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Editorial on the Research Topic
Variability in the solar wind and its impact on the coupled
magnetosphere-ionosphere-thermosphere system
s

Introduction

The inherent variability of the solar wind, from large-scale structures to kinetic-scale
fluctuations, drives a cascade of energy transfer and plasma processes throughout the
coupled Magnetosphere-Ionosphere-Thermosphere (M-I-T) system. Understanding these
multiscale interactions is critical not only for advancing fundamental heliophysics but also
for developing effective mitigation strategies against the hazards space weather poses to our
technologically dependent society. This Research Topic confronts this grand challenge by
integrating in situ observations, theoretical analysis, and numerical modeling to elucidate
the causal chain that links microscopic plasma mechanisms to their large-scale terrestrial
consequences. By consolidating findings across four complementary areas of study, this
Research Topic aims to contribute to amore predictive, physics-based understanding, laying
a stronger foundation for enhancing forecasting capabilities.

Solar wind and magnetosheath dynamics

Some space plasma and magnetic field structures hitting the magnetosphere result
from the interaction between the Interplanetary Magnetic Field (IMF) discontinuities
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and the bow shock. Lu et al. studies an event in which they
identified both a hot flow anomaly [1] and a foreshock bubble [2]
using THEMIS and MMS data near the subsolar bow shock. Their
observations confirm the previously published hybrid simulation
results, which show that these two phenomena can coexist.
The authors emphasize the importance of multiple spacecraft
observations to reveal the full scope of foreshock transients.

Madanian et al. presents another interesting event in which a
density structure within the magnetic cloud impacted the Earth
and caused significant variations in the magnetopause and bow
shock locations. The most interesting feature of the event is a
sunward flow [3] in the inner magnetosheath near the subsolar
point following the solar wind dynamic pressure decrease. The
authors find that the sunward flow is formed due to magnetosheath
expansion and is driven by the magnetic pressure gradient force.

Chen et al. presents a theoretical investigation into the
fundamental problem of three-dimensional, time-dependent
magnetic reconnection. Its principal contribution is the first-ever
analytical demonstration that steady-state plasma outflows can
theoretically exist within a time-varying magnetic field, resolving
an apparent contradiction between observations of quasi-steady
reconnection in turbulent environments [4] and the intuition that a
dynamic field should drive a dynamic flow.

Villante comments on the analysis of solar wind density
fluctuations (0.45–4.65 mHz) by Di Matteo et al. [5]. The author
refers to the previous papers [6], which showed only 50%
agreement between frequencies of fluctuations observed by two
spacecraft in the solar wind. They point out that these results
suggest compressional solar wind modes may drive magnetospheric
fluctuations. However, there are analysis challenges due to spatial
variability and methodological differences that may alter the results
of the data analysis.

Magnetospheric phenomena

Chen et al. analyzes an interplanetary shock event that reveals
two simultaneous electron acceleration processes in Earth’s radiation
belts. They find that shock-induced impulsive electric fields
instantly energized relativistic electrons near dusk, creating energy-
dependent drift echoes.The authors emphasize the important role of
the modulations by an azimuthally confined ultralow frequency [7]
wave in this energization process.

The review by Archer et al. examines magnetopause MHD
surface waves [8] as a critical mediator of the solar wind-
magnetosphere interaction. The authors highlight how the
magnetopause can act as a dynamic resonator, forming standing
eigenmodes whose frequencies are directly governed by upstream
solar wind conditions. This mechanism effectively filters,
accumulates, and guides turbulent solar wind energy into geospace.
The paper concludes that overcoming current theoretical challenges
is essential for understanding this global energy transfer and for
interpreting data from future space missions.

Xie et al. presents the first report of electron cyclotron
harmonic waves [9] responding to an interplanetary shock. They
find that shock compression boosted >0.1 keV electron fluxes by
30%–50%, providing free energy for wave growth. This confirms a

direct solar wind-magnetosphere coupling pathway where shock-
induced electron injections drive wave instability within minutes.

Leveraging high-resolutionMMSdata,Wei et al. investigates the
electron firehose instability [10] in the magnetotail, revealing that
this phenomenon, typically associated with reconnection outflows
and depolarization fronts, can also arise in the pristine plasma sheet.
Their analysis further implicates this instability as a potential driver
for magnetotail flapping motions and the generation of associated
sub-ion scale Alfvénic fluctuations.

Ionospheric and thermospheric
responses

Davidson et al. examines the delay in the response
time of ion-neutral wind in the high-latitude ionosphere to
substorm onsets [11]. Using data from Scanning Doppler Imagers
(SDI) and the Poker Flat Incoherent Scatter Radar (PFISR) of 23
substorms, they find the average neutral wind response time to
be 16 min. Their analysis shows that a southward turning of IMF
1.5 h before the substorm onset and large electron densities in the
ionosphere lead to faster response time.

Li et al. conducts a simulation-based study comparing the
ionospheric total electron content (TEC) between the SouthAtlantic
Anomaly (SAA) and the Indian Ocean (IO) at solar maximum.
The authors apply the empirical orthogonal function (EOF) method
to analyze the spatial and temporal variations in both regions.
The results show clear differences in the structure and behavior
of the equatorial ionization anomaly (EIA) between the two areas,
influenced by geomagnetic field deviations and tidal effects.

Space weather impacts

The impact of the extreme geomagnetic storm [12] of May
2024 on the re-entry of a Starlink satellite from very low-
Earth orbit is studied in Oliveira et al. In comparison with the
previous observations of the satellites’ re-entries during a variety
of geomagnetic conditions, it is shown that a sharp altitude decay
starts at the start of the storm main phase, and that severity of
the storm increases a speed of the satellite altitude decay and the
time difference between the predicted and observed re-entry dates.
The physical reasons behind the enhanced drag effects during the
increased geomagnetic conditions have been discussed, as well as
a need for a more detailed investigation of the causal relationship
between storm occurrence and satellite orbital decay.

Li et al. studies an interplanetary coronal mass ejection [13]
that triggered intense geomagnetic activity, severely degraded GNSS
positioning performance in low-latitude Hong Kong. The study
reveals that magnetospheric compression during the storm’s initial
phase caused more pronounced ionospheric scintillation [14] than
that during the main phase. They also examines the accuracies of
different GNSS positioning techniques. Overall, the authors attempt
to establish a chain from solar wind dynamics to ionospheric
turbulence and GNSS degradation, which contributes to enhancing
space weather monitoring.

Space radiation poses a serious risk to crewed missions,
especially to future missions to Mars, with the Galactic Cosmic
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Rays (GCR) being a main contributor to the radiation dose on
those missions [15]. Song et al. developed the Space-Dependent
Energetic cosmic ray Modulation using MAgnetic spectrometer
(SDEMMA) model, which models Galactic Cosmic Ray dynamic
beyond 1.0 AU, covering the inner heliosphere between Earth and
Mars. This novel model explicitly resolves radial gradients under
diverse heliospheric conditions. The application of the model in the
calculation of the dose equivalent rate is demonstrated.

The perspective by Wang et al. presents a paradigm-shifting
argument that fundamentally reframes the role of space weather
in aviation science [16]. In a critical departure from decades of
research that treated space weather impacts as isolated phenomena
largely confined to specific risks in polar regions, this work
provides a systemic, global link between space weather events and
widespread flight delays and cancellations. The authors are the
first to quantitatively establish that space weather is not merely a
technical concern but a significant and previously underestimated
contributor to the performance degradation of the entire air
transportation network.
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