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High-precision shape 
reconstruction for optical fiber 
sensors based on cubic spline 
interpolation and tangent angle 
recursion

Yixiao Liu and  Haining Ji*

School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan, China

Accurate reconstruction of optical fiber curves has important applications in 
fields like medicine, aerospace, and infrastructure monitoring. However, it faces 
challenges such as insufficient reconstruction accuracy. In this paper, a novel 
method for optical fiber plane curve reconstruction, based on cubic spline 
interpolation and the tangent angle recursion algorithm, is proposed. First, the 
optical fiber sensor demodulation system is utilized to acquire strain information 
on the surface of the flexible substrate. Then, based on the approximate 
relationship between wavelength and curvature, discrete curvature values are 
calculated from experimental data. Next, the cubic spline interpolation is 
applied to convert the discrete curvature into a continuous profile, ensuring 
the smoothness of the curve. Finally, the tangent-angle recursive algorithm is 
employed to derive the coordinates of arbitrary points on the fiber deformation 
curve, thereby realizing precise reconstruction of the optical fiber curve. 
Additionally, the Frenet-Serret framework is introduced, which can be employed 
for 3D reconstruction, and a sensitivity analysis of the key parameters is 
conducted, exploring the impact of the number of sampling and interpolation 
points on the reconstruction accuracy. The reconstruction results show that the 
curves have a high degree of smoothness and physical realism. With 50 sampling 
points and no interpolation, the mean absolute error (MAE) reaches 0.000892 m, 
approximately 72% lower than with 20 sampling points and no interpolation. 
The root mean square error (RMSE) is 0.001127 m, about 75% lower than with 
20 sampling points and no interpolation, thereby verifying the feasibility of the 
method. This study offers theoretical foundations and experimental validation 
for the optimization of optical fiber shape sensing technology, thus holding 
significant importance for enhancing measurement accuracy and advancing 
engineering applications in related domains.
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1 Introduction

Optical fiber sensing is an advanced sensing technology 
developed in the 1970s along with optical fiber and optical 
communication technologies [1–3]. It uses light waves as the sensing 
signal and optical fiber as the transmission medium to detect signals 
from the external environment. The basic principle is that changes 
in external environmental parameters, such as temperature and 
pressure, give rise to corresponding variations in the optical fiber’s 
light wave parameters (e.g., wavelength, phase, intensity). In other 
words, external signals modulate the optical signals. The structure of 
the optical fiber is shown in Figure 1a and the propagation of light 
within the fiber is illustrated in Figure 1b. In recent years, with the 
continuous development of optical fiber sensing technology, optical 
fibers have demonstrated significant potential in the field of shape 
measurement. In the medical field [4, 5], optical fiber shape sensing 
has been successfully applied to real-time monitoring of endoscopic 
catheters and robotic surgical instruments, offering sub-millimeter 
spatial resolution and accurate 3D morphology reconstruction [6, 
7]. This significantly enhances the safety and accuracy of minimally 
invasive surgeries. In the aerospace sector [8–10], optical fiber shape 
sensing systems are employed to monitor the deformation of critical 
structures such as wings and fuselages, providing crucial support for 
flight safety. In the field of infrastructure [11–13], this technology 
enables distributed shape monitoring of structures such as pipelines, 
bridges, tunnels, thereby helping to prevent structural failures and 
accidents.

With the gradual maturity of optical fiber technology, it 
is necessary to study its shape sensing algorithms. Among the 
many optical fiber reconstruction methods, researchers primarily 
employ the strain-geometry mapping principle to achieve shape 
reconstruction through various mathematical models. For example, 
Pauer et al [14] consider the measurement unit system as a sensor 
network, where data collected by sensors randomly distributed over 
the fiber are processed by specific algorithms, ultimately enabling 
the reconstruction of the spatial shape of the fiber. Khan et al. 
[15] transformed data from FBG sensors into strain measurements, 
which were subsequently used to calculate the curvature and torsion 
of the fiber. By integrating the Frenet-Serret equations with the 
calculated curvature and torsion, they reconstructed the shape of 
the instrument. Lv et al. [16] proposed a 3D shape reconstruction 
method for multicore optical fibers based on curvature and angle 
correction. This method improves the reconstruction algorithm 

for flexible, 3D-deformed multicore optical fiber by introducing 
directional angle and curvature correction coefficients. Souza et al. 
[17] integrated five distributed FBG sensors along a pinus wood 
beam and a nylon 6.0 beam. The sensors estimated the elastic 
line describing the deflection over the entire length of the beam 
by replicating load application tests. Ferreira et al. [18] evaluated 
the curvature of a specific cross-section by installing a fiber Bragg 
grating sensor on the beam, then reconstructed the deformation 
profile by integration.

However, in the field of optical fiber curve reconstruction, 
classical algorithms still face several limitations. Cubic spline 
interpolation can effectively ensure smooth curvature distribution, 
but it is sensitive to experimental noise and prone to error 
propagation. The tangent angle recursion algorithm can reconstruct 
a plane curve from curvature information, yet it is susceptible 
to error accumulation over long reconstruction distances (see 
Table 1). In summary, although these methods have been verified 
in theory and practice, optimizing their combination and reducing 
errors in practical implementation remain critical challenges. To 
address these issues, this paper proposes a hybrid reconstruction 
algorithm integrating cubic spline interpolation and tangent angle 
recursion algorithm. Specifically, a strain-wavelength-curvature 
closed-loop model is constructed using MATLAB. This model 
provides an improved solution for optical fiber shape sensing by 
establishing a systematic mapping from strain measurements to 
geometric curvature through wavelength-dependent relationships
(see Figure 2).

2 Curve reconstruction methods

2.1 Calculation of curves

In order to facilitate the wavelength measurement, the 
coordinates of the initial point are set as the origin, with the 
initial horizontal fiber direction as the x-axis, and the vertical 
direction as the y-axis. After force is applied in the plane, the 
tangent of the fiber at the initial position forms a 45° angle 
with the horizontal direction. FBG sensors were used for the 
measurements, with a spacing of 0.6 m between them (see Figure 3). 
The wavelength of the signal at each sensor position was first 
measured when the fiber is horizontal, and then measured 
again after the fiber is subjected to an external force. The fiber 

FIGURE 1
(a) Fiber structure diagram; (b) Transmission of light waves in optical fibers.
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TABLE 1  Comparison of different fiber shape reconstruction methods.

Method Characteristics Advantages Limitations

CUBIC spline interpolation Discrete curvature points are fitted to 
continuous curvature curves, ensuring 
the continuity of the function as well as 

its first and second derivatives

These curves are smooth, have a simple 
mathematical form, and are suitable for 

data with low noise

This method is sensitive to 
experimental noise, potentially 

amplifying errors, and cumulative 
errors over long distances remain 

unavoidable

Tangent angle recursion algorithm Based on curvature information, the 
tangent angle and coordinates are 

recursively computed to reconstruct a 
two-dimensional plane curve

The method involves simple 
calculations, is easy to implement, and 

is suitable for low-dimensional 
scenarios

Long-distance recursion is prone to 
error accumulation and is not suitable 

for three-dimensional scenarios

FIGURE 2
Flowchart of optical fiber sensor curvature reconstruction and error analysis methodology.

FIGURE 3
Schematic diagram of the experimental setup used for measurement.

Bragg grating (FBG) sensors employed in this study had a 
grating length of 10 mm, providing sufficient resolution for 
detecting wavelength shifts while ensuring stable reflection
characteristics.

In this setup, the optical fiber is attached to a flexible 
polycarbonate beam serving as the elastic substrate, while 
mechanical loading is applied through a bending device with 
adjustable weights. When the loading device induces bending in 
the substrate, the FBG region undergoes stretching or compression 
along with the fiber, thereby enabling the detection of local axial 
strain at that specific location.

The optical fiber sensor demodulation system extracts 
strain information, which is then used to indirectly 
determine the curvature. Given the relationship between 
curvature and strain, the relationship can be expressed as
Equation 1 [19]:

ε = h
2
· k (1)

where h denotes the distance between each test point and the neutral 
axis, and k represents curvature. Based on the relationship between 
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TABLE 2  Wavelength (nm) measurement data.

Measuring point Initial state 1 Test 1 Initial state 2 Test 2

FBG1 1,529 1,529.808 1,540 1,541.095

FBG2 1,529 1,529.807 1,540 1,541.092

FBG3 1,529 1,529.813 1,540 1,541.090

FBG4 1,529 1,529.812 1,540 1,541.093

FBG5 1,529 1,529.814 1,540 1,541.094

FBG6 1,529 1,529.809 1,540 1,541.091

the central wavelength shift and the strain [19], the curvature can be 
expressed approximately as follows:

k =
c(λ− λ0)

λ0
(2)

where λ0 is the wavelength measured in the initial state of the 
horizontal fiber. λ is the wavelength measured after the fiber is 
subjected to an external force. c is a constant (4,200 m-1) that 
represents a scale factor obtained via experimental calibration. In 
this experiment, the wavelength values before and after loading were 
measured for two different initial states, and the results are presented 
in Table 2. The wavelength data in Table 2 were obtained using 
a Yokogawa AQ6370D spectrum analyzer, which has a resolution 
bandwidth of 0.02 nm.

2.2 Cubic spline interpolation

Cubic spline interpolation [20–22] is a piecewise interpolation 
method. It divides the interpolation interval into subintervals and 
generates a polynomial of degree at most three for each subinterval. 
These polynomials are constructed to satisfy continuity of the 
function itself as well as its first and second derivatives, ensuring 
smoothness and continuity at every point.

Splitting the fiber into n segments on average, i.e., there exist 
n+ 1 splitting points satisfying S1 < S2 < … < Sn+1, where Si is the 
distance of a point on the fiber from the starting point, then the 
curvature satisfies the functional relationship given in Equation 
3 with the length of the fiber on the corresponding interval 
[Si,Si+1], (i = 1,2,…,n):

k(S) = ai + bi × (S− Si) + ci × (S− Si)
2 + di × (S− Si)

3 (3)

where: ai, bi, cidi are 4 coefficients to be determined. The curve 
satisfies the following relationship at the i th split point:

{{{{{{{
{{{{{{{
{

ki(Si) = Ci

ki(Si+1) = Ci+1

ki
′(Si+1) = ki+1

′(Si+1)

ki
″(Si+1) = ki+1

″(Si+1)

(4)

That is, the curvature satisfies the interpolating continuity 
condition, as well as the continuity of the first and second derivatives. 

This ensures that the fitted curvature curve is smooth. Equation 4, 
together with the boundary constraints at the beginning and end of 
the curve, can be used to determine the four coefficients. Here the 
natural boundary conditions are used as Equation 5:

{
{
{

k″(0) = 0

k″(Stotal) = 0
(5)

 

2.3 Tangent angle recursion algorithm

As the experiments are conducted on the surface of a flexible 
substrate for monitoring, this study focuses on the deformation of 
the optical fiber caused by a force applied in a single plane, without 
considering torsional changes of the fiber in three-dimensional 
space. It is suitable for low-dimensional application scenarios, such 
as flexible substrate surface monitoring and simplified preliminary 
validation, where torsional effects are minimal.

Based on the derived curvature and the initial condition that the 
tangent line at the initial position of the fiber forms a 45 ° angle 
with the horizontal after planar stress is applied, the tangent angle 
recursion algorithm [23–25] is employed to obtain the coordinates 
of any point on the fiber deformation curve, thereby enabling the 
reconstruction of the curve.

For curves, the arc between two points on a curve can be 
approximated as a segment of a microcircular arc, provided the 
points are sufficiently close together. Let the curvature of the curve 
segment between the starting point On and the end pointOn+1 be 
kn and kn+1, respectively. The corresponding coordinates of these 
points are (xn,yn) and (xn+1,yn+1), respectively. βn and βn+1 are the 
angles between the tangent lines and the x-direction of the two 
places On and On+1, respectively. The angle of the center of the circle 
corresponding to the arc can be expressed as Equation 6:

Δαn = βn+1 − βn (6)

The chord length ln of an arc can be expressed as Equation 7:

{{
{{
{

ln = 2 sin(
Δαn

2
)/kn = 2 sin c(

Δαn

2
) ·
Δαn

kn
, (kn ≠ 0)

ln = Δs, (kn = 0)
(7)
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where kn is the curvature corresponding to the arc. The 
coordinate increment(Δxn,Δyn) is calculated from the chord 
length using Equation 8:

{
{
{

Δx = ln · cos(αn −Δαn/2)

Δy = ln · sin(αn −Δαn/2)
(8)

From the recurrence formula, the new coordinates can be 
expressed as Equation 9:

{
{
{

xn+1 = xn +Δx

yn+1 = yn +Δy
(9)

According to the definition of curvature from Equation 10:

β(s) = ∫k(s)ds (10)
 

2.4 3D curve reconstruction and torsion 
compensation

The Frenet-Serret formulas constitute a system of differential 
equations that characterize the position and orientation of a curve in 
three-dimensional space [26]. These equations describe the curve’s 
geometry in terms of its curvature and torsion. At any point on a 
curve in three-dimensional space, the Frenet-Serret formulas use the 
tangent, normal, and binormal vectors to define a local orthonormal 
coordinate system moving along the curve. The translation of this 
coordinate system is described by Equation 11:

pi+1 = [−(1− cos(θi))/ki 0 sin(θi)/ki]
T (11)

The new coordinate system is subsequently rotated around the 
axis θi and ∆φi+1, resulting in two distinct rotation matrices as given 
in Equations 12, 13:

Tθi
Bi
=

[[[[[[[

[

cos(θi) 0 − sin(θi) 0

0 1 0 0

sin(θi) 0 cos(θi) 0

0 0 0 1

]]]]]]]

]

(12)

TΔφω1
Ti
=

[[[[[[[

[

cos(Δφi+1) − sin(Δφi+1) 0 0

sin(Δφi+1) cos(Δφi+1) 0 0

0 0 1 0

0 0 0 1

]]]]]]]

]

(13)

Consequently, the constant transformation matrix enables the 
continuous construction of a moving coordinate system. At each 
step, the endpoint of each micro-segment is updated and connected, 
yielding the fitted curve. 

3 Reconstruction results and 
discussion

3.1 Characteristics of reconstruction curve

After obtaining the wavelength information from each 
sensing point, the corresponding discrete curvature values from 

two tests were calculated using Equation 2, and the results are 
presented in Table 3.

Using the curvature values calculated at each sensing point 
and applying cubic spline interpolation, the curvature distributions 
of Test 1 and Test 2 along different arc lengths are shown 
in Figures 4a,b. These results demonstrate that cubic spline 
interpolation effectively fits the discrete curvature data measured by 
the fiber, with curvature values along the central axis in both Tests 
1 and 2 ranging from 2 to 3. This provides a smooth and physically 
meaningful curvature distribution that serves as a reliable basis for 
subsequent curve reconstruction. Additionally, Figure 4b exhibits 
more pronounced curvature fluctuations compared to Figure 4a, 
suggesting that the initial state or loading conditions have a 
significant influence on the fiber’s deformation response.

In the initial state, the optical fiber is aligned along the horizontal 
direction (x-axis), with the vertical direction as the y-axis. After 
deformation under the force, the tangent at the fiber’s initial point 
forms a 45° angle with the horizontal axis. Therefore, the initial 
coordinate of the deformation curve is (x0,y0) = (0,0), and β0 = 45°.

By using the curvature values at the endpoints of each 
arc segment obtained through cubic spline interpolation and 
applying the tangent angle recursion algorithm, the coordinates 
of any point on the fiber deformation curve can be derived. 
This enables the reconstruction of the curve, as shown in 
Figures 5a,b. It can be seen that the reconstructed curve exhibits 
an approximately circular shape. In Figure 5a, because the 
applied force is relatively small, the deformation pattern of 
the optical fiber remains simple and symmetric, leading to a 
clearly visible overlapping region. In contrast, the overlapping 
region in Figure 5b is larger than that in Figure 5a, as the force 
applied in Test 2 exceeds that in Test 1. Moreover, it can be 
anticipated that with further increases in the applied force, a 
spiral structure would emerge in the middle of the curve in 
a three-dimensional scenario. The geometry of the curves is 
governed by the curvature distribution. Regions of high curvature 
indicate a greater change in direction over shorter distances, 
suggesting stronger external forces in these regions. Conversely, 
regions of low curvature are closer to straight lines, reflecting 
either smaller external forces or the inherent properties of 
the material.

The reconstructed curves are continuous and smooth, without 
sudden changes in direction. The smooth curve generated by 
cubic spline interpolation ensures the physical realism of the 
phenomenon. In optical fiber curve reconstruction, smoothness 
implies continuous force interactions and material responses along 
the fiber, preventing abrupt transitions and helping to avoid 
structural instabilities in practical applications. 

3.2 Sensitivity analysis of the parameter c

The parameter c is a calibration constant obtained 
experimentally, which establishes the relationship between the 
measured wavelength shift and the corresponding curvature. 
Although parameterc remains constant within a given experiment, 
its value directly influences the magnitude of the calculated 
curvature. Therefore, to evaluate the robustness of the 
reconstruction method, a sensitivity analysis of parameterc is 
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TABLE 3  Curvature (m−1) of each sensing point after two tests.

Sensor point FBG1 FBG2 FBG3 FBG4 FBG5 FBG6

Curvature of test 1 2.2195 2.2167 2.2332 2.2305 2.2360 2.2222

Curvature of test 2 2.9864 2.9782 2.9727 2.9809 2.9836 2.9755

FIGURE 4
Curvature distribution: (a) Test 1; (b) Test 2.

FIGURE 5
The reconfiguration curves: (a) Test 1; (b) Test 2.

conducted. Figure 6a illustrates that the Test 1 curve exhibits 
a relatively mild slope, with the average curvature displaying 
an approximately linear increase as the parameter c increases. 
The sensitivity curve of Test 2 presents a lower slope than 

that of Test 1, and similarly follows a linear increasing 
pattern. When the parameter c lies within the range of 
[4000,4400], the curvature increases by approximately Δk = 0.3m−1, 
indicating a low level of sensitivity.
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FIGURE 6
(a) Comparison of the effect of parameter c on the mean curvature; (b) Heat maps for parameter c.

Figure 6b distinctly reveals the influence of the parameter c
on the mean curvature response of the optical fiber sensor. The 
horizontal axis represents the values of the parameterc (ranging 
from 4,000 to 4,400 in increments of 100), while the vertical axis 
distinguishes between the two initial conditions of Test 1 and Test 2. 
Additionally, Test 2 exhibits a generally darker hue, indicating that 
its mean curvature values are consistently higher than those of Test 
1. This reflects the differing system responses under varying initial 
wavelength conditions. Both bands exhibit a progressive shift from 
lighter to darker tones with increasing parameter values. However, 
the more pronounced gradient observed in Test 2 indicates that the 
system with an initial wavelength of 1,540 nm exhibits enhanced 
sensitivity to parameter variations. Notably, both color bands are 
situated within the mid-tone region. This offers a valuable reference 
for parameter calibration in practical engineering applications. 
These results not only verify the critical role of the parameter c, but 
also provide a visual framework for the optimization of the sensor 
and the management of associated errors in subsequent stages. 

3.3 Validation of the reconfiguration 
method

Based on the plane curve equation y = x3 + x(0 ≤ x ≤ 1), points 
are sampled at appropriately spaced arc lengths. The curvature at 
each sampled point is then calculated. These curvature values serve 
as the foundation for reconstructing the plane curve via a tangent 
angle recursion algorithm. The reconstructed curves are compared 
with the originals to verify the feasibility of the method and to 
analyze the sources of discrepancies. 

3.3.1 Calculation of arc length and curvature
For a given curve y = x3 + x(0 ≤ x ≤ 1), first calculate the 

differential dy/dx as Equation 14:

dy
dx
= 3x2 + 1 (14)

Then the differential ds of the arc length is [27] as Equation 15:

ds = √1+(
dy
dx
)

2
= √1+ (3x2 + 1)2dx (15)

The arc length is then obtained by integration as Equation 16:

s = ∫
1

0
√1+ (3x2 + 1)2dx (16)

The value of curvature as a function of arc length is determined 
by the curvature formula given in Equation 17:

k =
|y″|

(1+ y′2)
3
2

(17)

Where y′ = dy
dx

, y″ = d2y
dx2 .

Taking into account the range of x and computational 
complexity, 20 sampling points are selected along equally spaced arc 
lengths from the origin, covering the range x = 0 to x = 1. 

3.3.2 Comparison of reconstruction curves
The reconstructed curves derived from the tangent angle 

recursion algorithm are compared with the original curves for 
sample sizes of 20 and 50 without interpolation, as shown in 
Figures 7a,b respectively. The results show that increasing the 
number of sampling points improves alignment accuracy: the 
reconstructed curve in Figure 7b matches the original curve more 
closely than in Figure 7a. With an initial sampling size of 20, cubic 
spline interpolation is employed to increase the number of points to 
50 and 100. The reconstructed curves generated via the tangent angle 
recursion method are subsequently compared with the original 
curves, as presented in Figures 8a,b respectively. When interpolated 
to 50 and 100 points, the reconstructed curves closely align with the 
original curves. Notably, the agreement is further improved at 100 
interpolation points, demonstrating a more precise match.

Frontiers in Physics 07 frontiersin.org

https://doi.org/10.3389/fphy.2025.1665822
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Liu and Ji 10.3389/fphy.2025.1665822

FIGURE 7
Comparison of original and reconstructed curves: (a) The sampling point is 20; (b) The sampling point is 50.

FIGURE 8
Comparison of original and reconstructed curves: (a) Add to 50 interpolation points; (b) Add to 100 interpolation points.

3.3.3 Error analysis
A comprehensive analysis of the errors in the fiber 

reconstruction process reveals three main contributing factors. 
First, the sampling interval and the number of sampling points 
significantly influence the accuracy of the reconstructed curve. 
Second, with fixed sampling points, the interpolation of curvature 
data affects the reconstruction results. Finally, the choice of 
reconstruction algorithm also impacts the final curve. Alternative 
fiber reconstruction algorithms are beyond the scope of this paper 
and are not discussed in detail.

Therefore, the reconstruction error can be reduced by decreasing 
the sampling interval to obtain more sampling points, optimizing 

the interpolation method, and selecting an effective curve 
reconstruction algorithm.

To quantitatively assess the accuracy of fiber shape 
reconstruction, the reconstruction error is evaluated using the mean 
absolute error (MAE) and the root mean square error (RMSE) [28, 
29], defined as Equations 18, 19:

MAE = 1
n

n

∑
i=1
|yi − y′i | (18)

RMSE = √ 1
n

n

∑
i=1
(yi − y′i )

2 (19)
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TABLE 4  MAE (m) and RMSE (m) of reconstructed curves.

Sampling and interpolation cases MAE RMSE

20 samples, no interpolation 0.003214 0.004532

50 samples, no interpolation 0.000892 0.001127

20 sampling points, interpolated to 50 points 0.002387 0.003215

20 sampling points, interpolated to 100 points 0.002035 0.002876

where yi represents the coordinates of the actual fiber curve, 
y′i  represents the coordinates of the reconstructed curve, and n
denotes the number of coordinate points. The MAE and RMSE 
are expressed in meters (m) and represent the discrepancies in 
real-space coordinates.

The fiber deformation error is calculated by extracting 
the coordinates of the original and reconstructed curves and 
substituting these coordinates into the corresponding equations, 
with the results presented in Table 4.

The results indicate that both MAE, and RMSE, are 
lower for 50 sampling points without interpolation, or 
for 20 sampling points interpolated to 50 or 100 points, 
than for 20 sampling points without interpolation. This 
indicates that increasing the number of sampling points and 
applying interpolation can effectively reduce the reconstruction 
error. Furthermore, the relatively small MAE, and RMSE, 
values across all four cases demonstrate that the tangent 
angle recursive algorithm can accurately reconstruct the 
optical fiber curves, thereby confirming its feasibility and
effectiveness. 

4 Conclusion

In this paper, planar curve reconstruction for optical fiber 
sensors is addressed by integrating cubic spline interpolation 
with a tangent angle recursion algorithm. Discrete curvature 
is computed from fiber strain data based on an approximate 
relationship between wavelength and curvature. The curvature 
is then smoothed using cubic spline interpolation, and 
the curve is accurately reconstructed via the tangent angle 
recursion method. Results demonstrate that the reconstructed 
curves exhibit good smoothness and physical realism. The 
MAE and RMSE values obtained under different parameter 
settings validate the feasibility and reliability of the proposed 
method. This study offers both theoretical and experimental 
support for the advancement of optical fiber shape sensing 
technologies, highlighting their significant potential in high-
precision applications such as medical instrumentation, 
aerospace structural monitoring, and infrastructure health
assessment.
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