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Complex-valued brain networks 
for neurodegenerative disease 
diagnosis via component-aware 
feature fusion 

Jiejie Fan and  Xiaojuan Ban*

School of Computer and Communication Engineering, University of Science and Technology Beijing, 
Beijing, China

Introduction: Recent advancements in brain network analysis have greatly 
improved the diagnosis of neurodegenerative diseases. However, most existing 
studies rely on single-frequency EEG representations and overlook the joint 
modeling of real and imaginary connectivity in the frequency domain.
Methods: To address this limitation, we propose a novel complex-valued brain 
network framework for diagnosis through component-aware feature fusion. 
EEG signals are first transformed into complex-valued representations using 
frequency-domain filtering. A Complex-valued Brain Network Construction 
(CBNC) module with multi-scale real and imaginary convolutions is then 
employed to capture dynamic inter-channel interactions. Finally, a Component-
Aware Feature Fusion (CAFF) mechanism integrates multicomponent features by 
modeling cross-component semantic consistency, leading to more expressive 
and physiologically meaningful brain networks.
Results: Extensive experiments on two benchmark datasets show that the 
proposed method achieves an accuracy of 91.59% for mild cognitive impairment 
detection and 99.99% for stroke detection, consistently surpassing state-of-the-
art methods in both accuracy and robustness.
Discussion: These results demonstrate that integrating real and imaginary 
connectivity with component-aware feature fusion offers a more effective 
and physiologically grounded representation of brain networks. The proposed 
framework provides a promising direction for improving the diagnosis of 
neurodegenerative diseases.
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 1 Introduction

Neurodegenerative diseases, such as mild cognitive impairment (MCI) and stroke, 
pose significant threats not only to individual health but also to public healthcare 
systems and social welfare [1, 2]. Electroencephalography (EEG) has become a powerful 
non-invasive tool for diagnosing such disorders by capturing electrical activity in the 
brain. It offers valuable insights into neural activation patterns and connectivity among 
regions of interest (ROIs), which reflect the cognitive and behavioral functions of the 
brain [3]. EEG signals can reflect variations in frequency and amplitude based on 
the subject’s biological state, mental state, age, disease process, etc. Consequently, the 
state changes in EEG signals in different periods of MCI can serve as a biomarker
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FIGURE 1
Different types of data from Normal Control (NC) and MCI.

for MCI identification. Recent advancements in neuroimaging 
technology, magnetic resonance imaging (MRI), diffusion tensor 
imaging (DTI), functional magnetic resonance imaging (fMRI), 
positron emission computed tomography (PET), and other imaging 
techniques have made it possible to reveal the structural features and 
functional activity characteristics of the human brain in the early 
stage of disease Nordberg et al. [4]. The blood oxygen-dependent 
level (BOLD) signal, a neurophysiological marker obtained through 
resting-state functional magnetic resonance imaging (rs-fMRI), can 
capture changes in neuronal activities in the brain Drew [5] (see 
Figure 1). Jitsuishi and Yamaguchi [6] used multi-modal MRI data 
to identify the optimal machine learning model to classify EMCI and 
LMCI, achieving an accuracy of 70%. Furthermore, based on MRI, a 
novel deep belief network-based multi-task learning algorithm was 
developed for classifying AD/MCI, demonstrating commendable 
performance. Therefore, from a neuroscientific perspective, EEG can 
be viewed as both an extension of and a complement to the oldest 
neurophysiological techniques for representing the brain’s electrical 
activities Farina et al. [7].

Recent studies have demonstrated that many neurodegenerative 
diseases, such as Alzheimer’s disease and MCI, are associated with 
disruptions in the connectivity patterns among ROIs [4, 8]. These 
disruptions can be effectively captured through EEG-based brain 
network analysis, making EEG a sensitive and reliable modality for 
early diagnosis and progression monitoring [9, 10]. Nonetheless, 
EEG signals are typically non-stationary, multi-scale, and composed 
of complex waveforms, which complicates the extraction of 
discriminative features using traditional handcrafted approaches. 
With advancements in deep learning, data-driven models have 
shown great potential in learning complex representations from raw 
EEG data, particularly when large-scale datasets are available. These 
models can automatically capture high-level semantic patterns that 
are challenging to define manually, thereby enhancing diagnostic 
accuracy and model generalization.

To overcome the aforementioned challenges, recent efforts have 
increasingly focused on deep learning methods, particularly those 
based on graph neural networks (GNNs), which are particularly 
effective for modeling graph-structured data such as EEG 
connectivity networks [11]. GNNs have shown excellent capabilities 
in capturing complex spatial dependencies and temporal dynamics 
within EEG signals, often surpassing traditional architectures such 
as convolutional neural networks (CNNs) and long short-term 
memory (LSTM) networks [12]. These advantages have made 
GNNs a promising framework for various brain-related applications, 
including brain-computer interfaces, affective computing, and the 

diagnosis of neurological and neurodegenerative disorders [13, 14]. 
Current studies on MCI detection have primarily focused on 
temporal analysis, wherein the original time-domain EEG signals 
are directly transformed into graph representations. Nonetheless, as 
illustrated in Figure 2, such approaches often neglect the phase-shift 
issue inherent in time-domain signals. For instance, the two EEG 
signals shown belong to the same class, yet Signal 2 is merely a phase-
shifted version of Signal 1. When directly transformed into graph 
representations using a variation graph, they yield significantly 
different results in the time domain, despite exhibiting high 
similarity in the frequency domain. This observation underscores a 
critical advantage of frequency-domain transformation, specifically 
its ability to mitigate the adverse effects of phase shifts. Therefore, 
a key prerequisite for the success of GNN-based models is the 
construction of accurate and informative brain networks, as 
the quality of the input graph directly influences downstream 
performance. Notably, a significant portion of existing research has 
focused on constructing brain networks in the frequency domain, 
utilizing the spectral properties of EEG signals to capture inter-
regional dependencies [15, 16]. Though this approach provides 
valuable physiological insights, it often ignores the complex-
valued nature of EEG frequency components, particularly the joint 
consideration of both real and imaginary parts, which are crucial 
for representing effective connectivity [17, 18].

Nevertheless, two great challenges persist in existing methods. 
First, they often ignore the fundamental physiological significance of 
the complex-valued components of frequency-domain EEG signals. 
Due to the continuous nature of brain activity in the frequency 
domain, the propagation of EEG network information occurs 
simultaneously through both real and imaginary components [19], 
as depicted in Figure 3. Traditional learning approaches usually 
extract features only based on the amplitude of each frequency 
window. However, as illustrated in Figure 3a, two different complex-
valued numbers with the identical amplitude (√a2 + b2) yield 
different results (a2 + b2 and 0) when subjected to convolution 
operations with the same convolution kernel. In contrast, using the 
amplitude in the convolution operation produces only one result 
(2(a2 + b2)), which can be seen in Figure 3b).

This practice fails to model the evolutionary relationships 
between real and imaginary components over time, resulting 
in the loss of critical information, particularly that reflecting 
phase synchronization among brain regions [20]. Furthermore, 
although a few studies have investigated multi-component 
graph representations using distinct learning pathways for real 
and imaginary parts, they often overlook the fusion of these 
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FIGURE 2
A comparison of phase shifts in time-domain and frequency-domain.

FIGURE 3
The convolution operation on frequency EEG. (a) Complex-valued numbers; (b) Amplitude.

components, leading to suboptimal integration and limited 
representation power [21]. Hence, to overcome these limitations, 
it is crucial to design a multi-scale convolutional framework that 
jointly models the dynamic interactions across EEG channels 
from both real and imaginary components, thereby facilitating the 
construction of more expressive and physiologically meaningful 
multi-component brain networks.

To better detect brain disorders, the fusion of diverse EEG-
derived features has attracted increasing attention in recent years 

[22, 23]. For example, several studies have demonstrated the 
effectiveness of combining selected EEG channels using deep 
learning and machine learning techniques for accurate classification 
of neurodegenerative diseases in [22]. A clustering-based fusion 
feature selection method is proposed to effectively identify 
discriminative EEG features for diagnosing major depressive 
disorders from resting-state data in [23]. Existing methods for 
frequency-domain EEG feature fusion can be mainly divided into 
two categories. The first category transforms frequency sequences 
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into vectorized forms and independently extracts frequency-specific 
and spatial features [24], often ignoring the distinct contributions 
of different components in the frequency spectrum. The second 
category aims to learn topological structures from frequency-based 
connectivity networks directly, but fails to account for the temporal 
continuity and local connectivity among EEG data points [25, 26].

However, despite these advancements, existing EEG-based brain 
network studies still encounter several significant limitations that 
hinder their diagnostic effectiveness [17, 27]. First, many approaches 
construct networks using single-frequency or amplitude-only 
representations, disregarding the combined contribution of real 
and imaginary components in the frequency domain, which are 
essential for capturing effective connectivity. Second, conventional 
graph construction methods often depend on static adjacency 
structures or predefined connectivity measures, restricting their 
capacity to model the dynamic and multiscale dependencies 
inherent in EEG signals. Third, while some studies attempt to 
model multi-component features, they generally process each 
component independently, neglecting the integration of cross-
component information, which results in suboptimal representation 
power. Finally, existing feature fusion strategies frequently overlook 
the semantic consistency between components, leading to degraded 
discriminative capacity. Collectively, these limitations impede the 
development of robust and physiologically meaningful brain 
network models for accurate neurodegenerative disease diagnosis.

To address these challenges, this paper proposes a novel 
complex-valued brain network framework for the diagnosis of 
neurodegenerative diseases through component-aware feature 
fusion. The framework jointly models real and imaginary 
components of frequency-domain EEG through multi-scale 
complex-valued convolutions and dynamically integrates cross-
component information via a semantic-consistency-aware fusion 
mechanism. This approach enables the creation of more expressive 
and physiologically relevant brain network representations. Based 
on the above motivation and discussion, the technical contributions 
of the proposed method are summarized as follows: 

• A novel complex-valued brain network is proposed for 
neurodegenerative disease diagnosis via component-aware 
feature fusion. It effectively integrates multi-component 
information (real and imaginary) into a deep learning network 
to provide rich characterizations for frequency EEG analysis.
• A Complex-valued Brain Network Construction (CBNC) 

module is developed to fully explore the connection of 
multi-component data, which not only exploits multi-scale 
convolution to capture complex interaction patterns of data 
points dynamically, but also forms flexible adjacency matrices, 
facilitating more comprehensive brain network construction.
• A Component-Aware Feature Fusion (CAFF) mechanism is 

designed to fuse multiple features through translation of 
the inter-modal correspondence matrix. In this approach, 
component-aware latent features are regularized with cross-
component semantic contexts implicitly.

2 Methods

The proposed framework processes the EEG signals through 
four primary stages (Figure 4). First, the raw multi-channel EEG 

signals are transformed from the time domain into the frequency 
domain using Fast Fourier Transform (FFT), resulting in both real 
and imaginary components. Second, the CBNC module applies 
multi-scale convolutions to these components separately to capture 
local and multi-scale spatiotemporal interactions, constructing 
corresponding real-part and imaginary-part brain networks. Third, 
the CAFF module encodes the two brain networks and dynamically 
aligns their features through a correspondence matrix, enabling 
cross-component interaction modeling. Fourth, the fused features 
are processed by the Complex-valued Graph Convolution (CGC) 
module to learn higher-order topological representations, which are 
subsequently classified to produce the final diagnostic output. This 
sequential design ensures that each stage builds upon the previous 
one, from raw signal transformation to biologically informed 
network modeling and final disease classification.

2.1 Preliminaries

Definition 1: EEG. EEG is a type of physiological signal that records 
electrical activities in the brain. In this paper, the height and width 
of an EEG signal are scaled to a fixed size (C,T), where C denotes 
the number of electrodes, and T = {t1, t2,…, tn} represents the time 
length, with ti being the data point at the ith timestamp. 

Definition 2: Brain network. A brain network of EEG with a size of 
(C,T) can be represented as a graph G = (V,E). Here, V is the vertex 
set with C vertices, where vi ∈ C denotes the brain ROI. E is the edge 
set, where ei,j ∈ E denotes the edge connecting vertices vi and vj. ei,j
represents the pairwise relationship between ROIs vi and vj. 

2.2 Frequency-domain analysis of EEG

Building on the EEG definitions in Section 2.1, the raw time-
domain signals are first transformed into the frequency domain 
to obtain real and imaginary components, forming the basis 
for subsequent brain network construction. First, the original 
time-domain EEG signal T = {t1, t2,…, tn} is transformed into the 
frequency domain using FFT as shown in Equation 1:

f (k) =
n

∑
i=1

ti ⋅ e
−j 2π

n
k (k = 1,2,…,n) , (1)

where f(k) corresponds to the same frequency for all input time-
domain signals as long as they have the same sampling rate and 
length, thus achieving data alignment. Then, it can be decomposed 
into a real component XR ∈ ℝ

T and an imaginary component XI ∈
ℝT as demonstrated in Equation 2:

XR = Re ( f (k)) =

n
2 −1

∑
i=0

ti ⋅ cos( 2π
n

ki), XI = Im ( f (k)) =

n
2 −1

∑
i=0

ti ⋅ sin( 2π
n

ki).

(2)

Therefore, multi-channel EEG can be represented as 
XReal, XImag ∈ ℝC×T. These components capture the frequency 
characteristics of the EEG signal, focusing on signal variations and 
noise artifacts. They provide complementary insight into the spatial 
domain, which specializes in capturing structural and anatomical 
details, as well as integrity information. The frequency-domain 
analysis of EEG can employ a rich feature set for further processing. 
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FIGURE 4
The schematic diagram of the proposed framework. Illustration of the proposed CBNC mechanism, including the real component and the imaginary 
component. The complex-valued brain networks are first encoded and then formulated into a correspondence matrix for reasoning in CAFF. The 
multi-component representations are embedded in CGC.

2.3 CBNC

With the frequency-domain real and imaginary components 
obtained in Section 2.2, the next step is to model their 
spatial–temporal relationships. To achieve this, the CBNC module 
applies multi-scale convolution to each component, generating 
corresponding complex-valued brain networks. To capture dynamic 
interactions across EEG channels from different components (2) for 
the construction of complex-valued brain networks GR and GI and to 
resolve feature problems caused by frequency transformation Wang 
et al. [17] in Figure 3, multi-scale real and imaginary convolution 
operators are introduced to process the complex-valued EEG as 
illustrated in Equation 3:

ψR
l = RConvl2(XReal) = [R

l
1,R

l
2,…,R

l
C+1−l] ,

ψI
l = IConvl2(XImag) = [I

l
1, I

l
2,…, I

l
C+1−l] , l ∈ [2,h] .

(3)

where RConvl2 and IConvl2 are two-dimensional convolution 
layers with a convolution kernel length of l ∈ [2,h]. The step length 
is 1; h is a hyperparameter to constrain the distance between two 
sample points, enabling the extraction of local information.

Then, the nonlinear activation function ReLU is used to deal 
with ψR

l  and ψI
l , which can be seen as Equation 4:

ΨR
l = ReLU(ψR

l ) = [S
l
1,S

l
2,…,S

l
C+1−l] ,

ΨI
l = ReLU(ψI

l) = [M
l
1,M

l
2,…,M

l
C+1−l] ,

(4)

where ReLU =max(0, ⋅), ΨR
l ,Ψ

I
l ∈ ℝ

1×C.
In this approach, the complex-valued brain networks can be 

obtained in the form of the feature matrices AR ∈ ℝC×C and AI ∈
ℝC×C by arranging the feature sequences along the diagonal parallel 
direction as:

AR =

[[[[[[[[[[[

[

0 S2
1 S3

1 … Sh
1 0 … 0

S2
1 0 S2

2 S3
2 0 Sh

2 ⋱ ⋮

S3
1 S2

2 0 S2
3 S3

3 ⋱ ⋱ 0
⋮ S3

2 S2
3 0 S2

4 S3
4 ⋱ Sh

m+1−h

Sh
1 ⋮ S3

3 S2
4 0 S2

5 ⋱ ⋮
0 Sh

2 ⋱ S3
4 S2

5 0 ⋱ S3
m−2

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ S2
m−1

0 … 0 Sh
m+1−h … S3

m−2 S2
m−1 0

]]]]]]]]]]]

]

AI =

[[[[[[[[[[[

[

0 M2
1 M3

1 … Mh
1 0 … 0

M2
1 0 M2

2 M3
2 0 Mh

2 ⋱ ⋮

M3
1 M2

2 0 M2
3 M3

3 ⋱ ⋱ 0
⋮ M3

2 M2
3 0 M2

4 M3
4 ⋱ Mh

m+1−h

Mh
1 ⋮ M3

3 M2
4 0 M2

5 ⋱ ⋮
0 Mh

2 ⋱ M3
4 M2

5 0 ⋱ M3
m−2

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ M2
m−1

0 … 0 Mh
m+1−h … M3

m−2 M2
m−1 0

]]]]]]]]]]]

]

.

The CBNC module involves the dynamic, complex-valued 
construction of the brain network in the frequency domain. By 
extracting specific features that capture dynamic interactions across 
EEG channels from different components, it can flexibly explore 
certain interactions among multiple components of the complex-
valued EEG signal. 
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2.4 CAFF

The real-part and imaginary-part brain networks from CBNC 
contain complementary connectivity information. To exploit 
these synergies, the CAFF module encodes both networks and 
dynamically aligns their features for joint modeling. In this section, 
the dynamic graph mechanism is utilized to effectively integrate the 
diverse features learned by CBNC, as inspired by [28]. It regularizes 
latent representations by implicitly modeling cross-component 
semantic consistency. 

2.4.1 Brain Network Encoder
The complex-valued brain networks derived from 2.3 are 

heterogeneous, and simply embedding features together may lead 
to performance degradation. In this context, it is crucial to precisely 
parse the brain network of each component. Formally, an encoder 
operation ϒ is defined to learn representations by Equation 5:

hR = ϒMLP (AR) , hI = ϒMLP (AI) , h ∈ ℝC×H, (5)

where C represents the number of electrodes, and H denotes the 
hidden size of the encoder features. Meanwhile, simple methods 
such as a multi-layer perceptron (MLP) can be employed to embed 
a connectivity matrix. 

2.4.2 Correspondence Matrix
With the embedded hR and hI for different components, a soft 

correspondence matrix A is obtained by Equation 6:

A = Sym(W[hR‖hI] ⋅ [hR‖hI]TWT) , A ∈ ℝC×C, (6)

where W is a learnable projection matrix. Each row vector in A
represents a probability distribution over potential correspondences 
to corresponding ROIs. The matrix can be regarded as a measure of 
the goodness of matches between nodes in two components. Then, a 
Sinkhorn function is applied to normalize the matrix, which satisfies 
the doubly stochastic condition, where ∑C

j=1Âij = 1. 

2.4.3 Dynamic Graph
By obtaining the normalized correspondence matrix Â, the 

normalized correspondence matrix Â is formulated as the dynamic 
adjacency matrix. In addition, the representations can be projected 
from one component field into another (i.e., from real/imaginary 
representations to imaginary/real representations) by Equations 7, 8:

ĥR = ÂThI, ĥR ∈ ℝC×H. (7)

ĥI = ÂThR, ĥI ∈ ℝC×H. (8)

With the obtained embedded representations ĥR and ĥI, 
the dynamic features of complex-valued brain networks can 
be constructed by {ĥR,hR} and {ĥI,hI}, forming the translated 
representations of real-imaginary components. 

2.5 CGC

After feature alignment in CAFF, the real and imaginary 
component representations are further integrated through CGC, 

allowing for higher-order feature aggregation while preserving 
component-specific structural information. In this paper, a CGC 
module is proposed to perform a convolution on the multi-
component brain networks. To address the heterogeneous features 
between components, the CGC module applies convolutions to 
each component and aggregates the representations of every 
component separately. Then, spatial aggregation is performed on the 
graphs for message passing instead of spectral graph convolution. 
Given that the brain network is fully connected, graph spatial 
convolution, as well as spectral graph convolutions, can aggregate 
global information. In this approach, the graph spatial convolution 
is formulated as shown in Equation 9:

Z = σ(W ⋅ [HReal‖HImag] + b) , (9)

where Z ∈ ℝC×1 represents the fusion ratio of the two components. 
HReal = ‖{ĥ

R,hR}, HImag = ‖{ĥ
I,hI}, ‖ is a concatenation operation, σ

denotes a sigmoid activation function, W is a learnable matrix for 
improving node representations, and b represents the deviation.

Then, the fused features of the multi-component are defined as 
demonstrated in Equation 10:

H = Z⊙HReal + (1−Z) ⊙HImag. (10)

Then, the Graph Isomorphism Network (GIN) is introduced 
to accurately capture the deeper insights into the brain network 
structure and its responses to various stimuli. The operational 
mechanism is given by Equation 11:

H(k)i =MLP(k)((1+ ϵ)(k) ⋅H(k−1)i + ∑
j∈N (i)

H(k−1)j ), (11)

where ϵ(k) is a learnable parameter to control the importance of 
the ROI’s characteristics in the aggregation process, N (i) denotes a 
collection of neighbor nodes, H(k)i  represents the eigenvector of ROI 
i in layer k, and MLP indicates the multi-layer perceptron used for 
nonlinear transformation of aggregated features. 

2.6 Classifier design and loss function

Finally, the fused graph features from CGC are fed into a 
classification module, which generates the diagnostic decision. 
Multiple loss terms are combined to ensure both classification 
accuracy and structural/feature consistency. A classifier is designed 
to classify the generated brain networks. It aggregates through 
multi-component perceptrons, containing graphical representations 
of rich pathological information, and ultimately connects with 
the Softmax function to output the prediction probability of each 
category of diseases. This module is composed of a three-layer 
backpropagation neural network, two layers of ReLu activation 
function, and a Softmax output layer. Specifically, the Softmax input 
consists of four neurons that map the results to the probabilities of 
four disease categories. The Dropout strategy is employed to prevent 
the model from overfitting. 

2.6.1 Classification loss
The cross-entropy function Equation 12 is taken as the 

classification loss. In our study, the number of classes Q is 2.

LClassification = −
1
C

C

∑
i=1

Q

∑
q=1

piqlog(piq + ε) . (12)
 

Frontiers in Physics 06 frontiersin.org

https://doi.org/10.3389/fphy.2025.1665288
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Fan and Ban 10.3389/fphy.2025.1665288

2.6.2 Structural consistency loss
A structural consistency loss is designed to guarantee that the 

fused graph can maintain the topological characteristics of both 
the real part graph and the imaginary part graph in terms of 
structure. The fused graph is aligned with the real part graph and 
the imaginary component graph, respectively. This loss functions 
Equations 13, 14 use the Mean Squared Error (MSE) to measure the 
difference between the adjacency matrices:

LReal =
1

C2

C

∑
i=1

C

∑
j=1
(A(i,j)Real −A(i,j))

2
= 1

C2 ‖AReal −A‖2F, (13)

LImag =
1

C2

C

∑
i=1

C

∑
j=1
(A(i,j)Imag −A(i,j))

2
= 1

C2 ‖AImag −A‖2F, (14)

where ‖ ⋅ ‖F is Frobenius norm. Then, the structural consistency loss 
is obtained as LStructure = LReal +LImag. 

2.6.3 Feature consistency loss
To improve the alignment between the encoded features of the 

real part graph and the imaginary part graph, the cosine similarity 
loss is introduced to encourage the feature vectors of the two 
components to maintain consistency in direction as Equation 15:

LFeature = 1− 1
C

C

∑
i=1

H(i)Real ⋅H
(i)
Imag

‖H(i)Real‖2 ⋅ ‖H
(i)
Imag‖2
. (15)

Finally, the overall loss function of the proposed model 
is given by Equation 16:

LTotal = LClassification +LStructure +LFeature. (16)
 

3 Experiment

3.1 Datasets

Experiments are conducted on the public MCI 
(www.biosigdata.com) and collected CVA datasets, 
as listed in Table 1: 

• MCI: This dataset contains 61 participants aged 55 and above, 
with 32 NC and 29 MCI patients. All participants had received 
at least primary education. The EEG data were collected at a 
sampling rate of 256 Hz and a recording duration of 30 min.
• CVA: This dataset consists of 79 subjects aged 60 and above, 

including 30 NC and 49 patients with CVA. The data collection 
equipment is Nicolet v32, a 32-channel EEG system with a 
sampling rate of 500 Hz and a recording duration of 2 h.

3.2 Settings

The proposed method was implemented in Python with 
PyTorch. All experiments were conducted on a computer equipped 
with an Intel(R) Xeon(R) Platinum 8383C CPU @ 2.70 GHz and 
eight NVIDIA A800 80 GB GPUs. The cross-entropy loss function 
and the Adam optimizer were employed, with a learning rate of 

TABLE 1  Summary of MCI datasets.

Characteristic MCI NC P-value

Age (years) 65.7 + 4.9 63.8 + 4.3 0.3

MMSE (scores) 26.9 + 0.7 28.8 + 0.9 <0.001

NUCOG (scores) 81.5 + 2.4 92.5 + 3.1 <0.001

Education (years) 8.3 + 1.8 8.7 + 2.3 0.2

5e− 4. The batch size was set to 256. The training was conducted 
over 50 epochs, allowing the model to learn the underlying patterns 
in the data without overfitting.

Additionally, a grid search was employed in the experiments 
to identify the optimal hyperparameter combinations. Accuracy 
(ACC), precision (PRE), specificity (SPE), sensitivity (SEN), F1-
score (F1), characteristic curve (AUC), and average precision (AP) 
were used in the experiment. Specifically, AUC is defined as the 
area under the Receiver Operating Characteristic (ROC) curve 
and the coordinate axis, serving as a measure of classification 
performance. AP is defined as the area under the precision-
sensitivity curve, which assesses the classifier’s accuracy at different 
sensitivity levels. The calculation of the performance evaluation 
indicators is given by Equation 17:

ACC = TP+TN
TP+TN+ FP+ FN

,

PRE = TP
TP+ FP

,

SPE = TN
TN+ FP

,

SEN = TP
TP+ FN

,

F1 = 2 ⋅ PRE ⋅ SEN
PRE+ SEN

,

(17)

where TP means the number of true positives, TN means the 
number of true negatives, FP means the number of false positives, 
and FN means the number of false negatives, respectively. 

3.3 Baselines

To comprehensively evaluate the effectiveness of this method, it 
was compared with three representative baselines: the traditional 
graph neural network method (GCN, GAT), the traditional 
temporal modeling method (DLinear, SigNet, Mamba), and 
the brain network modeling method (LGGNet, ACTNet, XG-
GNN). All models were compared using the same dataset and 
evaluation metrics. 

• GCN: It integrates node features and graph structures through 
localized neighborhood aggregation.
• GAT: It uses attention coefficients to dynamically aggregate 

features from neighboring nodes, enhancing node-level 
representation learning.
• DLinear: A model that can analyze time series data more 

effectively.
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FIGURE 5
Sensitivity of λ1 and λ2. (a) NC vs. MCI; (b) NC vs. CVA.

• SigNet: A novel deep learning framework that uses a signal-to-
matrix operator combined with a CNN architecture.
• Mamba: A Linear-time sequence model based on a selective 

state space to deal with sequential tasks.
• LGGNet: An EEG signal decoding method with 

neuroscientifically-inspired hierarchical modeling.
• ACTNet: A domain-specific deep learning model with 

interpretable and explainable features, designed with multi-
head self-attention and a temporal convolutional network.
• XG-GNN: A brain disease detection model targeting the 

explainability and generalizability of graph neural networks.

3.4 Analysis of parameter sensitivity

To evaluate the model’s sensitivity to the weights of different 
loss terms, parameter sensitivity experiments were conducted on the 
structural consistency loss coefficient λ1 and the feature alignment 
loss coefficient λ2. Specifically, while keeping other parameters 
unchanged, λ1 and λ2 were adjusted respectively from 0.1 to 1.0 at 
a step size of 0.1, and the changing trend of the final classification 
performance was observed.

Figure 5 demonstrates that the model exhibits minimal 
performance fluctuations under different λ1 and λ2 values, with its 
performance remaining at a relatively high level. This suggests that 
the method has strong robustness to these two hyperparameters and 
that the model is insensitive to them. Such insensitivity reflects the 
stable contribution of the two modules to the overall performance.

Specifically, λ1 (Figure 5a) controls the structural consistency 
loss term, i.e., the difference of the adjacency matrix between the 
fusion graph and the real part/imaginary part graph. Given that the 
fusion mechanism inherently possesses a certain ability to maintain 
the structure, this loss acts as a “soft constraint” within a certain 
range. Consequently, the adjustment of the model effect is smooth 
and does not significantly disrupt the feature learning process.

Meanwhile, λ2 (Figure 5b) is employed to balance the feature 
alignment loss. By maximizing the cosine similarity between the 
fused features, it ensures that the directions of the two modes are 
consistent in the fusion space. This loss is normalized and does not 
significantly impact the overall optimization objective, exerting a 
relatively mild effect on performance.

In the proposed DMGP module, the hyperparameter h controls 
the maximum receptive field of the local learnable frequency 
convolution operators, thereby constraining the distance between 
two sample points that can be used to extract local information. 
To explore its impact on model performance, we vary h from 
2 to 19 and record the classification accuracies on both the 
MCI and SD datasets. The results (Figure 6) demonstrate that the 
performance exhibits a non-monotonic trend as h increases. For 
small values of h, the receptive field is too limited, potentially 
resulting in insufficient modeling of long-range dependencies 
within the complex-valued graph; As h increases, the accuracy 
improves and reaches its peak, indicating an optimal balance 
between local feature extraction and global context modeling. 
However, excessively large values of h may incorporate irrelevant 
long-range correlations and introduce noise, leading to a gradual 
performance degradation. These findings confirm that h is a critical 
hyperparameter for the DMGP module, and appropriate selection is 
essential for maximizing classification accuracy.

In conclusion, the variation of these two parameters 
within the specified range does not result in significant 
performance degradation, suggesting that the model exhibits good 
hyperparameter robustness and can achieve stable performance in 
practical applications without requiring precise tuning.

4 Comparison with state-of-the-art 
methods

To comprehensively validate the effectiveness of our proposed 
framework, it is compared with eight representative baselines across 
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FIGURE 6
Sensitivity analysis of the DMGP hyperparameter on classification 
accuracy for MCI and SD datasets.

three categories: general graph neural network models, temporal 
modeling methods, and specialized brain network modeling 
methods. All methods are evaluated under identical settings using 
the same EEG datasets and performance metrics for fairness, and 
the experimental results are presented in Table 2 and Figure 7.

4.1 Comparison with traditional graph 
neural network methods

Our proposed framework is first compared with GCN and 
GAT, which are standard graph neural network models that operate 
on fixed adjacency structures. Though GCN performs localized 
neighborhood aggregation and GAT improves it by using learnable 
attention weights, both models rely heavily on manually defined 
or static adjacency matrices. This limitation hinders their ability 
to capture the dynamic and multiscale dependencies inherent 
in EEG signals. In contrast, our model adaptively constructs 
graphs from raw signals through multi-scale 2D convolutions, 
facilitating the learning of more biologically meaningful spatial 
interactions. Consequently, our method surpasses GCN and GAT 
in all evaluation metrics, demonstrating the advantage of data-
driven and modality-specific graph construction over generic 
GNN designs. 

4.2 Comparison with temporal modeling 
methods

Our model is further evaluated against DLinear, SigNet, and 
Mamba, which are representative temporal modeling strategies. 
DLinear and Mamba can capture sequence patterns with linear-time 
efficiency or state-space modeling, while SigNet performs well in 
CNN-based learning from signal-transformed matrices. Although 
these methods can effectively process temporal information, they fail 
to leverage the rich structural relationships between EEG channels, 
which are crucial for interpreting brain signals. In contrast, our 

model combines temporal and spatial information through a dual-
branch architecture and dynamic graph learning, enabling the 
extraction of both time-aware and topology-aware representations. 
Our method consistently outperforms these baselines, indicating 
that incorporating spatial graph structures significantly enhances 
the discriminative capacity of temporal EEG features. 

4.3 Comparison with brain network 
modeling methods

Finally, our model is compared with advanced brain network 
analysis methods, including LGGNet, ACTNet, and XG-GNN. 
These methods incorporate neuroscientific priors or attention 
mechanisms to model brain connectivity and dynamics. Although 
they yield promising results, most of them focus on a single 
modality (either the time or frequency domain) or rely on 
fixed graph structures, so they have limited ability to capture 
complex multi-component interactions. Our method addresses 
these limitations by: (1) simultaneously modeling both real and 
imaginary components in the frequency domain, (2) introducing 
a dynamic multi-component graph module to align and fuse 
cross-modal features, and (3) using gated attention-based fusion 
to preserve both structural accuracy and semantic consistency. 
Attributed to these design innovations, our model can more 
effectively leverage the complementary nature of EEG modalities. 
As indicated by the results, our method consistently surpasses these 
brain network models, demonstrating its superior capability in 
extracting informative and robust brain graph representations. 

5 Ablation study

To systematically verify the effectiveness of each component in 
our model, ablation studies are conducted by gradually removing 
or replacing specific modules. Our model is composed of three key 
parts: (1) the multi-scale convolutional brain graph construction 
module, (2) the dynamic multimodal graph model, and (3) the gated 
graph convolution fusion module. The real and imaginary parts are 
retained in all variants, with ablation performed only on the core 
modules. Experimental results are listed in Table 3.

5.1 Effect of CBNC

First, the proposed multi-scale convolution-based brain graph 
construction is replaced with a simpler correlation-based method 
(e.g., Pearson correlation), applied separately on the real and 
imaginary parts. As illustrated in Table 4, performance significantly 
declines when this component is replaced, underscoring the 
importance of accurate graph construction. Without this 
module, the resulting graphs fail to capture rich spatiotemporal 
dependencies, leading to a diminished representational capacity. 
This validates the advantage of designing domain-aware graph 
topologies for EEG signals, particularly in the context of dual 
real-imaginary frequency decomposition.
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TABLE 2  Comparison of the performance of state-of-the-art methods (%).

Model MCI CIS

ACC(%) F1(%) AUC(%) ACC(%) F1(%) AUC(%)

GCN 81.68 70.05 80.46 94.01 96.48 94.88

GAT 78.57 68.06 78.81 99.96 99.98 99.99

SigNet 79.78 61.67 73.02 99.88 99.93 99.98

Dlinear 61.29 51.79 62.27 99.98 99.56 99.98

ACTNet 64.80 50.34 69.10 99.35 99.63 99.98

LGGNet 70.87 48.15 63.47 99.12 99.32 99.91

Mamba 61.12 56.96 76.98 97.35 98.45 99.99

XG-GNN 78.73 68.12 78.83 99.74 99.85 99.99

Our method 91.59 91.73 95.16 99.99 99.96 99.99

FIGURE 7
Comparison of our proposed framework with baseline models on different datasets. The ROC curve (left/top) demonstrates strong overall 
discriminative ability (closeness to the top-left corner). In contrast, the Precision-Recall (PR) curve (right/bottom) further confirms the excellent 
performance of our method in identifying the positive class, particularly under class imbalance (closeness to the top-right corner). (a) The area under 
the ROC curves in MCI. (b) The area under the PS curves in MCI. (c) The area under the ROC curves in Stroke. (d) The area under the PS curves in Stroke.
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TABLE 3  Ablation study results (%).

Model 
variant

MCI SD

ACC F1 AUC ACC F1 AUC

w/o Multimodal 86.27 88.50 93.01 99.16 99.10 99.81

w/o Fusion 92.50 94.10 97.18 96.39 95.80 98.51

w/o Graph 95.22 96.80 99.02 99.47 98.40 99.58

Our method 91.59 91.73 95.16 99.99 99.96 99.99

5.2 Effect of CAFF

The second ablation removes the dynamic multimodal 
graph model, and instead, the two graphs (real and imaginary) 
are directly fed into parallel GIN encoders, followed by naive 
feature averaging. Without the dynamic fusion mechanism, the 
model fails to weigh the contribution of different modalities 
adaptively. Experimental results indicate a performance decline, 
suggesting that the dynamic multimodal graph model plays 
a crucial role in learning complementary and task-relevant 
features from dual-graph modalities. This module dynamically 
models the interaction between real and imaginary graphs, 
facilitating better exploitation of cross-modal cues and enhanced
generalization. 

5.3 Effect of CGC

Finally, the gated graph convolutional fusion is replaced 
with a static concatenation followed by a standard GIN. The 
original gating mechanism selectively emphasizes informative fused 
features, allowing the model to suppress noise and redundant 
information during the final representation learning phase. The 
performance degradation observed from this ablation confirms that 
the gate mechanism facilitates discriminative learning by adaptively 
highlighting relevant structural cues. This is particularly important 
in EEG analysis, where signal quality changes across electrodes 
and sessions. The attention-gated fusion helps to capture consistent 
patterns from noisy graph inputs. 

6 Discussion

6.1 Multi-components of frequency EEG

To investigate the influence of different components of 
frequency EEG on detection accuracy, comparative experiments 
were conducted on the time sequence EEG, real component, 
imaginary component, real-imaginary components, and 
magnitude-phase components of the frequency EEG. It can be 
observed from Table 4 that the multi-component yields the best 
results, which aligns with the theoretical analysis.

Initially, the time-frequency dual construction strategy is 
removed, and only the raw time-domain signals are used for 

graph construction. This change significantly reduces performance, 
indicating that time-domain representations alone are inadequate 
for capturing the complex oscillatory dynamics inherent in EEG 
signals. The frequency domain provides richer physiological 
insights, particularly concerning connectivity patterns between 
electrodes. To further validate the importance of our dual-branch 
frequency-domain design, the dual construction mechanism is 
removed, and only the real or imaginary part is used to construct 
a single brain graph. This alternation also leads to a marked 
performance degradation, confirming that both the real and 
imaginary components provide complementary insights into neural 
oscillations in the frequency domain. The real part primarily reflects 
synchronous coupling, while the imaginary part captures phase-
lagged interactions; their combination enriches the representation 
capacity of the graph and contributes to more accurate and robust 
brain network modeling. 

6.2 Visualization of spatial-frequency 
feature evolution

The MSC and other dynamic structure construction methods 
are visualized in Figure 8, highlighting the effectiveness of 
MSC in capturing dynamic feature evolution and high-order 
interactions. Unlike variation graphs and other complex networks, 
which only capture local features and inadequately represent 
connection strength, MSC can represent higher-order relationships 
without distance constraints. Moreover, MSC dynamically updates 
connection relationships and their strengths, assigning greater 
weights to connections between adjacent features, thus addressing 
the limitations inherent in static networks.

First, patients with cerebrovascular disease (SD) exhibited a 
significant enhancement of delta-band power in the frontal region 
(p < 0.05; 8 out of 19 electrodes reached statistical significance), 
reflecting damage to cortico-subcortical neural circuits closely 
associated with motor dysfunction. Approximately %78% of these 
patients experienced hemiplegia, and frontal delta activity was 
related to motor impairment scores, which decreased notably 
after rehabilitation, indicating its utility for treatment monitoring. 
Second, the MCI group showed abnormal activity in the theta, 
alpha, and beta frequency bands localized in the temporal lobe (p <
0.05; 8 out of 19 electrodes significant), indicating a disruption 
in the hippocampo-cortical connectivity. These abnormalities 
were associated with memory decline and could predict the risk 
of progression to Alzheimer’s disease. Mechanistically, elevated 
frontal delta activity in SD patients corresponds to typical neural 
rhythm disturbances in vascular dementia, while temporal lobe 
abnormalities in MCI patients suggest dysfunction of the cholinergic 
system, which is consistent with early Alzheimer’s pathology. 
Overall, these findings indicate that topographic maps not only 
provide effective spatial-frequency biomarkers for diagnosis 
but also possess significant clinical value for prognosis and 
treatment monitoring, elevating them from mere descriptions of 
neural electrical activity to a multimodal biomarker system with 
clinical utility. 
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TABLE 4  Comparison of multi-components on frequency EEG (%).

Multi-components MCI SD

ACC F1 AUC ACC F1 AUC

Time sequence 85.41 87.51 83.86 95.25 96.35 99.41

Real component 90.66 91.13 91.16 96.82 97.20 99.17

Imaginary component 89.77 87.94 94.51 97.77 99.00 99.53

Multi-components 91.59 91.73 95.16 99.99 99.96 99.99

FIGURE 8
Visualization of the clinical interpretation of disease-specific EEG topographic patterns.

6.3 Discriminative biomarker identification

To evaluate the neurophysiological relevance of our model 
in disease diagnosis, a top-5 region comparison was conducted 
between the raw EEG and model output using independent 
t-tests, as illustrated in Figure 9 (a) and (c). Meanwhile, the 
connections between the five key brain regions and other regions 
are depicted in Figure 9 (b) and (d). In the visualization, the real 
component connectivity (the left panel) highlights synchronous, 
near-zero-phase coupling, indicating direct co-activation between 
regions. For example, in MCI patients, increased real-part 
connectivity involving Pz suggests altered attentional and memory 
integration pathways. The imaginary component connectivity (the 
right panel) emphasizes phase-lagged interactions, which are less 

affected by volume conduction and represent more reliable effective 
connectivity. In MCI, elevated imaginary-part coupling between 
T4 and parietal regions reflects abnormal delayed information 
transfer associated with declines in language and memory. By 
comparing these maps with the fused network output, we can 
observe that the fusion selectively preserves physiologically 
meaningful patterns from both components. In the stroke dataset, 
this is evident as significant changes in real-part connectivity 
in motor cortex regions (C3) and corresponding imaginary-
part alterations in frontal control areas (Fz, F4), aligning with 
known post-stroke neural reorganization. These visual examples 
demonstrate that our approach does not treat complex-valued 
features as abstract mathematical constructs; rather, it utilizes their 
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FIGURE 9
In (a,c), the left panel displays the topography derived from the raw EEG signals, while the right panel shows the output of the trained model on the 
MCI and SD datasets. In (b,d), the brain networks of the original inputs and those trained by the model are plotted.

TABLE 5  Scores for each channel in MCI and SD datasets (%).

Dataset Fp1 Fp2 F3 F4 F7 F8 Fz C3 C4 Cz T3 T4 T5 T6 P3 P4 Pz O1 O2

MCI 78.2 65.1 72.5 99.6 73.8 79.2 51.3 64.4 77.8 55.6 73.4 92.1 90.2 93.4 58.6 69.9 95.2 72.7 61.2

SD 95.7 65.3 72.4 98.9 68.2 63.8 96.3 93.1 75.6 97.5 66.7 79.4 85.2 76.8 71.9 69.5 88.7 62.1 64.9

distinct physiological interpretations to extract disease-specific 
neurobiomarkers.

6.4 Interpretability analysis

To enhance the interpretability of the model, we calculated 
and presented the importance scores of each electrode in the two 
datasets (MCI and SD) (see Table 5). This score reflects the weight 
distribution of the model’s contribution to different brain region 
nodes, revealing the differences in the impact of key brain regions 
on disease classification. For example, electrodes in the frontal lobe 
(such as F4, Fz), temporal lobe (such as T4, T5, T6), and central 
region (such as C3, Cz) all showed high importance in both SD and 
MCI, which is consistent with the relevant neuro-pathological 
mechanisms. This analysis not only supports the decision basis of the 
model but also provides valuable spatial feature clues for the clinical 
mechanism research of brain diseases.

6.5 Generalization and dataset limitations

Although the proposed framework demonstrates excellent 
performance on both the MCI and stroke datasets, we recognize 
that the dataset sizes are relatively limited (61 subjects for MCI, 
79 subjects for stroke). This limitation is common in EEG-
based neurodegenerative and cerebrovascular disease studies due 

to the high costs and complexities of clinical data acquisition, 
as well as the necessity for expert labeling and long recording 
sessions. To mitigate potential overfitting and enhance the model’s 
generalization capability, several strategies were employed: (1) 
implementing regularization and dropout in all trainable layers 
to suppress overfitting; (2) conducting five-fold cross-validation in 
all experiments to ensure that the reported results are not biased 
toward a specific data aligned; (3) performing parameter sensitivity 
analysis (Section 3.4) and ablation studies (Section 5), which 
demonstrated stable performance across different hyperparameters 
and model variants; and (4) making model design choices that 
incorporate neurophysiologically meaningful priors (real/imaginary 
connectivity) to learn disease-relevant patterns rather than purely 
data-driven correlations. Despite the small sample sizes, the 
proposed method consistently outperformed state-of-the-art 
baselines on both datasets with low variance across folds, indicating 
good robustness. In future work, we plan to validate the framework 
on larger and multi-center EEG datasets and explore transfer 
learning strategies to further improve generalization across cohorts 
and acquisition conditions. 

7 Conclusion

In this paper, we propose a novel complex-valued brain 
network framework for diagnosing neurodegenerative diseases 
by leveraging component-aware feature fusion. The framework
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effectively incorporates multi-component (real and imaginary) 
information derived from EEG signals into a deep learning 
architecture, thereby enhancing the characterization of brain 
dynamics in the frequency domain. Specifically, a Complex-valued 
Brain Network Construction (CBNC) module was introduced 
to dynamically capture complex interactions through multi-scale 
convolutions while generating flexible adjacency matrices for 
comprehensive network modeling. In addition, a Component-
Aware Feature Fusion (CAFF) mechanism was developed to 
integrate multi-modal features by translating inter-component 
correspondence into a shared latent space. This design implicitly 
regularizes latent representations with cross-component semantic 
context, further improving discriminative capacity. Extensive 
experimental results validate the effectiveness and generalization 
ability of the proposed approach, demonstrating its potential as 
a powerful tool for EEG-based diagnosis of neurodegenerative
diseases.
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