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High-precision shape
reconstruction for optical fiber
sensors based on cubic spline
Interpolation and tangent angle
recursion

Yixiao Liu and Haining Ji*

School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan, China

Accurate reconstruction of optical fiber curves has important applications in
fields like medicine, aerospace, and infrastructure monitoring. However, it faces
challenges such as insufficient reconstruction accuracy. In this paper, a novel
method for optical fiber plane curve reconstruction, based on cubic spline
interpolation and the tangent angle recursion algorithm, is proposed. First, the
optical fiber sensor demodulation system is utilized to acquire strain information
on the surface of the flexible substrate. Then, based on the approximate
relationship between wavelength and curvature, discrete curvature values are
calculated from experimental data. Next, the cubic spline interpolation is
applied to convert the discrete curvature into a continuous profile, ensuring
the smoothness of the curve. Finally, the tangent-angle recursive algorithm is
employed to derive the coordinates of arbitrary points on the fiber deformation
curve, thereby realizing precise reconstruction of the optical fiber curve.
Additionally, the Frenet-Serret framework is introduced, which can be employed
for 3D reconstruction, and a sensitivity analysis of the key parameters is
conducted, exploring the impact of the number of sampling and interpolation
points on the reconstruction accuracy. The reconstruction results show that the
curves have a high degree of smoothness and physical realism. With 50 sampling
points and no interpolation, the mean absolute error (MAE) reaches 0.000892 m,
approximately 72% lower than with 20 sampling points and no interpolation.
The root mean square error (RMSE) is 0.001127 m, about 75% lower than with
20 sampling points and no interpolation, thereby verifying the feasibility of the
method. This study offers theoretical foundations and experimental validation
for the optimization of optical fiber shape sensing technology, thus holding
significant importance for enhancing measurement accuracy and advancing
engineering applications in related domains.

optical fiber sensor, reconstruction, cubic spline interpolation, tangentangle recursion
algorithm, high-precision
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1 Introduction

Optical fiber sensing is an advanced sensing technology
developed in the 1970s along with optical fiber and optical
communication technologies [1-3]. It uses light waves as the sensing
signal and optical fiber as the transmission medium to detect signals
from the external environment. The basic principle is that changes
in external environmental parameters, such as temperature and
pressure, give rise to corresponding variations in the optical fiber’s
light wave parameters (e.g., wavelength, phase, intensity). In other
words, external signals modulate the optical signals. The structure of
the optical fiber is shown in Figure la and the propagation of light
within the fiber is illustrated in Figure 1b. In recent years, with the
continuous development of optical fiber sensing technology, optical
fibers have demonstrated significant potential in the field of shape
measurement. In the medical field [4, 5], optical fiber shape sensing
has been successfully applied to real-time monitoring of endoscopic
catheters and robotic surgical instruments, offering sub-millimeter
spatial resolution and accurate 3D morphology reconstruction [6,
7]. This significantly enhances the safety and accuracy of minimally
invasive surgeries. In the aerospace sector [8-10], optical fiber shape
sensing systems are employed to monitor the deformation of critical
structures such as wings and fuselages, providing crucial support for
flight safety. In the field of infrastructure [11-13], this technology
enables distributed shape monitoring of structures such as pipelines,
bridges, tunnels, thereby helping to prevent structural failures and
accidents.

With the gradual maturity of optical fiber technology, it
is necessary to study its shape sensing algorithms. Among the
many optical fiber reconstruction methods, researchers primarily
employ the strain-geometry mapping principle to achieve shape
reconstruction through various mathematical models. For example,
Pauer et al [14] consider the measurement unit system as a sensor
network, where data collected by sensors randomly distributed over
the fiber are processed by specific algorithms, ultimately enabling
the reconstruction of the spatial shape of the fiber. Khan et al.
[15] transformed data from FBG sensors into strain measurements,
which were subsequently used to calculate the curvature and torsion
of the fiber. By integrating the Frenet-Serret equations with the
calculated curvature and torsion, they reconstructed the shape of
the instrument. Lv et al. [16] proposed a 3D shape reconstruction
method for multicore optical fibers based on curvature and angle
correction. This method improves the reconstruction algorithm
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FIGURE 1
(a) Fiber structure diagram; (b) Transmission of light waves in optical fibers.
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for flexible, 3D-deformed multicore optical fiber by introducing
directional angle and curvature correction coefficients. Souza et al.
[17] integrated five distributed FBG sensors along a pinus wood
beam and a nylon 6.0 beam. The sensors estimated the elastic
line describing the deflection over the entire length of the beam
by replicating load application tests. Ferreira etal. [18] evaluated
the curvature of a specific cross-section by installing a fiber Bragg
grating sensor on the beam, then reconstructed the deformation
profile by integration.

However, in the field of optical fiber curve reconstruction,
classical algorithms still face several limitations. Cubic spline
interpolation can effectively ensure smooth curvature distribution,
but it is sensitive to experimental noise and prone to error
propagation. The tangent angle recursion algorithm can reconstruct
a plane curve from curvature information, yet it is susceptible
to error accumulation over long reconstruction distances (see
Table 1). In summary, although these methods have been verified
in theory and practice, optimizing their combination and reducing
errors in practical implementation remain critical challenges. To
address these issues, this paper proposes a hybrid reconstruction
algorithm integrating cubic spline interpolation and tangent angle
recursion algorithm. Specifically, a strain-wavelength-curvature
closed-loop model is constructed using MATLAB. This model
provides an improved solution for optical fiber shape sensing by
establishing a systematic mapping from strain measurements to
geometric curvature through wavelength-dependent relationships
(see Figure 2).

2 Curve reconstruction methods
2.1 Calculation of curves

In order to facilitate the wavelength measurement, the
coordinates of the initial point are set as the origin, with the
initial horizontal fiber direction as the x-axis, and the vertical
direction as the y-axis. After force is applied in the plane, the
tangent of the fiber at the initial position forms a 45° angle
with the horizontal direction. FBG sensors were used for the
measurements, with a spacing of 0.6 m between them (see Figure 3).
The wavelength of the signal at each sensor position was first
measured when the fiber is horizontal, and then measured
again after the fiber is subjected to an external force. The fiber

Optical fiber

Incoming Outgoing
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TABLE 1 Comparison of different fiber shape reconstruction methods.

Method Characteristics

CUBIC spline interpolation Discrete curvature points are fitted to

continuous curvature curves, ensuring

the continuity of the function as well as
its first and second derivatives

10.3389/fphy.2025.1665822

Advantages Limitations

These curves are smooth, have a simple This method is sensitive to
mathematical form, and are suitable for experimental noise, potentially
data with low noise amplifying errors, and cumulative
errors over long distances remain

unavoidable

Tangent angle recursion algorithm Based on curvature information, the
tangent angle and coordinates are
recursively computed to reconstruct a

two-dimensional plane curve

The method involves simple
calculations, is easy to implement, and

Long-distance recursion is prone to
error accumulation and is not suitable
is suitable for low-dimensional for three-dimensional scenarios

scenarios
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FIGURE 2

Flowchart of optical fiber sensor curvature reconstruction and error analysis methodology.
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FIGURE 3
Schematic diagram of the experimental setup used for measurement.

Bragg grating (FBG) sensors employed in this study had a
grating length of 10 mm, providing sufficient resolution for
detecting wavelength shifts while ensuring stable reflection
characteristics.
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In this setup, the optical fiber is attached to a flexible
polycarbonate beam serving as the elastic substrate, while
mechanical loading is applied through a bending device with
adjustable weights. When the loading device induces bending in
the substrate, the FBG region undergoes stretching or compression
along with the fiber, thereby enabling the detection of local axial
strain at that specific location.

The optical fiber sensor demodulation system extracts
strain  information, which is then
curvature. Given the
curvature and strain, the relationship can be expressed as
Equation 1 [19]:

used to indirectly

determine the relationship between

1

where i denotes the distance between each test point and the neutral
axis, and k represents curvature. Based on the relationship between
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TABLE 2 Wavelength (hm) measurement data.

10.3389/fphy.2025.1665822

Measuring point Initial state 1 Test 1 ‘ Initial state 2 Test 2
FBGI1 1,529 1,529.808 1,540 1,541.095
FBG2 1,529 1,529.807 1,540 1,541.092
FBG3 1,529 1,529.813 1,540 1,541.090
FBG4 1,529 1,529.812 1,540 1,541.093
FBG5 1,529 1,529.814 1,540 1,541.094
FBG6 1,529 1,529.809 1,540 1,541.091

the central wavelength shift and the strain [19], the curvature can be
expressed approximately as follows:

)

k= T 2

where A, is the wavelength measured in the initial state of the
horizontal fiber. A is the wavelength measured after the fiber is
subjected to an external force. ¢ is a constant (4,200 m™) that
represents a scale factor obtained via experimental calibration. In
this experiment, the wavelength values before and after loading were
measured for two different initial states, and the results are presented
in Table 2. The wavelength data in Table 2 were obtained using
a Yokogawa AQ6370D spectrum analyzer, which has a resolution
bandwidth of 0.02 nm.

2.2 Cubic spline interpolation

Cubic spline interpolation [20-22] is a piecewise interpolation
method. It divides the interpolation interval into subintervals and
generates a polynomial of degree at most three for each subinterval.
These polynomials are constructed to satisfy continuity of the
function itself as well as its first and second derivatives, ensuring
smoothness and continuity at every point.

Splitting the fiber into n segments on average, i.e., there exist
n+ 1 splitting points satisfying S; < S, < ... <S§,,,, where §; is the
distance of a point on the fiber from the starting point, then the
curvature satisfies the functional relationship given in Equation
3 with the length of the fiber on the corresponding interval
(S8 ], ((=1,2,...,n):

k(S)=a;+b;x(S=8)+¢;x(S=8,)* +d;x(S-S;)  (3)

where: a;, b, c;d; are 4 coefficients to be determined. The curve
satisfies the following relationship at the i th split point:

ki(S;) = Ci
ki(si+1) =Cin

ki’ (Si1) = kit (Si1)
k" (Si1) = kit (Sis1)

That is, the curvature satisfies the interpolating continuity
condition, as well as the continuity of the first and second derivatives.

(4)
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This ensures that the fitted curvature curve is smooth. Equation 4,
together with the boundary constraints at the beginning and end of
the curve, can be used to determine the four coefficients. Here the
natural boundary conditions are used as Equation 5:

K"(0)=0

(5)
K" (Stotul) =0

2.3 Tangent angle recursion algorithm

As the experiments are conducted on the surface of a flexible
substrate for monitoring, this study focuses on the deformation of
the optical fiber caused by a force applied in a single plane, without
considering torsional changes of the fiber in three-dimensional
space. It is suitable for low-dimensional application scenarios, such
as flexible substrate surface monitoring and simplified preliminary
validation, where torsional effects are minimal.

Based on the derived curvature and the initial condition that the
tangent line at the initial position of the fiber forms a 45 ° angle
with the horizontal after planar stress is applied, the tangent angle
recursion algorithm [23-25] is employed to obtain the coordinates
of any point on the fiber deformation curve, thereby enabling the
reconstruction of the curve.

For curves, the arc between two points on a curve can be
approximated as a segment of a microcircular arc, provided the
points are sufficiently close together. Let the curvature of the curve
be
k, and k,, ,, respectively. The corresponding coordinates of these

segment between the starting point O, and the end pointO,,,,
points are (x,,y,) and (x,,1,»,,, ) respectively. f, and 8, ,, are the
angles between the tangent lines and the x-direction of the two
places O, and O, , respectively. The angle of the center of the circle
corresponding to the arc can be expressed as Equation 6:

A‘xn =ﬁn+1 _Bn (6)

The chord length [, of an arc can be expressed as Equation 7:

I Z2si (Aa">/k P <Aocn> Aa, (k. £0)
n = 4 S T p=481nC T 'k—n, n (7)

I, =As,(k,=0)
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where k, is the curvature corresponding to the arc. The
coordinate increment(Ax,,Ay,) is calculated from the chord

length using Equation 8:
Ax=1,- cos(a, — Aa,/2) @)
Ay=1,-sin(a, — Aa,/2)

From the recurrence formula, the new coordinates can be
expressed as Equation 9:

Xpy1 = X, + AX

)
Ynrt =Yt By
According to the definition of curvature from Equation 10:
B(s) = Jk(s)ds (10)

2.4 3D curve reconstruction and torsion
compensation

The Frenet-Serret formulas constitute a system of differential
equations that characterize the position and orientation of a curve in
three-dimensional space [26]. These equations describe the curve’s
geometry in terms of its curvature and torsion. At any point on a
curve in three-dimensional space, the Frenet-Serret formulas use the
tangent, normal, and binormal vectors to define a local orthonormal
coordinate system moving along the curve. The translation of this
coordinate system is described by Equation 11:

Pin = [~(1-cos(6,))/k; 0 Sin(ei)/ki]T (11)

The new coordinate system is subsequently rotated around the
axis 0; and Ag,, ,, resulting in two distinct rotation matrices as given
in Equations 12, 13:

cos(6) 0 -—sin(6,) O
N o 1 0 0
T = (12)
" |sin(6;) 0 cos(6;) O
0 0 0 1
cos(Ap;,;) —sin(Ag,;) 0 0
sin (Ag, cos(Ag; 0 0
T?q)wl _ ( (p1+1) ( (p1+1) (13)
! 0 0 1 0
0 0 0 1

Consequently, the constant transformation matrix enables the
continuous construction of a moving coordinate system. At each
step, the endpoint of each micro-segment is updated and connected,
yielding the fitted curve.

3 Reconstruction results and
discussion

3.1 Characteristics of reconstruction curve

After obtaining the wavelength information from each
sensing point, the corresponding discrete curvature values from
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two tests were calculated using Equation 2, and the results are
presented in Table 3.

Using the curvature values calculated at each sensing point
and applying cubic spline interpolation, the curvature distributions
of Test 1 and Test 2 along different arc lengths are shown
in Figures 4a,b. These results demonstrate that cubic spline
interpolation effectively fits the discrete curvature data measured by
the fiber, with curvature values along the central axis in both Tests
1 and 2 ranging from 2 to 3. This provides a smooth and physically
meaningful curvature distribution that serves as a reliable basis for
subsequent curve reconstruction. Additionally, Figure 4b exhibits
more pronounced curvature fluctuations compared to Figure 4a,
suggesting that the initial state or loading conditions have a
significant influence on the fiber’s deformation response.

In the initial state, the optical fiber is aligned along the horizontal
direction (x-axis), with the vertical direction as the y-axis. After
deformation under the force, the tangent at the fiber’s initial point
forms a 45° angle with the horizontal axis. Therefore, the initial
coordinate of the deformation curve is (xy,7,) = (0,0), and f3; = 45°.

By using the curvature values at the endpoints of each
arc segment obtained through cubic spline interpolation and
applying the tangent angle recursion algorithm, the coordinates
of any point on the fiber deformation curve can be derived.
This enables the reconstruction of the curve, as shown in
Figures 5a,b. It can be seen that the reconstructed curve exhibits
an approximately circular shape. In Figure 5a, because the
applied force is relatively small, the deformation pattern of
the optical fiber remains simple and symmetric, leading to a
clearly visible overlapping region. In contrast, the overlapping
region in Figure 5b is larger than that in Figure 5a, as the force
applied in Test 2 exceeds that in Test 1. Moreover, it can be
anticipated that with further increases in the applied force, a
spiral structure would emerge in the middle of the curve in
a three-dimensional scenario. The geometry of the curves is
governed by the curvature distribution. Regions of high curvature
indicate a greater change in direction over shorter distances,
suggesting stronger external forces in these regions. Conversely,
regions of low curvature are closer to straight lines, reflecting
either smaller external forces or the inherent properties of
the material.

The reconstructed curves are continuous and smooth, without
sudden changes in direction. The smooth curve generated by
cubic spline interpolation ensures the physical realism of the
phenomenon. In optical fiber curve reconstruction, smoothness
implies continuous force interactions and material responses along
the fiber, preventing abrupt transitions and helping to avoid
structural instabilities in practical applications.

3.2 Sensitivity analysis of the parameter ¢

obtained
experimentally, which establishes the relationship between the

The parameter ¢ is a calibration constant
measured wavelength shift and the corresponding curvature.
Although parameterc remains constant within a given experiment,
its value directly influences the magnitude of the calculated
of the

reconstruction method, a sensitivity analysis of parameterc is

curvature. Therefore, to evaluate the robustness
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TABLE 3 Curvature (m™) of each sensing point after two tests.

Sensor point FBG1 FBG2 ‘ FBG3 FBG4 FBG5 FBG6
Curvature of test 1 2.2195 2.2167 2.2332 2.2305 2.2360 2.2222
Curvature of test 2 2.9864 2.9782 29727 2.9809 2.9836 2.9755
@ 1 (b) 5988
247 ©  Measuring point ©  Measuring point
Cubic spline interpolation 2986 Cubic spline interpolation
22351
2984 ¢
w 2B L2982
g 2
= =
=1 = 298
202205t z
E E
“ “a078+
222¢
2976
2215 2974 ¢
- - : - - 2972 . : . . :
0 0.5 1 1.5 2 2.5 3 0 0.5 1 L5 2 25 3
Arc length s (m) Arc length s (m)
FIGURE 4
Curvature distribution: (a) Test 1; (b) Test 2.
(a) (®) —
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FIGURE 5
The reconfiguration curves: (a) Test 1; (b) Test 2.

conducted. Figure 6a illustrates that the Test 1 curve exhibits  that of Test 1, and similarly follows a linear increasing
a relatively mild slope, with the average curvature displaying  pattern. When the parameter ¢ lies within the range of
an approximately linear increase as the parameter ¢ increases.  [4000,4400], the curvature increases by approximately Ak = 0.3m™"
The sensitivity curve of Test 2 presents a lower slope than  indicating a low level of sensitivity.

>

Frontiers in Physics 06 frontiersin.org


https://doi.org/10.3389/fphy.2025.1665822
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Liu and Ji

10.3389/fphy.2025.1665822

(a) 535 32

—o—Test |
~——Test 2

315

o
L ed [} ed
[ S L

Mean curvature for test 1 (m")

=]
w

21 28
4000 4050 4100 4150 4200 4250 4300 4350 4400
C

FIGURE 6

Mean curvature for test 2 (m")

(a) Comparison of the effect of parameter ¢ on the mean curvature; (b) Heat maps for parameter c.
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Figure 6b distinctly reveals the influence of the parameter ¢
on the mean curvature response of the optical fiber sensor. The
horizontal axis represents the values of the parameterc (ranging
from 4,000 to 4,400 in increments of 100), while the vertical axis
distinguishes between the two initial conditions of Test 1 and Test 2.
Additionally, Test 2 exhibits a generally darker hue, indicating that
its mean curvature values are consistently higher than those of Test
1. This reflects the differing system responses under varying initial
wavelength conditions. Both bands exhibit a progressive shift from
lighter to darker tones with increasing parameter values. However,
the more pronounced gradient observed in Test 2 indicates that the
system with an initial wavelength of 1,540 nm exhibits enhanced
sensitivity to parameter variations. Notably, both color bands are
situated within the mid-tone region. This offers a valuable reference
for parameter calibration in practical engineering applications.
These results not only verify the critical role of the parameter c, but
also provide a visual framework for the optimization of the sensor
and the management of associated errors in subsequent stages.

3.3 Validation of the reconfiguration
method

Based on the plane curve equation y = x* +x(0 < x < 1), points
are sampled at appropriately spaced arc lengths. The curvature at
each sampled point is then calculated. These curvature values serve
as the foundation for reconstructing the plane curve via a tangent
angle recursion algorithm. The reconstructed curves are compared
with the originals to verify the feasibility of the method and to
analyze the sources of discrepancies.

3.3.1 Calculation of arc length and curvature
For a given curve y=x’+x(0<x<1), first calculate the
differential dy/dx as Equation 14:
dy

332 +1 (14)
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Then the differential ds of the arc length is [27] as Equation 15:

dy \? Y
ds = 1+<£€> =11+ (3x2+1)%dx

The arc length is then obtained by integration as Equation 16:

1
s= J V1+(3x2+1)%dx
0

The value of curvature as a function of arc length is determined

(15)

(16)

by the curvature formula given in Equation 17:

Il|

P

S . 17)
(1+y):

p_dy o _dy
Where y' = —, y" = ==.

Taking into account the range of x and computational
complexity, 20 sampling points are selected along equally spaced arc
lengths from the origin, covering the range x = 0 to x = 1.

3.3.2 Comparison of reconstruction curves

The reconstructed curves derived from the tangent angle
recursion algorithm are compared with the original curves for
sample sizes of 20 and 50 without interpolation, as shown in
Figures 7a,b respectively. The results show that increasing the
number of sampling points improves alignment accuracy: the
reconstructed curve in Figure 7b matches the original curve more
closely than in Figure 7a. With an initial sampling size of 20, cubic
spline interpolation is employed to increase the number of points to
50 and 100. The reconstructed curves generated via the tangent angle
recursion method are subsequently compared with the original
curves, as presented in Figures 8a,b respectively. When interpolated
to 50 and 100 points, the reconstructed curves closely align with the
original curves. Notably, the agreement is further improved at 100
interpolation points, demonstrating a more precise match.

frontiersin.org
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Comparison of original and reconstructed curves: (a) The sampling point is 20; (b) The sampling point is 50.
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FIGURE 8
Comparison of original and reconstructed curves: (a) Add to 50 interpolation points; (b) Add to 100 interpolation points.

3.3.3 Error analysis

A comprehensive analysis of the errors in the fiber
reconstruction process reveals three main contributing factors.
First, the sampling interval and the number of sampling points
significantly influence the accuracy of the reconstructed curve.
Second, with fixed sampling points, the interpolation of curvature
data affects the reconstruction results. Finally, the choice of
reconstruction algorithm also impacts the final curve. Alternative
fiber reconstruction algorithms are beyond the scope of this paper

and are not discussed in detail.

Therefore, the reconstruction error can be reduced by decreasing
the sampling interval to obtain more sampling points, optimizing

Frontiers in Physics

the interpolation method, and selecting an effective curve

reconstruction algorithm.

To quantitatively assess

the accuracy of

fiber shape

reconstruction, the reconstruction error is evaluated using the mean
absolute error (MAE) and the root mean square error (RMSE) [28,
29], defined as Equations 18, 19:

08

1 n
MAE = =3 ly; -]
i=1

RMSE =

n
1
_Z()’i_)’:)z
nia

(18)

(19)
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TABLE 4 MAE (m) and RMSE (m) of reconstructed curves.

Sampling and interpolation cases MAE ‘ RMSE
20 samples, no interpolation 0.003214 0.004532

50 samples, no interpolation 0.000892 0.001127

20 sampling points, interpolated to 50 points 0.002387 0.003215
20 sampling points, interpolated to 100 points 0.002035 0.002876

where y, represents the coordinates of the actual fiber curve,
y; represents the coordinates of the reconstructed curve, and n
denotes the number of coordinate points. The MAE and RMSE
are expressed in meters (m) and represent the discrepancies in
real-space coordinates.

The fiber deformation error is calculated by extracting
the coordinates of the original and reconstructed curves and
substituting these coordinates into the corresponding equations,
with the results presented in Table 4.

The results indicate that both MAE, and RMSE,
50 sampling points interpolation,
for 20 sampling points interpolated to 50 or 100 points,
than for 20 sampling points without interpolation. This
indicates that increasing the number of sampling points and

are

lower for without or

applying interpolation can effectively reduce the reconstruction
error. Furthermore, the relatively small MAE, and RMSE,
values across all four cases demonstrate that the tangent
angle recursive algorithm reconstruct the
optical fiber curves, thereby confirming its feasibility and
effectiveness.

can accurately

4 Conclusion

In this paper, planar curve reconstruction for optical fiber
sensors is addressed by integrating cubic spline interpolation
with a tangent angle recursion algorithm. Discrete curvature
is computed from fiber strain data based on an approximate
relationship between wavelength and curvature. The curvature
then interpolation,
the curve is accurately reconstructed via the tangent angle

is smoothed using cubic spline and
recursion method. Results demonstrate that the reconstructed
curves exhibit good smoothness and physical realism. The
MAE and RMSE values obtained under different parameter
settings validate the feasibility and reliability of the proposed
method. This study offers both theoretical and experimental
support for the advancement of optical fiber shape sensing

technologies, highlighting their significant potential in high-

precision applications such as medical instrumentation,
aerospace structural monitoring, and infrastructure health
assessment.
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