduce the auxiliary

quantities:

Ai,j:Z‘/’O

- Xij _xk,ll)Pkl kleAy, Bi,j = ;(p(lxi,j _xk,ll)P;,[AXAJ’-

Using these, the source term Equation 14 can be written more

compactly as:
S;;= Pij (Ai,j - ui,jBi,j) TPij R;;. (15)
We first  focus on the alignment contribution
piJ( ul]Bl]) in Equation 15. Under periodic boundary

conditlons, it can be efficiently evaluated using the Fast Fourier
Transform (FFT). Next, we consider the obstacle-induced repulsion
force R;; is modeled as the negative gradient of a smooth potential
field (D(x) evaluated at the grid point x;;
central finite differences:

. It is discretized using

R, =-VO (x; J).

Consistent with the one-dimensional case (see Section 3.1.3),
we adopt the third-order strong stability-preserving Runge-Kutta
method (SSP-RK3) [38] for temporal discretization at each cell (i, ):

Uy =us+ At D(UL),

3

U(z) _Un (Uf;) +At D (Uf;)»)

Ut = %Ufj + % (v +aeD(U)),

where D(U;)) is the spatial operator defined in Equation 12. The
time step At is constrained by the CFL condition:

CFL - min (Ax, Ay)
max{/l’,c e 1}
ij ity hjts

1 defined in Equation 13 and CFL €
2

At <

where the wave speed A* | , o
3 bt
(0,1).

3.3 Numerical conservation properties

In this section, we analyze the conservation properties of the
proposed finite volume scheme. For clarity, the analysis is restricted
to the one-dimensional case with periodic boundary conditions.

3.3.1 Mass conservation

Theorem 3.3: (Discrete mass conservation). The proposed
finite volume scheme with fifth-order WENO reconstruction,
Lax-Friedrichs flux, and SSP-RK3 time discretization exactly

preserves the total mass under periodic boundary conditions:

Zp:‘”Ax = ZP?A’“
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Proof. For convenience, we denote the first (density) component

of the update operator L(U ) defined in Equation 6 by £! (U) ie.,

where Fl# denotes the first component of the numerical flux
Fj, ! defined in Equation 7, corresponding to the mass flux.

Let p}’ denote the cell average of density at time ¢". The SSP-RK3
updates for density read:

pi = pl At LO(UY), (16)
piz) pt (pl(l) +At LY (Ufl)» (17)
P =+ (sz) +at LO(U)). (18)

Define the total mass at each stage as

MO =Y A, forx € {n,(1),(2),n+1}.

By using the periodic boundary condition, we have

Z (Ffi)l/Z - Ffl)l/z) 0,

1

summing Equations 16-18 over all i, we find:

MO =y, MO =M, M= M

Thus, the scheme is exactly mass conservative.

3.3.2 Momentum conservation

Under
boundary conditions and in the absence of delays and external

Theorem 3.4: (Momentum Conservation). periodic
forces, the proposed finite volume scheme with fifth-order
WENO reconstruction, Lax-Friedrichs flux, and SSP-RK3 time
discretization exactly preserves the total discrete momentum at
each time step:

Z (pu):‘”Ax = Z (pu)! Ax.

Proof. We denote the second (momentum) component of the
update operator £(U;) defined in Equation 6 by £2(U)), i.e.,
22(v) =+ (T,

| —Fiz) +S;,
Ax 1+2 i 3

where F , denotes the second component of the numerical flux
F,1 deﬁned in Equation 7, and §; is the discrete source term
deﬁned in Equation 9.

Let (pu)! be the cell average of momentum at time ¢". The SSP-
RK3 scheme updates for momentum are given by:

(o) = (pu)! + At L2(U"), (19)

(e = Sy + 5 (e + 8t 22 (V7). (20)

(pu)?“——(pu)" ((pu)”+At£2(W>)) (21)
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Define the total momentum at each stage as

P =Y (pu)VAx,  for + € {n,(1),(2),n+1}.
i
Under periodic boundary conditions, it is easy to see that:
> (R -5 ) =0
i+3 i-3

i
Therefore, the total contribution from the update operator

(22)

reduces to the source term:
Y LO(U)Ax=) SAx.
i i

In the special case when 7=0 and R; =0, the source term §;
defined in Equation 9 simplifies to

Si= Z‘Pijpipj(”j_ ”i)Ax’ (23)
j

where ¢, := ¢(|x; - x|). Since ¢;=¢; is symmetric in ij, and
(uj —u)=—(u;— u]-) is antisymmetric, the double sum satisfies

%:‘pﬁpipj(”j - u;) = ‘%¢jinPi (- ;) = _%(/)i]’pipj (- ;).
This implies
iZj‘/’ijPin (1= u;) =0.
Therefore, from Equation 23 we have

Z SiAx = Z biPiP; (uj - u,—) (Ax)* =0. (24)
i ij

all of
Equation 22 and Equation 24, we see that the total momentum

Summing Equations 19-21  over i, in view

is conserved during the time update, i.e.,

P(l) — Pn’ P(Z) — Pn, Pn+l = p".

Thus we obtain the conclusion.

Remark 3.5: When delay (7> 0) is presentz > 0, the source term
involves past states p].Tu].T, breaking the symmetry required for
momentum conservation. Similarly, nonzero obstacle forces R; # 0
introduce additional asymmetries. As a result, the total momentum
is no longer conserved. This loss of conservation is clearly observed
in the numerical results of Example 4.3.

Remark 3.6: (Energy fluctuation). We introduce the energy
fluctuation [32].

AE ()= .”Rdx]Rd
:Mjwlu(x)—um|2 p (t,x) dx,

[u(x) - u(y)?

3 p (x)p (y) dx dy

where M:_[]de(x) dx is the total mass and u

(o]
ﬁf}k A(6x)p(x) dx denotes the mass—averaged velocity. In
numerical experiments, we plot the energy fluctuation in
Example 4.3 (see Figure 1) and observe that it tends to zero.
This indicates that the numerical solution is stable. It should be
emphasized that in this work we testify the stability of the numerical
solution only from a experimental perspective, while a rigorous
theoretical proof of stability will be left for future study.
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4 Numerical experiments

This section presents numerical simulations. Throughout all
simulations, the interaction kernel is chosen as ¢(r) = 6/(1 + rz)e, 0=
3, where the constant § is chosen such that jg°¢(r) dr=1,
and the CFL number is taken as 0.7, unless explicitly stated
otherwise. Periodic boundary conditions are imposed in all cases.
In Section 4.1, we first validate the spatial fifth-order and temporal
third-order accuracy of the proposed scheme through convergence
tests under two different configurations. In addition, we verify
the conservation of mass and momentum through a dedicated
numerical experiment, and assess the numerical stability of the
scheme by monitoring the energy fluctuation. Then, in Section 4.2,
we apply the numerical scheme to two models, leading to several
interesting numerical observations. In total, seven numerical
experiments are presented to investigate the effects of the delay
parameter 7 and the presence of obstacles on the emergence of
collective behaviors such as flocking and non-flocking in both
single-species and two-species systems.

4.1 Convergence and conservation tests

Example 4.1: (Spatial convergence).

To test the spatial accuracy of the fifth-order WENO
reconstruction, we consider a smooth initial condition for the
single-species system Equation 1, defined on the periodic domain
[-L/2,L/2] with L = 2:

po (%) :y1(2+sin<%>>, uy(x) =1,

where the normalization constant y, is chosen such that
ﬁ/Lz/zpo(x) dx = 1. We vary the number of cells as N, = 10,20,40,80
and set the time step according to At ~ Ax*/*, where Ax = L/N,. We
compute the cell averages and compare the numerical solution at
time T = 2 with the exact solution p_ and (pu) .

As shown in Table I, the L' errors for p and pu converge
with an order approaching 5 as the grid is refined, where [p—
:Dref”Ll = ZiAxLDi - pref,il and ”pu - (:Du)ref”Ll = ZiAxl(pu)i - (Pu)ref,i|'
This confirms that the scheme achieves fifth-order spatial accuracy,
consistent with the WENO reconstruction employed in the spatial
discretization.

Example 4.2: (Temporal convergence). To assess the temporal
accuracy of the third-order Runge-Kutta method, we consider a
smooth initial condition for the single-species system Equation I,
defined on the periodic domain [-L/2,L/2] with L = 2:

(x+L/4) p(i(x—L/ZL)z

= >+ex 2 )], uy(x) =1,

where 0 =0.2, and the normalization constant y, is chosen such

that ﬁ/Lz/zpo(x) dx =1. We fix the number of spatial cells at N, =
2000 and vary the time step At by adjusting the CFL number
defined in Equation 11 accordingly.

PoX) =7, [exp(f

As shown in Table 2, the L' errors converge with an order
approaching 3 as the CFL number decreases, confirming the third-
order temporal accuracy of the Runge-Kutta scheme. The observed
convergence order aligns well with the theoretical order of the time
discretization.
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FIGURE 1
Time evolution of total mass, momentum, and energy fluctuation for the three configurations considered in Example 4.3.

TABLE 1 Accuracy test for Example 4.1att=2.

N, llp = preglli2 Order llpu — (pt) ol 2 ‘ Order

10 1.5205E-02 - 1.5205E-02 -

20 7.3828E-04 4.36 7.3828E-04 4.36
40 2.3166E-05 4.99 2.3166E-05 4.99
80 7.2296E-07 5.00 7.2299E-07 5.00

TABLE 2 Accuracy test for Example 4.2 at t =0.2.

CFL o = preglli2 ‘ Order llpu — (pu), ol 2 Order

0.8 1.8514E-07 - 1.8514E-07 -

0.4 2.9040E-08 2.67 2.9040E-08 2.67
0.2 3.7531E-09 2.95 3.7531E-09 2.95
0.1 4.6885E-10 3.00 4.6885E-10 3.00

Example 4.3: (Verification of conservation properties). To verify
the theoretical results in Theorems 3.3 and 3.4, we present numerical
simulations for the single-species system Equation 1 under three
configurations: (a) without delay or obstacle, (b) with delay but no
obstacle, and (c) with an obstacle force but no delay.

The initial data are set as

X X
p(x,0) =y, cos(T>, u(x,0) = —ccos(f),

where the normalization constant y, is chosen so that
J f/LZ/Zpo(x) dx =1, and ¢ = 0.1 controls the velocity amplitude. The
simulation is conducted on a periodic domain x € [-1,1] (ie., L=
2), with spatial resolution N, = 1800.

In the third scenario, we introduce an obstacle modeled
as the gradient of a repulsive potential centered at x;=0, as

)

defined in Equation 3:

Ix— x|

R(x)=-V®(x), with @(x)=r,exp <— P
0
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with repulsion parameters 7, = 0.01 and [, = 0.5.
Figure 1 shows the time evolution of total mass, momentum,
and energy fluctuation AE (defined in Remark 3.6) for each

configuration, with the top, middle, and bottom panels
displaying mass M(t) = J‘f/Lz/zp(x, t) dx, momentum P(f):=

IE/LZ/Zp(x, Hu(x,t) dx, and AE, respectively. Figure 1 displays the
time evolution of total mass and momentum for each configuration.
In each subfigure, the top panel shows the total mass M(t) =

IE/LZ/Zp(x, t) dx, and the bottom panel shows the total momentum

(L2
P(t) = I -L/2
predictions: mass is conserved with high accuracy in all cases,

p(x,u(x,t) dx. The results confirm the theoretical

in agreement with Theorem 3.3. Momentum is preserved only in
the absence of delay and obstacle, as stated in Theorem 3.4. In the
presence of delay or obstacle force, the loss of symmetry in the
source term leads to gradual momentum deviation, as anticipated
in the accompanying Remark 3.5. Furthermore, Figure 1 illustrates
the evolution of AE. In panels (a) and (b), AE approaches to zero
by T =10, while in panel (¢) it tends to zero around T = 60. These
results suggest that the scheme exhibits stable behavior under the
considered scenarios.

4.2 Effects of delay and obstacle on
flocking dynamics

4.2.1 Effects of delay and obstacle for
single-species

First, we examine the effects of the time delay 7and obstacle force
on the collective behavior and regularity of solutions in the single-
species system Equation 1. The initial data is given by
27x
r)

p(x,0) =y, cos(%), u(x,0)=—-c sin<

where the normalization constant p, is chosen such that
ﬁ/Lz/zp(x,O) dx =1, and the parameter ¢ > 0 controls the amplitude
of the initial velocity. The simulation is performed on the periodic
domain (-1,1],
i.e., L =2, with the number of cell N, = 1800.

Two Examples 4.4 and 4.5 are presented below. In the first,
no obstacle is introduced, and we focus on the effects of delay

with varying initial velocity amplitudes. In the second, an obstacle
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FIGURE 2
Time evolution of density p and velocity u for =0, 0.5, 3 with fixed ¢ = 0.1 (Example 4.4).

is included to study the combined effects of delay and obstacle
forces.

Example 4.4: (Effects of delay without obstacle). We consider two
initial velocity amplitudes: ¢ = 0.10 and ¢ = 0.17. For each case, we
vary the delay parameter 7 € {0,0.5,3} to examine its influence on
the long-time behavior.

Figure 2 presents the density and velocity (p,u) at final time T =
15 for ¢ =0.10. In all delay settings, the solution remains globally
smooth, and the density stays bounded. As the delay increases,
the alignment process becomes slower and the density profile
exhibits mild increase, but no signs of instability or singularity
are observed.

In contrast, Figure 3 presents the results for ¢=0.17. When
7=0, the solution remains smooth throughout the simulation.
However, as 7 increases, the density begins to concentrate more
sharply. In particular, for 7 = 3, we observe that the solution develops
a near-singular profile: the density becomes highly concentrated
around t=4.79, and the velocity field exhibits a steep gradient.
These observations suggest the emergence of near-singular behavior,
potentially indicating the onset of instability or breakdown driven by
the delay effect.

These numerical results show that the influence of delay
on the single-species system strongly depends on the choice of
initial conditions. For mild initial configurations, delay mainly
slows down the flocking convergence without causing instability or
loss of regularity. However, when the initial velocity is sufficiently
large, the same delay can intensify velocity gradients and density
concentrations, eventually leading to a breakdown of smoothness
or finite-time singularity beyond a critical delay threshold. This
highlights a nonlinear interplay between initial conditions and

Frontiers in Physics 09

time delay in determining the long-time stability and regularity of
the system.

4.5: (Effects obstacle). this
example, we introduce an obstacle modeled as the gradient

Example of delay with In

of a repulsive potential centered at x,=0, as defined
in Equation 3:
. |x— x|
R(x)=-V®(x), with @(x)=r,exp —l—2 s
0
with ~ repulsion parameters #,=0.02 and [;=02. The
initial velocity —amplitude is set to ¢=0.17, and we

examine the impact of varying the delay parameter 7€
{0,0.5,3}.

Figure 4 shows the density and velocity fields at the moments
when the system reaches its peak aggregation for different delays. In
all three cases, the density is observed to concentrate sharply at two
distinct points symmetrically located on either side of the obstacle.
Correspondingly, the velocity field exhibits steep gradients precisely
at these points.

Notably, the time at which this concentrated state emerges
becomes earlier as the delay increases: t = 3.95 for 7= 0, t = 3.68 for
7=0.5, and £ = 3.00 for 7 = 3. Furthermore, the aggregation points
move progressively closer to the obstacle as the delay increases,
suggesting that larger delays enhance the effective attraction toward
the obstacle and accelerate the localization process. Under the
current setting of the communication kernel and repulsive potential,
these findings indicate a synergistic interaction between delay
and obstacle: the presence of delay not only triggers earlier
aggregation but also intensifies density concentration near the
obstacle.
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FIGURE 3
Time evolution of density p and velocity u for =0, 0.5, 3 with fixed ¢ = 0.17 (Example 4.4).

4.2.2 Effects of delay and obstacle for
two-species

To investigate the effects of time delay and obstacles
in a two-species setting, we simulate the system Equation 4
with the following different initial conditions for the two
species:

X

py(x,0) =1, [0.1+exp(—x%)], u; (%,0) = —¢, sin(z%),

pz(x,O):/lzcos(%x), uz(x,O)z—czsin(z%c),

with L =2 and constants ¢; =0.3,¢, =0.32. The normalization
constants A;,A, are chosen such that _ff/Lz/zpi(x) dx =
1, i=1,2. The simulation is conducted using a periodic
domain discretized with the of cell N,=1800
and a CFL number of 0.7, running from t=0 to t=
15.

For this setting, we provide three examples. Examples 4.6 and 4.7
are presented first. In the first Example 4.6, no obstacle is introduced,

number

and we focus on the effect of delay on the collective dynamics of
the two-species system. In the second Example 4.7, an obstacle is
included to study the combined effects of delay and obstacle forces.

To further extend the study, the last Example 4.8 is designed
similarly to Example 4.6, but with asymmetric inter-species kernels.

Example 4.6: (Effects of delay without obstacle). In this example,
we vary the delay parameter 7 € {0, 0.5, 3} to examine its influence
on the long-time behavior of the two-species system.

According to the numerical analysis in Example 4.4, both of
the initial conditions (p,,u;) and (p,,u,), if evolved independently
in a single-species setting, would lead to finite-time singularity,
regardless of the presence of delay. However, our numerical results
show that when 7 = 0, the two-species system remains smooth and
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well-behaved for all time (see Figures 5a-d). This indicates that
cross-species interaction can regularize the system.

As the delay 7 increases, the solution exhibits progressively
sharper spatial structures: velocity gradients steepen, and the
density profile becomes increasingly concentrated over time (see
Figures 5a-c for density; Figures 5d-f for velocity). In particular,
at time f = 2.70, Figures 5¢-f show pronounced density localization
near a single point and steep velocity gradients. These phenomena
indicate a growing tendency toward instability and suggest a
potential breakdown of collective coherence.

Our numerical experiments indicate that there may exist a
critical delay threshold 7, beyond which the system exhibits a loss
of regularity and a breakdown of coordinated motion.

Remark 4.1: A possible mechanism for this loss of regularity is
that the use of delayed velocity information in the interaction term
introduces misalignment between agents, potentially weakening the
stabilizing of the alignment mechanism. Moreover, the time-lagged
nonlocal feedback causes the system’s response to deviate from the
current state, amplifying local gradients and driving the system
toward instability.

Example 4.7: (Effects of delay with In this
example, we introduce an obstacle modeled as the gradient

defined

obstacle).

of a centered at as

)

with repulsion parameters #x,=0.1 and [, =02, a=1,2. The

repulsive potential x, =0,

in Equation 5:

2
x—x,|

12

R,(x) =-VD,(x), P, (x)=1,exp (—

obstacle force is taken to be the same for both species, i.e.,
R, =R,. Figure 6 illustrates the evolution of the two-species
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FIGURE 4

Time evolution of density p and velocity u for =0, 0.5, 3 with fixed ¢ = 0.17 (Example 4.5).
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FIGURE 5
Time evolution of density p and velocity u for 7=0, 0.5, 3 (Example 4.6).

. . . T
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density p(x,t) and velocity field u(x,t) in the presence of
a fixed obstacle force and varying delay parameters 7=0,
0.5, and 3.

Across all cases, we observe the emergence of symmetric, highly
concentrated density peaks on both sides of the obstacle. These are
accompanied by steep gradients in the velocity field, suggesting the
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formation of localized structures with near-singular behavior, as in
the single-species case (Example 4.5).

As the delay parameter 7 increases, the formation of these
concentrated structures occurs earlier in time: at t = 1.60 for 7=0,
t=1.43 for 7= 0.5, and t = 1.34 for 7 = 3. Moreover, the aggregation
regions become more sharply localized and shift closer to the
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FIGURE 6
Time evolution of density p and velocity u for =0, 0.5, 3 (Example 4.7).

obstacle center as 7 increases. These trends indicate that the time
delay not only enhances the spatial focusing induced by the obstacle
but also accelerates the onset of singular-like configurations.

The numerical results reveal that, similar to the single-species
scenario and under the current settings of the communication
kernel and repulsive potential, the interaction between delay and
the obstacle plays a significant role in promoting rapid localization
and potential loss of regularity. Although the two-species system
introduces additional inter-species interactions and complexity, the
observed trends persist: increasing delay leads to earlier aggregation
and sharper density concentration near the obstacle.

Example 4.8: (Effects inter-

kernels). In

of delay with asymmetric
this adopt  the
setting as in Example 4.6, but modify the communication kernels by

species example, we same
choosing 0,, = 0,, = 0,, = 3 and 6,, = 1.2. Hence, species 1 applies
the same exponent 6 = 3 for both self- and cross-interactions, while
species 2 interacts with species 1 through the smaller exponent 6,, =
1.2. This asymmetry highlights the effect of asymmetric inter-species
interactions on the collective dynamics.

For the different initial conditions (p, (x,0) # p,(x,0)) chosen for
the two species, we observe that when 7=0 and 0.5, the solution
behavior is similar to that in Example 4.6. However, when 7 =3,
Examples 4.6 and 4.8 show that the aggregation levels of p, and p,
differ significantly (see Figures 5¢, 7c). We also find that asymmetric
and symmetric kernels affect the solution behavior differently, and a

more detailed study will be left for future work.

4.2.3 Effects of delay and obstacle in 2D
Now, the
species system Equation I, incorporating both communication

we  consider two-dimensional  single-

delay and a repulsive obstacle potential. The simulation is conducted
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on a periodic square domain [—%,%]2 with L= 1.2, uniformly

discretized using N, = N, =120 grid points. The CFL number is
set to 0.012. The initial conditions are specified as follows:

y

(%) = cos(ﬂ)cos(—)

Po\X%y) =Y L )
. 2nx . [ 2my

Uy (x,y) = —c mn(T), Vo (x,y) = —c sin - )

where the normalization constant y is selected such that

”’[7 Lo ]zpo(x, y) dx dy=1 and the initial velocity parameter c =
22

0.12. We investigate the long-time evolution of the system for various

delay values 7=0,0.5,1,5.

Example 4.9: (Effects of delay without obstacle). In this example,
we examine the system without repulsive potential. This analysis
demonstrates the influence of increasing delay on collective
dynamics and pattern formation in the 2D setting.

For ¢ = 0.12, the two-dimensional single-species system remains
smooth and appears to converge toward a steady state in the absence
of delay (7 = 0), as shown in Figure 8. Both the density and velocity
fields gradually stabilize, with the velocity field exhibiting alignment
and the density approaching a spatially symmetric configuration.

As the delay parameter 7 increases, the system displays more
pronounced dynamical behavior. As illustrated in Figures 9a-c, the
density gradually becomes more concentrated near the center of the
domain. This tendency appears to be enhanced with larger values of
7, suggesting that communication delay enhances aggregation in the
density field. Meanwhile, the velocity fields shown in Figures 9d-f
exhibit growing misalignment and irregularities over time, in
contrast to the more coordinated behavior observed when 7= 0.

These numerical observations indicate the possible existence of
a critical delay threshold 7., beyond which the global regularity of
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FIGURE 7
Time evolution of density p and velocity u for =0, 0.5, 3 (Example 4.8).

the solution may deteriorate and the system may begin to exhibit
signs of instability. This behavior is consistent with similar trends
reported in one-dimensional single- and two-species models, where
increased communication delay can exert a destabilizing influence
on the dynamics. The observed mismatch between the rapid central
concentration of density and the slower alignment of the velocity
fields suggests that increasing delay may impair the system’s ability
to maintain coherent collective dynamics and stable spatial patterns.

Example 4.10: (Effects of delay with obstacle). We introduce an
obstacle force R(x) modeled as the gradient of a repulsive potential

)

In our numerical example, we consider a single obstacle located

centered at the obstacle location, as defined in Equation 3:

|x—x0|2

R(x)=-V®(x), with @ (x)=17, exp(— 2
0

at x, = (0,0), with repulsion parameters #, = 0.01 and [, = 0.1.

Figure 10 presents the full temporal evolution of the one-species
density field under zero delay (7 = 0), while Figure 11 displays the
final-time density distributions for increasing delays 7= 0.5, 1, and
5.In all cases, the obstacle potential remains fixed, and only the delay
parameter varies.

The introduction of the obstacle induces a characteristic spatial
segregation: the density splits into two symmetric high-density
regions located on either side of the obstacle. This behavior is
consistent with earlier observations in the one-dimensional single-
species case with obstacle (Example 4.5) and the one-dimensional
two-species case with obstacle (Example 4.7), indicating a persistent
effect of obstacle-induced localization across dimensions and system
complexity.

As the delay 7 increases, two systematic trends are observed.
First, the system develops sharply concentrated density states at
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progressively earlier times. Specifically, the onset of significant
aggregation shifts forward from ¢ = 8.68 for r=0to ¢t =7.02 for 7=
0.5, t=5.89 for 7=1, and t =4.17 for 7 =5, as shown in Figure 11.
This confirms that communication delay accelerates the aggregation
process. Second, the spatial location of these dense regions moves
consistently closer to the obstacle as 7 increases. As depicted in
Figures 10c, 11a-c, the high-density zones not only become more
sharply localized but also shift toward the center of the obstacle.

Taken together, under the current setting of the communication
kernel and repulsive potentials, the findings from all three
settings—1D single species with obstacle (Example4.5), 1D
two species with obstacle (Example 4.7), and 2D single species
with obstacle—reveal a consistent mechanism: increasing
communication delay (i) advances the onset of strong aggregation
and (ii) enhances spatial localization near repulsive obstacles. This
delay-obstacle interplay appears to persist across spatial dimensions
and system configurations.

Theoretically, the setting,  Choi

and Haskovec [22] established sufficient conditions for global

in hydrodynamic
regularity and flocking under normalized communication weights:
(a) For a fixed integral influence function, it is necessary to choose
7 sufficiently small in order to satisfy the flocking condition; (b)
For the fat-tailed kernel 1/(1 +r2)9 with 0€(0,1/2), any 7 can
satisfy the flocking condition. We extend the theoretical case to
the scenario with obstacles and two species. In our work, we
intend to investigate the case (a) of an integral kernel of the
form ¢(r) =6/(1+ 72)6 with 6> 1/2. Our numerical experiments
show that small delays do not affect system alignment, but large
delays can lead to steep gradients and high-density peaks, which
appear numerically as near-singular behavior. Moreover, in the
presence of obstacles, delays accelerate the aggregation of the system,
and as the delay increases, the aggregation center moves closer
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FIGURE 9
Final-time density p and velocity u field u for 7= 0.5, 1, 5 (Example 4.9).

to the obstacle. Furthermore, we also examine the two-species
case with delays and obstacles. These observations are based on
numerical evidence under specified parameters (e.g., potential
shape, strength, and initial conditions). Nonetheless, it should be
noted that these results are obtained under specified parameters
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(e.g., potential shape, strength, and initial conditions) in each
example. While the trends are consistent across scenarios, further
investigation is needed to assess their generality under broader
modeling assumptions and in more realistic biological or physical
systems. Rigorous analysis, such as establishing precise thresholds
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FIGURE 11
Final-time density p and velocity u field u for 7= 0.5, 1, 5 (Example 4.10).

for finite-time singularity or delay-induced blow-up, is left for

future work.

Remark 4.2: This work focuses on fat-tailed kernels. We also test
compactly supported kernels (such as ¢(r) = § 1y,4), and we find
that as the delay increases, the density tends to concentrate locally
and the velocity gradient becomes large, similar to Example 4.4
in the single-species case. However, the behavior of the solutions

remains different under the fat-tailed and compactly supported
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kernels, we will investigate compactly supported kernels in more
detail in future work.

5 Conclusion

This study examines the influence of time delay and obstacle
on the collective dynamics of non-local kinetic models in one- and
two-dimensional settings for both single- and two-species systems.
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The numerical results of six representative cases reveal that the long-
term behavior of the system is highly sensitive to initial conditions,
with different initial states that lead to different outcomes, such as
global regularity, aggregation or finite-time singularity formation.
Increasing the time delay generally reduces stability, promoting
earlier formation of singularities. Moreover, the presence of static
obstacles combined with delay accelerates singularity onset and
spatially shifts aggregation closer to the obstacle. These findings
highlight the intricate interplay between initial data, delay, species
interactions, and environmental heterogeneity in shaping emergent
patterns. While our numerical experiments focus on fat-tailed
kernels and isotropic Gaussian obstacles, the framework is readily
applicable to other types of interaction kernels and potential
functions. Future work will extend the model to include singular
kernels, dynamic or reactive obstacles such as moving predators, and
asymmetric inter-species interactions and anisotropic obstacles to
explore richer collective dynamics, so as to better capture realistic
ecological scenarios. Analytical characterization of critical delay
thresholds and singularity formation also remains an important
avenue for further research.
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