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Monte Carlo simulations are widely used in medical physics to model particle 
interactions for accurate radiotherapy dose calculations. This study presents 
a methodological comparison between two leading Geant4-based simulation 
platforms-GATE and TOPAS-for modeling a 6 MV Varian CLINAC IX linear 
accelerator. The objective was to evaluate and optimize the performance 
of both platforms in terms of computational efficiency and dosimetric 
accuracy. Simulations were validated against experimental measurements using 
percentage depth dose and dose profiles acquired in a water phantom. 
Methods included geometry modeling, electron source parameter tuning, and 
implementation of phase space files, production thresholds, and variance 
reduction techniques. Results showed that TOPAS provided superior agreement 
with experimental data, especially in deep dose regions, while GATE offered 
marginally better computation times when advanced variance reduction tools 
were applied. These findings highlight the importance of aligning simulation 
platform choice with specific clinical or research objectives. This work 
offers a practical reference for medical physicists and researchers seeking to 
optimize Monte Carlo simulations for treatment planning, quality assurance, or 
commissioning of radiotherapy systems.
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 1 Introduction

Clinical linear accelerators (LINACS) generate electrons or photons with energies in 
the multi-MeV range, which are commonly used in cancer treatment. LINACS work on 
the principle of electron acceleration via high-frequency electromagnetic waves to deliver 
optimal radiation doses to tumor volumes while minimizing exposure to surrounding 
healthy tissues, lowering the risk of complications.

The efficacy of these treatments is dependent on precise dosage calculations and 
irradiation accuracy. To achieve this level of precision, Monte Carlo (MC) simulation is 
used to model the movement and interactions of individual particles within materials. 
Unlike analytical algorithms in commercial software, MC techniques take into account
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the mechanical and geometrical properties of the radiation source, 
as well as tissue heterogeneities in the patient’s body.

MC methods use microscopic modeling of particle transport to 
generate 1D, 2D, and 3D simulations. Individual particle trajectories 
are simulated using random numbers and cross sections to mimic 
physical phenomena [1–6]. Despite their precision, the practical use 
of MC methods in clinical settings is hampered by long computation 
times. Monte Carlo simulation software tools have been developed 
for applications in medical physics, nuclear medicine, and internal 
dosimetry [7–15].

Over time, platforms based on the Geant4 framework, such 
as GATE and TOPAS, have emerged to improve CPU performance. 
However, the persistent differences in options and their implications 
for CPU timing necessitate a thorough investigation. This study 
plays an important role by meticulously comparing GATE 
and TOPAS, going beyond a simple comparison of features. 
The emphasis shifts to the nuanced complexities of the CPU 
optimization tools provided by these platforms, allowing users to 
make informed decisions that balance computational efficiency and 
precision in Monte Carlo simulations for radiation therapy.

The primary goal of this study is to investigate and compare 
the performance of GATE (v9.1) and TOPAS (v3.9) using Geant4 
v10.7. This entails integrating the full modeling of a Varian CLINAC 
IX accelerator and utilizing the university’s computational power. A 
targeted parallel calculation method is used to significantly reduce 
CPU time in simulations. A dosimetric study is used to validate 
virtual accelerator models in GATE and TOPAS by comparing 
parameters related to photon beam quality. The parameters 
derived from water-shot simulations are compared to experimental 
measurements performed in the radiotherapy department [16–21].

Although TOPAS and GATE both build on the same GEANT4 
core physics library, they are distinct software ecosystems with their 
own user interfaces, default physics lists, and specialized actors 
for particle control (e.g., GATEâ€™s KillActor; TOPASâ€™s 
particle filters). These architectural differences directly affect several 
practical aspects of simulation, including: 

• The format and management of phase–space files;
• The configuration and availability of variance–reduction 

techniques;
• Default timing behavior and overall computational 

performance; and
• The effective transport approximations exposed to 

the end user.

Accordingly, a rigorous comparison under controlled geometry 
and physics conditions is necessary to guide toolkit selection for 
clinical and research applications. In this work, we benchmark both 
platforms to evaluate (i) dosimetric accuracy and (ii) the practical 
utility of their respective optimization tools and workflows for a 
medical physics group. 

2 Materials and methods

The Varian CLINAC IX serves as a medical linear accelerator 
employed in radiation therapy for cancer treatment. It operates by 
delivering precise high-energy X-rays to cancerous tumors while 
minimizing exposure to healthy tissues. This versatile machine 

FIGURE 1
Illustration of the components of a Varian CLINAC IX in 
photon beam mode.

accommodates various treatment techniques, including intensity-
modulated radiation therapy (IMRT), image-guided radiation 
therapy (IGRT), and stereotactic radiosurgery (SRS). Equipped with 
advanced imaging and treatment planning software, the CLINAC IX 
enables accurate targeting and shaping of the radiation beam. Widely 
recognized as a reliable and effective tool for cancer treatment, it is 
utilized in numerous hospitals and clinics globally.

Accuracy in the geometric modeling of the LINAC head is 
crucial, though detailed precision is not mandatory. Some data 
regarding the Varian CLINAC IX accelerator head’s precision are 
currently unavailable. Our modeling of the CLINAC Varian IX 
relies on data provided by the manufacturer. This accelerator 
features a 120 multi-leaf collimator, divided into two blocks of 60 
leaves each. The accelerator head, depicted in Figure 1, comprises 
static elements independent of irradiation energy and beam shape 
(primary collimator), elements dependent on irradiation energy 
(target and flattening filter), and others dependent on beam shape 
(jaw collimator and multi-leaf collimator).

2.1 Geometry modeling

The modeling of the varian CLINAC IX head is the first step for 
the performance comparison between the two GEANT4 plateforms. 

2.1.1 GATE V9.1
GATE (Geant4 Application for Tomographic Emission) stands 

as an open-source Monte Carlo simulation platform rooted in the 
Geant4 toolkit. Geant4, a software toolkit renowned for simulating 
particle interactions with matter, finds widespread use in high-
energy physics, nuclear physics, medical physics, and other domains. 
The most recent iteration of this platform is GATE/Geant4 v9.1 
[14, 22], incorporating numerous new features and enhancements. 
Notable improvements include accelerated simulation times, refined 
tracking algorithms, and upgraded visualization tools.

Furthermore, GATE/Geant4 v9.1 introduces enhanced models 
tailored for simulating nuclear medicine imaging and therapy. This 
encompasses the simulation of radionuclide production and decay 
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[5, 23], enabling more precise simulations of radiopharmaceutical 
uptake and distribution within the human body. In essence, 
GATE/Geant4 v9.1 serves as a robust tool empowering researchers 
and clinicians to optimize treatment planning, enhance simulation 
accuracy, and propel advancements in the field of medical physics. 

2.1.2 TOPAS V3.9
TOPAS (TOol for PArticle Simulation) serves as a Monte 

Carlo simulation platform designed for particle therapy, specifically 
catering to proton and carbon ion therapy. Recognized for its user-
friendly interface, this tool empowers researchers and clinicians 
to simulate the trajectory of charged particles through various 
mediums, including biological tissues. The latest iteration, TOPAS 
v3.9 [24, 25], introduces several new features and enhancements.

A notable advancement in TOPAS v3.9 is its capability to 
simulate spot scanning proton therapy. This popular treatment 
technique delivers the proton beam in small spots rather than a 
continuous beam, enabling more precise targeting of tumors and 
sparing surrounding healthy tissue. Additionally, the latest version 
includes improved models for the production and transport of 
secondary particles, along with the ability to simulate the biological 
effects of ionizing radiation. In summary, TOPAS v3.9 stands 
as a robust tool, providing researchers and clinicians with the 
means to optimize treatment planning and enhance the accuracy of 
particle therapy. 

2.1.3 Varian CLINAC IX head modeling
The target consists of tungsten and copper plates, where tungsten 

primarily facilitates photon production through braking radiation, 
and copper is utilized to halt low-energy X-rays unnecessary for 
treatment due to a lack of penetrators while efficiently dissipating 
heat. During the Monte Carlo (MC) simulation, the source is 
positioned at the target input.

The primary collimator, a tungsten block of a few centimeters 
in height, defines a cone that establishes the maximum radiation 
field. To model the flattening filter, multiple truncated cones are 
layered on top of each other (refer to Figure 2). The collimation 
system comprises two components: the XY jaws, which delineate 
a rectangular irradiation field with a maximum dimension of 40×
40 cm2 at a distance of 100 cm from the source, and the Millennium 
multi-leaf collimator (MLC-120), facilitating the delineation of a 
complex radiation beam.

The jaws consist of two pairs of tungsten blocks, each a 
few centimeters thick and positioned at different heights in the 
irradiation head. The irradiation beam is directed from the source 
by each jaw edge (photonic target). Notably, the Y jaws, closer 
to the source, move in an arc of a circle, while the X jaws move 
in a straight line and then rotate to track the divergence of the 
irradiation beam (see Figure 2).

In MC simulations, the accelerator head was modeled without 
the MLC to save computational time. This involved using 
rectangular radiation fields defined solely by the jaws. Since the MLC 
is located below the XY jaws (refer to Figure 2), excluding it had no 
impact on dose calculation. For simulation optimization, the MLC 
was routinely omitted from the geometry during the adjustment 
of initial electron characteristics. Additionally, it is noteworthy 
that many studies on modeling Varian accelerators in radiotherapy 
typically exclude the MLC [26–29]. 

2.2 Experimental measurements

The experimental measurements serve as a baseline against 
which the absorbed dose distributions calculated using MC will 
be compared. At CHU hospital located in Morocco, measurements 
are taken using the Varian CLINAC IX accelerator with an ion 
chamber in a water phantom for the following field sizes: 1× 1, 
2× 2, 3× 3, 10× 10, 15× 15 and 20× 20 cm2. A 30× 30× 30 cm3

polymethylmethacrylate (PMMA) MP3 water tank (PTW, Freiburg, 
Germany) is used (Figure 3). The tank is made up of a support on 
which the ionization chamber is fixed and which is controlled by two 
motors that allow it to move in the vertical axis for Percentage Depth 
Dose (PDD) measurements and in the horizontal axis for absorbed 
dose profiles (DP).

To perform experimental measurements based on the beam field 
size, several ion chambers are used. The Semiflex 31010 ion chamber 
(PTW, Freiburg, Germany) has a cylindrical cavity with an active 
volume of 0.125 cm3 and is suitable for fields larger than 5× 5 cm2.

A comprehensive uncertainty analysis was performed on these 
measurements. The overall uncertainty is a quadrature sum of 
several components: 

• Ion chamber calibration uncertainty: 1.5% (k = 2),
• Electrometer uncertainty: 0.5%,
• Setup reproducibility, including phantom and chamber 

positioning: 0.7%,
• Water temperature/pressure corrections: 0.2%.

This leads to a combined standard uncertainty of approximately 
1.8% for absolute dose values. For profile measurements, the 
positional uncertainty of the chamber movement is estimated at 
±0.5 mm. 

2.3 CPU optimization

We used the high performance computing facility at Texas AM 
University in Qatar to reduce simulation computing time [30]. It is a 
Linux-based system outfitted with cutting-edge blade servers and a 
total of 4,128 traditional Intel Haswell CPU cores. All compute nodes 
are equipped with two 12-core processors and 128 GB of RAM. It 
is linked to a 1 PB storage system. The simulations were carried 
out initially with one node, and then we increased the number of 
nodes from two to 94 to investigate the effect of nodes number 
on calculation time. TOPAS, in contrast to GATE, fully supports 
Geant4’s multithreading simulation capability. We used the thread 
values from 2 to 94 in parallel to study the effect of varying the 
threads value on CPU timing. 

2.3.1 Phase space
For simulating the water phantom where measurements were 

conducted, a 30× 30× 30 cm3 water tank was employed, subdivided 
into small voxels of 5× 5× 5 mm3,” and these were correlated with 
the ionization chamber used for measurements in the standard field 
size of 10× 10 cm2 (see Figure 3). As profile measurements were 
taken along a specific axis (referred to as the Y-axis, corresponding 
to the movement of jaws closer to the beam), only one voxel in the 
orthogonal direction (X) was utilized. The number of voxels along 
the Y-axis covered both the central region and the penumbra.
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FIGURE 2
GATE and TOPAS modeling of Varian CLINAC IX head components for 6 MV photon beam.

FIGURE 3
Illustration of a water tank of 30×30×30 cm3 equipped with a 
motorized and remotely controlled arm to move the ionization 
chamber in three directions: x, y and z.

In each dose or fluence calculation, whether in a patient or 
a phantom, a comprehensive process of photon generation is 
simulated through direct simulation. This involves systematically 
calculating the transit of electrons and photons in the accelerator 
head for each new simulation [31]. However, due to its 
computational intensity, this simulation method is primarily 
employed for research purposes, as it is not suitable for medical 
applications. Many published works Mohan et al. [32], Chaney 
et al. [33], Nilsson and Brahme [34] utilize full simulation when 
maximizing photon output based on the target or quantifying 
diffused photons. Nevertheless, complete direct simulation of 
the accelerator head is not the most efficient method in terms 
of computational efficiency for dosimetric purposes using the 
photon beam.

A phase space (PhS) represents all possible states of a system as 
individual points, consisting of particles with various properties like 
energy, type, position, propagation direction, and statistical weight. 

These particles are collected by a surface within a given geometry, 
and the data is stored in a digital file that serves as a source for 
another simulation [35].

The use of a PhS reduces initial simulation time, requiring only 
the geometric description of the secondary collimation for fixed 
nominal energy photon processing beam (X, Y, and MLC jaws). 
This means that, regardless of the patient’s treatment, the modeling 
of the target, primary collimator, flattening filter, and simulation 
of the source electron beam remain consistent. Electron transport 
calculations are the most time-consuming part of simulating a 
photon beam, and a PhS enables these calculations to be performed 
only once, thereby saving time.

Beyond time savings, PhSs are commonly employed in 
dosimetric applications. Modeling a photon beam using a Phase 
Space (PhS) involves two steps. The first step is creating a PhS, 
which entails placing a PhS plane at the exit of the flattening filter 
to collect all particles passing through it. The data is saved in a file 
for subsequent simulations. The second step involves using the PhS 
as input multiple times, avoiding the need to recalculate the entire 
simulation for a simple change in field size and thereby saving time 
on calculations. However, it is important to note that PhS files can 
be large and inflexible once created.

PhS files can be generated in various formats such as ROOT 
[36] or PHPS [37], using software like GATE and TOPAS. When 
optimizing multiple parameters simultaneously, it is advisable to 
begin with those less dependent on others to avoid potential biases 
or interactions. If a final parameter value is significantly distant from 
its original value and strongly correlated with another previously set 
parameter, re-running the optimization process while keeping the 
earlier parameter fixed can enhance the accuracy of final estimates. 

2.3.2 Physics cuts
Two types of physics cuts can significantly impact CPU time. 

The first type is production thresholds, designed to prevent the 
generation of unnecessary low-energy secondary particles through 
ionization and bremsstrahlung processes. The second type involves 
the minimum remaining kinetic energy for a track, determining 
the point below which particles cease to be transported. This 
cut serves to optimize the process by preventing particle traces, 
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thereby reducing time per history. The cut-off energy can be defined 
in two ways: globally for the entire world or specifically for a 
modeled geometry.

When implementing cut-off energy for a detector volume, it is 
crucial to ensure that the calculation remains unaffected.

In GATE and TOPAS, the user is responsible for defining 
production thresholds. These thresholds are specified as a distance 
or limit distance for individual materials, internally converted into 
energy. In GATE, each volume is treated as a geometric region, and 
production thresholds are established for each region. In contrast, 
TOPAS allows users to define lower and upper edge production 
thresholds in terms of energy, providing a more detailed control 
option compared to GATE. 

2.3.3 Variance reduction technics
A substantial portion of the total CPU time dedicated to 

simulating an accelerator head is allocated to tracking initial 
electrons in the target, which generate bremsstrahlung gammas in 
limited numbers. To address this, bremsstrahlung splitting serves 
as an effective variance reduction technique. It allows users to 
determine the number of gammas produced in each bremsstrahlung 
interaction, rather than just a single gamma. This strategic choice 
reduces the time spent following initial electrons and prioritizes the 
tracking of gammas, which have a higher likelihood of reaching 
the phantom.

To exclusively generate particulate matter with a pathway 
surpassing the production threshold, a secondary particulate matter 
production threshold must be defined. As the effective sections of 
interactions are energy-dependent, the “step” size is constrained 
by continuous energy loss, and its size remains nearly constant 
along the step if sufficiently small. Given that calculation time 
increases with simulation precision, a trade-off between accuracy 
and calculation speed is typically made. The “StepFunction” function 
restricts the “step” size based on the voxel size [22].

Selecting an appropriate step size in Monte Carlo tracking 
poses a challenge. TOPAS employs intricate logic based on local 
geometry, physics, and user input to determine a suitable step size. 
Nevertheless, a maximum size can be set in some components if 
applications are sensitive to this behavior. While larger steps usually 
do not enhance performance, smaller steps may offer improved 
accuracy. To find the optimal maximum step size, experimentation 
with different values is necessary, and the chosen value should 
exhibit minimal variation in results.

In GATE, users can utilize Special Slices to define four slices for 
limiting particle tracking:

• The overall longest possible track;
• The maximum allowable flight time;
• The minimum required kinetic energy;
• The minimum required range, which has undergone 

considerable change.

The “KillActor” feature in GATE prevents tracked particles from 
entering the volume defined by the linked “actor,” stopping the 
tracking of particles that do not contribute to the volume of interest. 
This leads to a reduction in computation time. In contrast, TOPAS 
employs particle filtering options to eliminate particles immediately 
after their creation. Users can specify which particles to track across 

all components and whether a component should be ignored. This 
option is useful when the contribution of certain particles to the 
final outcome is negligible, but caution is advised as it is not a 
variance-reduction technique. 

2.4 Electron source modeling

Collisions between accelerated source electrons and the 
accelerator target produce photons used for treating target 
volumes. The spatial and energy distributions of these photons 
are predominantly influenced by the characteristics of the electron 
source beam and the target. Therefore, simulating these distributions 
requires special attention.

For an accurate modeling of initial electrons at the entrance of 
the photonic target, their energy and intensity distribution must be 
precisely defined. Two types of energy distributions are considered: 
Gaussian, characterized by its average energy and Full Width at Half 
Maximum (FWHM), and monoenergetic, defined by a single energy 
value. The spatial intensity of the electron beam can be described by 
a Gaussian beam with a width at half maximum or a homogeneously 
intense circular shape characterized by its radius.

Previous studies Blazy [38]; Franchisseur [39] utilized the 
PENELOPE code to simulate beams with Gaussian energy and 
intensity distributions. Jaffray et al. [40] demonstrated that the 
photon beam exhibits an elliptical intensity distribution upon 
leaving the source. Anai et al. [41] proposed a Gaussian model to 
describe the electron distribution. Given these considerations, the 
Gaussian description is commonly employed. Thus, we opted for a 
Gaussian description of energy distribution and focal spot.

Modeling the electron source beam involves selecting their 
energies and trajectory, as these properties significantly impact 
the energies and spatial distribution of photons used in patient 
treatment. Verhaegen and Seuntjens [42] outlined a three-stage 
procedure for modeling the source.

In the first stage, the energy of a mono-energetic electron beam is 
determined to ensure that dose calculations in a water phantom for a 
10× 10 cm2 irradiation field at isocenter correspond to experimental 
doses. In the second stage, after determining the energy of the 
source electrons, the FWHM of their Gaussian spatial distribution 
is adjusted until calculated and measured dose profiles align. In 
the third stage, the percentage depth dose (PDD) is recalculated 
to verify that the spatial distribution of the beam has not altered 
the calculated depth doses. This procedure is repeated for each of 
Geant4’s electromagnetic physics models: “Standard,” “Livermore,” 
and “Penelope” (refer to Geant4 Physics Reference Manual).

It is noteworthy that Verhaegen and Seuntjens [42] observed 
that a change of 0.2 MeV in the average energy of source electrons 
has a noticeable effect on depth dose and dose profile. The radial 
distribution of electron beam intensity does not impact depth 
dose, but radial diffusion can lead to a quadratic decrease in the 
dose profile. Additionally, they reported that the divergence of the 
electron beam has a minor effect on the dose profile but no effect on 
the percentage depth dose. 

2.4.1 Comparison of absorbed dose distributions
The Varian CLINAC IX is commonly used to assess the 

distribution of absorbed dose in the irradiated volume. However, 
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studying the standard deviation between a measured dose 
distribution Dm taken as a reference and a calculated Dc is not 
relevant for comparing two dose distributions in the high dose 
gradient region. To properly ensure irradiation during RT treatment, 
two important criteria must be met: the absorbed dose distribution 
in the planning target volume (PTV) must be as homogeneous as 
possible to avoid under-dose points, and the surrounding organs 
at risk (OAR) must adhere to the established dose limits. To meet 
these criteria, the Distance to Agreement (DTA), dose difference, 
and distance criteria must be satisfied.

In clinical routine, the gamma index is commonly used to 
compare the measured and calculated dose distributions. Several 
authors Childress et al. [43], Nelms and Simon [44], Esch et al. [45] 
have developed the gamma index method, which considers two 
parameters: the dose difference criterion ΔDmax (%) and the distance 
criterion DTA (mm) between two points. The smallest distance 
between the measured and calculated absorbed dose points is 
defined as DTA, and each reference point is surrounded by an 
acceptability ellipse rm,Dm. If the point to be evaluated is within 
the ellipse, it meets the acceptability criteria. The equation for 
this ellipse is:

γ = ΔD2

ΔD2
max
+ Δr2

DTA2 (1)

Where Δr = rm − rc is the distance between the reference point 
rm and the calculated point rc (mm); ΔD = Dm(rm) −Dc(rc) is the 
difference in dose between the reference point rm and the calculated 
point rc. If the gamma index is less than 1, the comparison 
between the measured and calculated points is acceptable for 
the tolerance criteria; however, if it is greater than 1, the
test will fail.

The experimental uncertainties were considered when 
evaluating simulation-measurement agreement. The chosen 
gamma passing rate criterion of 2%/2 mm inherently accounts 
for such uncertainties, as the 2% dose tolerance is larger than 
the 1.8% estimated dose uncertainty, and the 2 mm distance-
to-agreement tolerance comfortably exceeds the positional 
uncertainty (Equation 1). 

2.4.2 Mean energy
To achieve a more precise quantification of robustness than the 
±0.2 MeV increment reported in the literature [42], we performed 
an additional scan with a finer step size of ±0.1 MeV around the 
optimized energy. Simulations were conducted for Gaussian mean 
energy distributions ranging from 5.0 to 6.0 MeV, incremented 
by 0.1 MeV. The simulation protocol consisted of a three-step 
process for each energy: (i) deriving the photon mean energy 
from each of six electron beams to generate their corresponding 
photon source points; (ii) calculating the depth–dose distribution 
in a water phantom (10 ×  10 cm2 field, 100 cm SSD); and (iii) 
evaluating the resulting Percentage Depth Dose (PDD) curves 
against measured data. 

2.4.3 Spot size
The second step involves determining the spatial distribution 

of the electron beam source by comparing the measured dose 
profiles to the calculated profiles based on the electron spatial 
distribution model. This is achieved by varying the beam width 

at half maximum from 1.0 to 1.5 mm with a 0.1 mm increment. 
The dose profile is measured and calculated in two directions: 
right-left (inplane) and cranio-caudal (crossplane), 1.5 cm below the 
water surface, for a field size of 10× 10 cm2 and a source-to-surface
distance of 100 cm. 

2.4.4 Physics models
Once the parameters of the electron beam are established, it 

becomes imperative to choose the appropriate physical process 
for simulating the interactions between photons and electrons. 
This study employed the Standard, Livermore, and Penelope 
models for electromagnetic interactions. These models undergo 
selection, renormalization, comparison, and averaging processes 
on experimental data to generate useful datasets encompassing all 
significant photon and electron interactions. The Standard model 
is suitable for energies up to 10 TeV and utilizes simpler transport 
algorithms, making it faster and more computationally efficient 
than other models. However, it lacks Rayleigh diffusion and atomic 
relaxation. Gate 9.1 and Topas 3.9 provides four options for standard 
EM models. In this study, option 4 was selected for both platforms, 
tailored for medical and space science applications. The Livermore 
and Penelope models demand more CPU time but excel in handling 
EM interactions at lower energies compared to the Standard model. 
The Livermore model serves as a photon-compatible low-energy 
electromagnetic package added to the G4 Standard 3 option, 
employing a set of models based on a parameterized approach for 
computing cross-sections and sampling the end state. On the other 
hand, the Penelope model, specifically designed for Monte Carlo 
simulations, combines numerical databases and analytical models 
for various interaction mechanisms. Its physical list builds upon 
electromagnetic option 3 by replacing the Penelope-2008 model set. 
Distinguishing characteristics between the Standard and Livermore 
models primarily lie in their definitions of the Compton broadcast. 
Livermore-based models utilize Ribbenfors’ theoretical framework, 
while the Standard model employs a different method. All physics 
packages use a similar definition for producing pairs. These models 
accurately describe ionization, bremsstrahlung, production of pairs 
and other charged particles, and gamma interactions with media, 
except for the photoelectric effect, which assumes that atomic 
electrons are nearly free and thus disregards electron binding energy 
[23, 46–48]. 

3 Results and discussion

The requirement for extensive computation durations in Monte 
Carlo (MC) simulations mandates the application of diverse tools 
aimed at diminishing computation time while upholding the 
precision of the eventual outcomes. As outlined in Section 2, 
we employed GATE and TOPAS to explore various optimization 
methods, giving priority to those less reliant on others. Unless 
explicitly stated otherwise, all outcomes were derived from 
simulations employing 12× 109 initial electrons with an energy of 
6.0 MeV and a beam of zero-width, a field size of 10× 10 cm2, and 
a Bremsstrahlung splitting division number of 100. The simulations 
utilized the Standard EM model opt3 for both GATE and TOPAS, 
employing default parameters. 
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TABLE 1  Fraction of time spent in each Varian CLINAC IX head 
components by particle type.

Particle/geometry region Time/time total (%)

e−/Target 81

e−/Primary collimator 1.1

e−/Flattening filter 1.2

e−/Jaws 1.1

e−/Outside 0.3

e−/Total 84.7

γ/Target 6.7

γ/Primary collimator 1.2

γ/Flattening filter 1.2

γ/Jaws 0.9

γ/Outside 5.1

γ/Total 15.1

e+/Total 0.2

3.1 CPU timing optimization

To commence the optimization procedure, we examined the 
execution duration across various segments of the accelerator head 
to uncover potential factors for optimization. Initially, we conducted 
simulations of the entire accelerator head in a single step, facilitating 
the tracking of particles interacting with different components until 
they reached the phantom positioned 100 cm from the target. The 
phantom utilized in the simulation was modeled after a real-world 
phantom, featuring dimensions of 30× 30× 30 cm3 and voxel sizes 
of 5× 5× 5 mm3, resulting in an active volume of 0.125 cm3 for field 
sizes exceeding 3× 3 cm2, or 0.03 cm3 for smaller fields. The entire 
Linac geometry was simulated with an initial electron energy of 
6 MeV, a production threshold of 0.1 mm, and a reference field size 
of 10× 10 cm2. Subsequently, a phase file was incorporated under 
each Linac component to assess the computation time attributed to 
individual components. The results, presented in Table 1, aligned 
with expectations, highlighting that the majority of the time was 
consumed in electron tracking, particularly within the target.

To evaluate the gain in computing time when splitting a 
radiotherapy simulation task into several jobs. A radiotherapy 
simulation task has been performed with splitting it into 50,100, 200, 
250, 300, 350, 400, 450 and 500 jobs. The execution times of the task 
with and without splitting were compared and a CPU time speed 
factor (TSF) was calculated. The TSF is estimated as follow:

TSF =
Computing time calculated without splitting

Computing time calculated with splitting into several jobs
(2)

FIGURE 4
Time speed factor (TSF) when splitting a radiotherapy simulation task 
of 1010 primary electrons into several jobs.

Figure 4 shows the estimated TSF. Splitting the tasks into smaller 
jobs increase the TSF drastically (Equation 2).

3.1.1 Phase space
The optimization of computation time commenced by 

leveraging the maximum available nodes accessible to the user. 
To expedite simulations, a parallelization script was implemented, 
dividing the simulation into 200 parallel tasks, each task comprising 
6× 107 particles and utilizing the maximum node capacity. This 
approach yielded a 25% optimization for TOPAS and 27% for GATE, 
compared to single-node utilization.

Subsequently, the geometry was segmented using PhS into two 
distinct modules: a dependent part (module 2) and an independent 
part (module 1) (refer to Figure 1). In this setup, the PhS, represented 
as a cylinder with a diameter of 10 cm and a z-direction thickness 
of 1 nm, was positioned 7 cm above the secondary collimator or Y-
jaws. Notably, the PhS format differs between GATE and TOPAS; 
while GATE features the phase space actor, which can be in PHPS 
or ROOT format to mitigate large file sizes, TOPAS does not support 
the ROOT format as a source for the second accelerator head 
module. Each PhS associated with a 6.107 particle task is three times 
larger than its root format counterpart. Simplifying simulations by 
focusing solely on the dependent part and utilizing the PhS as the 
beam source resulted in a 66% reduction in calculation time for 
TOPAS and a 68% reduction for GATE, compared to simulating the 
entire accelerator head. 

3.1.2 Physics cuts in the phantom
Implementing a 0.1 mm cut-off threshold within the phantom 

and across the entire geometry facilitates the presumption that the 
deposited energy threshold is contained within the corresponding 
dose grid voxel. To validate this assumption, a PhS file was generated 
with a 10× 10 cm2 field, terminating at an XY plane positioned 
1 cm before the phantom. By employing various production 
threshold values, particles were eliminated, and the dose integral 
outside the creation voxel was computed and juxtaposed with the 
CPU time gain.

Table 2 encapsulates the findings, suggesting that adopting a 
production threshold value of 0.1 mm within the water phantom 
would not notably impact the dose. This minimal influence on the 
dose likely stems from the confinement of the energy threshold 
within the corresponding dose grid voxel, as hypothesized, and the 
consistency of the phantom’s cut-off with the world’s cut-off.
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TABLE 2  CPU gain time for TOPAS and GATE after appliying all CPU 
optimization process.

Cut in phantom 
(mm)

Dose/dose 
0.1 mm (%)

CPU time gain 
(%)

0.01 0.01 ± 0.01 −24

0.05 0.09 ± 0.03 −5

0.1 0.12 ± 0.1 0

0.2 0.34 ± 0.21 2

0.5 0.96 ± 0.38 4

1 2.84 ± 0.87 8

TABLE 3  CPU time gain for different values of 
“setMaxStepSizeInRegion” in GATE and “MaxStepSize” in TOPAS.

“Set max step size in region”/
“max step size” (μm)

CPU time gain (%)

10 10

20 −5

30 −15

40 −34

50 −71

In conclusion, the outcomes of this investigation imply that 
utilizing a 0.1 mm production threshold value in the water 
phantom can yield accurate dose calculations while minimizing 
computational expenses. However, it is essential to acknowledge that 
the optimal production threshold value may vary depending on the 
specific application and simulation parameters. 

3.1.3 Variance reduction techniques
Several simulations were conducted employing variance 

reduction techniques. A division factor of 100 was applied, along 
with an energy slice of 1 mm, corresponding to 1/5 of the voxel 
dimension, and a step function set to 0.1 mm. Additionally, 
both GATE and TOPAS software programs offer parameters 
named “setMaxStepSizeInRegion” and “MaxStepSize” for electrons, 
respectively, enabling the limitation of the maximum step for a 
particle within a specified region. To determine the optimal value 
for this parameter, a range of values from 10 to 50 µm, with an 
increment of 10 µm, was explored. The chosen value was determined 
based on the recommended cut-off energy value and a reasonable 
calculation time, as depicted in Table 3 [49].

The selection of the thread number is a variance reduction 
technique offered by TOPAS. To analyze the impact of this technique 
on execution time, several simulations were conducted using 2 to 64 
threads. The results indicated that using more than 32 threads in a 
single simulation did not result in any significant improvement in 
the total CPU timing.

One of the actors that GATE offer to contributes to variance 
reduction is the “KILL” actor, which is attached to a cylindrical 

TABLE 4  CPU gain time for TOPAS and GATE after appliying all CPU 
optimization process.

Process CPU Time/CPU time 
for the previous 

process (%)

TOPAS GATE

Jobs splitting 25.7 26.9

PhS (as a source) 65.91 67.82

Cuts 70.88 73.24

Variance reduction techniques 89.41 94.47

geometry surrounding all of the other geometry and two boxes, 
one above the target and one below the water phantom. Table 4 
summarizes the computational time savings for both TOPAS 
and GATE after implementing all processes (the first process is 
sumulationg the entire geometry), including PhS, cuts, and variance 
reduction techniques.

Table 4 indicate that the CPU timing difference between GATE 
and TOPAS ranged between 2 and 3% when employing conventional 
techniques such as splitting jobs, phase space, and physics cuts. 
However, a notable disparity emerged upon the application of 
advanced variance reduction techniques, notably the KillActor 
method. In this regard, GATE exhibited a substantial advantage, 
with the CPU timing increasing to over 5% in its favor. This 
underscores the significance of specific concepts like KillActor 
and variance reduction techniques in influencing computational 
efficiency and accuracy, transcending the mere comparison of code 
names. By emphasizing these underlying principles, our study offers 
valuable insights for researchers and practitioners in the field of 
medical physics simulations.

The profound reduction in computation time, exceeding 94%
for GATE and 89% for TOPAS through our optimization strategy, 
has direct implications for clinical and research workflows. A full 
simulation of a complex patient plan, which might have taken weeks 
on a single CPU core, can be reduced to a matter of hours on a 
high-performance computing cluster.

This makes Monte Carlo (MC)-based dose calculation feasible 
for specific clinical scenarios where the highest accuracy is 
paramount, such as stereotactic radiosurgery (SRS) planning or 
dose verification in highly heterogeneous regions (e.g., near metal 
implants or in the lung).

While the 5% absolute difference in final optimized timing 
between GATE and TOPAS may seem marginal, in a busy department 
running hundreds of simulations, this difference can translate 
to significant savings in computational resource allocation and 
electricity costs over time. Therefore, the choice of platform can be 
influenced by the scale of intended MC use. 

3.2 Adjustement of the beam source

3.2.1 Mean energy
The simulation protocol consisted of seven energy 

configurations, simulated in parallel on both the GATE and 
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TABLE 5  GI results for different mean energy values.

Electron mean energy (MeV) PDD (GI ⩽ 1)

TOPAS GATE

6.0 96.70 98.70

5.9 98.40 97.10

5.8 99.20 96.66

5.7 97.70 95.40

5.6 96.60 94.12

5.5 96.10 92.90

5.4 94.50 92.10

5.3 92.40 89.80

5.2 91.70 88.20

5.1 86.20 83.90

5.0 84.60 80.80

TOPAS platforms. The initial configuration employed a mean 
energy of 5.0 MeV, with six subsequent configurations generated 
by incrementing the mean energy in steps up to a maximum of 
6.0 MeV. To assess sensitivity at a finer resolution, a supplemental 
investigation was conducted using a ±0.1 MeV step interval around 
the optimized mean energy. These finer steps produced smaller, 
yet still quantifiable, dose variations at depth, underscoring the 
pronounced sensitivity of the percent depth dose (PDD) curve to 
minor energy changes. This finding corroborates the ±0.2 MeV 
tolerance reported in the literature as an appropriate benchmark for 
clinical relevance (Table 5).

It is noteworthy that all Monte Carlo simulations in this study 
computed dosimetric functions (PDD and DP) with statistical 
uncertainties of less than 1%. Figure 5 presents a comparison 
of PDDs for various energies relative to a reference field of 
10× 10 cm2. The influence of electron energy on the PDD is 
particularly pronounced at greater depths (Depth >  150 mm), as 
depicted in Figure 5. Differences of up to 1.5% were observed among 
the curves, all normalized to the maximum dose value (Dmax), which 
is approximately 1.5 cm for the 6 MV photon beam with a 10×
10 cm2 field size.

Table 5 displays the GI results obtained by varying the mean and 
sigma energy of the Gaussian electron beam for dose distributions. 
Considering Figure 5 and Table 5, it was observed that dose values 
increased by an average of 5% with an increase in average energy 
from 5 to 6 MeV. The most significant relative dose differences were 
noted in the electronic equilibrium region for water depths less than 
or equal to 0.5 cm, attributed to scattered electrons constituting the 
primary component of the input dose.

FIGURE 5
PDD for 10× 10 cm2 field for the mean energy from 5.0 to 6.0 MeV for 
TOPAS and GATE.
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The input dose comprises secondary electrons generated 
through interactions between high-energy photons and components 
of the accelerator head, alongside secondary electrons produced by 
interactions in low-energy air between the exit of the accelerator 
head and the entry point of the water phantom. Discrepancies in 
dose values arise due to contamination electrons, influenced by 
inaccuracies in modeled secondary collimation, and measurement 
uncertainties surrounding the highest dose within the electronic 
equilibrium region [49]. These uncertainties are exacerbated by high 
dose gradients and the dimensions of the ionization chamber.

The PDD exhibits an increase with the rise in average electron 
energy at depths beyond Dmax. A higher average energy of the initial 
electron results in the generation of more energetic photons within 
the target, enabling these photons to produce secondary electrons 
capable of penetrating water more effectively and delivering energy 
to deeper locations along the beam path.

As indicated by Table 5, Gamma index values for a tolerance of 
2% in terms of energy and 2 mm in terms of distance suggest that 
average energies of 5.6 and 5.8 MeV for TOPAS, and 5.8 and 6.0 MeV 
for GATE, better fulfill these criteria. This preference is underscored 
by a calculation time difference of 2 h favoring 5.8 MeV for TOPAS, 
and 3 h favoring 6.0 MeV for GATE. 

3.3 Spot size

The electron beam originating from a LINAC initially displays 
both radial and angular intensity distributions, influenced by the 
bending magnet, direction coils, and focusing coils within the 
electron transport system. We made the assumption that the 
electron distribution follows a Gaussian pattern [50], and defined 
the distributions of the initial electrons responsible for generating 
bremsstrahlung photons within the target. The electron angles 
varied within a range of 0.06–0.3° during the initial transport of the 
electron beam, which we considered negligible. Consequently, we 
presumed the beam to be parallel to the beam axis and modified 
only the total width at a half-height width (FWHM) of the radial 
distribution (ranging from 1.0 to 1.5 mm). This was done while 
maintaining an average energy of 6.0 MeV and a standard deviation 
of 0.168 MeV, corresponding to 3% of the average energy for GATE 
and 5.8 MeV for TOPAS [28, 51, 52].

All profiles have been normalized to the value of Dmax (1.5 cm) 
(Figure 6). The Gamma index (GI) values obtained in Table 6 
demonstrate that the electron source with an FWHM value of 
1.3 mm for TOPAS and 1.1 mm for GATE meets the 2%/2 mm 
GI criteria with a pass rate of 98% and 97%, respectively. Finally, 
based on the results of this commissioning process, the final electron 
parameters were determined to be 5.8 MeV and 6.0 MeV average 
energy and 1.3 mm and 1.1 mm focal spot size for TOPAS and 
GATE, respectively.

The discrepancies in energy values between GATE and TOPAS, 
despite both utilizing the same GEant4 version, stem from their 
respective standard model choices. The greater range of standard 

FIGURE 6
DP for 10× 10 cm2 field to define the Full Width Half Maximum 
(FWHM) from 1.0 to 1.5 mm for TOPAS and GATE.
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TABLE 6  GI results of applying different FWHM values.

Full width half maximum (mm) DP (GI ⩽ 1)

TOPAS GATE

1.5 82.70 77.14

1.4 93.20 82.66

1.3 98.60 91.12

1.2 95.50 94.10

1.1 92.70 98.10

1.0 89.60 92.80

model options in TOPAS, four compared to GATE’s three, signifies 
an enhanced capacity for finer adjustments and potentially more 
precise simulations. TOPAS offering an additional standard model 
choice suggests the potential for greater accuracy and specificity 
in modeling particle interactions compared to GATE’s available 
options. This is evidenced in the Gamma Index (GI) values, where 
TOPAS consistently displays higher values than GATE across all 
selected mean energy and FWHM values in our study. This signifies 
a trend toward greater fidelity in TOPAS simulations, likely due to 
its wider array of standard model options.

It is important to note that the gamma passing criteria 
(2%/2 mm) inherently encompass the quantified experimental 
uncertainties (1.8% dose, ±0.5 mm positioning). Therefore, the 
observed simulation-measurement agreements remain robust 
within the measurement uncertainty limits. 

3.3.1 Physics models
Various simulations were performed using the configured 

electron source, and the relative dose difference method was used 
to compare calculated and measured dose distributions to validate 
our choice of physical model in our work (PDD and DP). The 
optimal model for our application was one that had a small relative 
difference and a short calculation time. Figures 7–9 show the PDDs 
and DPs of the three EM models simulated by GATE for different 
field sizes, and the percentage of MC data points that passed the 
gamma evaluation criteria is given for each measurement based on 
the 2%/2 mm criteria. These results are presented in Tables 7, 8.

The results obtained from using different physical models show 
that the standard model agrees well with the measured data when 
using the GI criteria of 2%/2 mm, compared to the other models. 
In terms of timing, the standard model is faster than the Livermore 
and Penelope models due to its simpler transport algorithm [53]. 
Additionally, we observed that the standard model provides better 
agreement with the measured data than the Livermore and Penelope 
models. However, the Penelope model underestimates the dose in 
the region of electronic equilibrium. This is due to its higher average 
energy near the central axis, which causes a deeper penetration and 

FIGURE 7
PDD and DP for 1× 1, 2×2, 3×3, 10× 10, 15× 15 and 20×20 cm2 fields 
using the Standard electromagnetic physics models.
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FIGURE 8
PDD and DP for 1× 1, 2×2, 3×3, 10× 10, 15× 15 and 20×20 cm2 fields 
using the Livermore electromagnetic physics models.

FIGURE 9
PDD and DP for 1× 1, 2×2, 3×3, 10× 10, 15× 15 and 20×20 cm2 fields 
using the Penelope electromagnetic physics models.
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TABLE 7  PDD comparison between experimental data and TOPAS and GATE by applying the Gamma Index with 2% for dose-difference and 2 mm for 
distance-to-agreement.

Field sizes (cm2) Standard (GI ⩽ 1) Livermore (GI ⩽ 1) Penelope (GI ⩽ 1)

TOPAS GATE TOPAS GATE TOPAS GATE

1× 1 97.70 97.50 96.60 96.50 96.10 95.80

2× 2 98.20 98.20 97.70 97.40 96.90 96.70

3× 3 98.60 98.60 97.70 97.40 97.10 97.10

10× 10 98.70 98.70 98.70 98.50 97.50 97.10

15× 15 97.40 97.10 96.90 96.70 95.90 95.80

20× 20 97.10 97.10 96.50 96.50 94.50 94.00

TABLE 8  DP comparison between experimental data and TOPAS and GATE by applying the Gamma Index with 2% for dose-difference and 2 mm for 
distance-to-agreement.

Field sizes (cm2) Standard (GI ⩽ 1) Livermore (GI ⩽ 1) Penelope (GI ⩽ 1)

TOPAS GATE TOPAS GATE TOPAS GATE

1× 1 96.90 96.70 95.80 95.40 95.70 95.00

2× 2 97.20 97.00 96.70 96.30 95.70 95.40

3× 3 97.60 97.10 96.80 96.20 95.60 95.20

10× 10 97.70 97.60 96.70 96.50 91.90 90.60

15× 15 96.80 96.70 94.50 94.10 85.80 84.30

20× 20 94.60 94.20 93.40 92.00 78.80 77.00

a shift to the right in the PDD curve. Furthermore, the primary 
electron beam’s energy spectrum and radial distribution affect 
dose profiles, and this effect decreases with depth [42, 54]. Since 
Penelope’s model has a higher average energy than the others, it 
reduces dose deposition by increasing the distance from the center 
axis, implying that higher doses should be deposited closer to the 
center axis.

While the Standard EM model produced the best agreement in 
our water-phantom benchmarks and was fastest, it does not include 
Rayleigh scattering or detailed atomic relaxation. For simulations 
involving bone, lung heterogeneities Ait Elcadi et al. [55] or high-
Z implants, Livermore or Penelope models may better capture 
low-energy processes and atomic effects; therefore we recommend 
platform users validate physics choices on simple heterogeneous 
phantoms (e.g., slab lung/bone) before clinical adoption. In addition, 
because physics lists, cross-section libraries and default model 
choices can change between Geant4/TOPAS/GATE releases, users 
should (re)run a short set of the provided benchmark cases 
whenever a major software upgrade occurs. 

3.3.2 Future work
The benchmarking methodology and observed differences 

between GATE and TOPAS, while demonstrated for a 6 MV beam, 

have broader implications for radiotherapy simulations. This is 
particularly critical in two areas: 

1. Electron Beam Therapy: Accurate modeling of scattering 
and dosimetry in heterogeneous media is paramount. 
The performance gap between the platforms, especially 
regarding low-energy electron transport and the efficiency 
of simulating scattered particle showers necessitates
dedicated study.

2. High-Energy Photon Beams ( > 10 MV): These beams generate 
neutron contamination via (γ,n) reactions in the linac head. 
Divergent approaches to neutron transport in GATE and TOPAS 
could lead to significantly different conclusions about beam 
quality and out-of-field patient dose.

As a result, future work will expand this benchmarking to 
electron and high-energy photon beams, delivering a comprehensive 
guide for simulation platform selection across external beam 
radiotherapy.

Finally, we note the potential for cross-disciplinary 
computational strategies to inform next-generation acceleration of 
Monte Carlo. For example, digital quantum simulators and hybrid 
PD-DEM methods Tang et al. [56], Walayat et al. [57] illustrate 
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alternate paradigms and multi-scale approaches that could be 
fruitful to explore in future acceleration pipelines for high-fidelity 
radiotherapy simulation. 

4 Conclusion

The optimization techniques employed in Monte Carlo 
simulations can significantly reduce computation time while 
ensuring the accuracy of the results. In this study, we utilized 
various optimization techniques, including parallelization, PhS 
techniques, production threshold optimization, and variance 
reduction techniques, to reduce the computation time of a 
radiotherapy simulation task.

The results of our study showed that utilizing the maximum 
number of nodes available to the user and parallelizing the 
simulation into 200 tasks resulted in a 25% CPU optimization 
when compared to the use of a single node. Furthermore, 
by utilizing PhS techniques to divide the geometry into two 
parts and considering only the dependent part, the simulation 
time of the two modules was reduced by 65% compared 
to the simulation of the entire accelerator head. We also 
investigated the impact of production threshold optimization on 
the simulation results and found that a production threshold of 
0.1 mm in the water phantom would have a negligible impact
on the dose.

Additionally, we explored variance reduction techniques, 
including division factors, energy slices, step functions, cut-
off energies, and thread numbers, to optimize the computation 
time of the simulations. Overall, the use of these optimization 
techniques can significantly reduce the computation time 
required for Monte Carlo simulations, allowing for more 
efficient and accurate simulations in the field of radiotherapy. 
Simulations were performed using GATE and TOPAS to 
determine the electron parameters for a medical linear accelerator 
by creating various configurations with different average 
energies and measuring the dose distributions. The simulations 
showed that increasing the average electron energy resulted 
in increased dose values, with greater differences observed in
deeper positions.

The study also compared different physical models and 
concluded that the standard model was the most efficient and 
produced the best agreement with measured data. The final 
electron parameters determined were an average energy of 5.8 MeV 
and 6.0 MeV and a focal spot size of 1.3 mm and 1.1 mm for 
TOPAS and GATE, respectively. Overall, the study showed the 
importance of accurate determination of electron parameters 
in medical linear accelerators to ensure effective treatment. In 
addition to the advancements achieved through the optimization 
techniques employed in this study, future research can explore 
various avenues to further enhance the efficiency and effectiveness 
of Monte Carlo simulations in radiotherapy. One potential direction 
is the integration of machine learning algorithms to dynamically 
adjust simulation parameters based on real-time feedback, 
potentially leading to adaptive optimization strategies. Furthermore, 
investigating the applicability of emerging hardware architectures, 
such as GPUs or quantum computing, could offer substantial 
improvements in simulation performance. Additionally, expanding 

the scope of the study to encompass a wider range of treatment 
scenarios and clinical settings would provide valuable insights into 
the generalizability and robustness of the optimization techniques 
proposed. By addressing these areas, future research can continue 
to advance the field of Monte Carlo simulations in radiotherapy, 
ultimately facilitating more precise and efficient treatment planning
processes.

The methodological insights and benchmarking framework 
presented in this work retain enduring relevance, despite 
the continuous evolution of the simulation platforms (GATE 
v9.1, TOPAS v3.9). While future updates may adjust specific 
optimal parameters (e.g., electron mean energy, focal spot 
size) due to refined cross-sections or improved algorithms, the 
comparative strengths identified—such as TOPAS’s superior deep-
dose agreement and GATE’s efficacy with advanced variance-
reduction techniques (e.g., KillActor)—are grounded in 
fundamental architectural differences rather than version-specific 
details. The systematic framework for performance evaluation, 
employing phased optimization and dosimetric validation, thus 
provides a robust template for characterizing future software
iterations.

Data availability statement

The raw data supporting the conclusions of this article will be 
made available by the authors, without undue reservation.

Author contributions

ZE: Writing – review and editing, Methodology, Software, 
Validation, Writing – original draft, Visualization. YT: Writing – 
review and editing, Visualization, Methodology. TT: Methodology, 
Writing – review and editing, Visualization. RS: Writing – review 
and editing, Methodology, Investigation, Visualization. RH: Writing 
– review and editing. NA-H: Writing – review and editing. 
OB: Resources, Writing – original draft, Funding acquisition, 
Supervision, Writing – review and editing. 

Funding

The author(s) declare that financial support was received 
for the research and/or publication of this article. This 
work was supported by an internal grant from Texas A&M 
University at Qatar (RRSG2022). The simulation was conducted 
using the high performance computing infrastructure at the
same university.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Frontiers in Physics 14 frontiersin.org

https://doi.org/10.3389/fphy.2025.1671778
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Elcadi et al. 10.3389/fphy.2025.1671778

Generative AI statement

The author(s) declare that no Generative AI was used in the 
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in 
this article has been generated by Frontiers with the support of 
artificial intelligence and reasonable efforts have been made to 
ensure accuracy, including review by the authors wherever possible. 
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those 
of the authors and do not necessarily represent those of 
their affiliated organizations, or those of the publisher, 
the editors and the reviewers. Any product that may be 
evaluated in this article, or claim that may be made by 
its manufacturer, is not guaranteed or endorsed by the
publisher.

References

1. Kawrakow I, Walters BRB. Efficient photon beam dose calculations using 
DOSXYZnrc with BEAMnrc. Med Phys (2006) 33:3046–56. doi:10.1118/1.2219778

2. Battistoni G, Bauer J, Boehlen TT, Cerutti F, Chin MPW, Augusto RDS, et al. 
The FLUKA code: an accurate simulation tool for particle therapy. Front Oncol (2016) 
6:116–24. doi:10.3389/fonc.2016.00116

3. Schwarz R, Carter LL, Schwarz A. Modification to the monte carlo N-Particle 
(MCNP) visual editor (MCNPVised) to read in computer aided design (CAD) files (2005). 
doi:10.2172/843024

4. Bramoulle C, Husson F, Manens J. Monte Carlo (PENELOPE code) study of the 
x-ray beams from Sl linacs (Elekta). Physica Med (2000) 16:107–15.

5. Allison J, Amako K, Apostolakis J, Araujo H, Dubois PA, Asai M, et al. 
Geant4 developments and applications. IEEE Trans Nucl Sci (2006) 53:270–8. 
doi:10.1109/TNS.2006.869826

6. Augusto R, Bauer J, Bouhali O, Cuccagna C, Gianoli C, KozÅ‚owska W, et al. An 
overview of recent developments in FLUKA PET tools. Physica Med (2018) 54:189–99. 
doi:10.1016/j.ejmp.2018.06.636

7. Henzen D, Manser P, Frei D, Volken W, Neuenschwander H, Born EJ, et al. Monte 
Carlo based beam model using a photon MLC for modulated electron radiotherapy. 
Med Phys (2014) 41:021714. doi:10.1118/1.4861711

8. Sheikh-Bagheri D, Rogers DWO. Monte Carlo calculation of nine megavoltage 
photon beam spectra using the BEAM code. Med Phys (2002b) 29:391–402. 
doi:10.1118/1.1445413

9. Turian J, Smith B, Bernard D, Griem K, Chu J. Monte Carlo calculations of output 
factors for clinically shaped electron fields. J Appl Clin Med Phys (2004) 5:42–63. 
doi:10.1120/jacmp.v5i2.1976

10. Ali OA, Willemse CA, Shaw W, O’Reilly FHJ, Plessis FCP. Monte Carlo electron 
source model validation for an Elekta precise linac. Med Phys (2011) 38:2366–73. 
doi:10.1118/1.3570579

11. Khaledi N, Arbabi A, Sardari D, Mahdavi S, Aslian H, Dabaghi M, et al. 
Monte Carlo investigation of the effect of small cutouts on beam profile parameters 
of 12 and 14 mev electron beams. Radiat Measurements (2013) 51-52:48–54. 
doi:10.1016/j.radmeas.2013.01.019

12. Khaledi N, Arbabi A, Sardari D, Mohammadi M, Ameri A. Simultaneous 
production of mixed electron-photon beam in a medical LINAC: a feasibility study. 
Physica Med (2015) 31:391–7. doi:10.1016/j.ejmp.2015.02.014

13. Aitelcadi Z, Toufique Y, Kharrim AE, Elmadani S, Hilali A, Bouhali O. Validation 
of the GATE Monte Carlo code for radiation therapy: varian Clinac2300c/d. In: 2018 
4th International Conference on Optimization and Applications (ICOA) (2018). p. 1–4. 
doi:10.1109/ICOA.2018.8370602

14. Sarrut D, BardiÃ¨s M, Boussion N, Freud N, Jan S, Letang J-M, et al. A review of 
the use and potential of the gate Monte Carlo simulation code for radiation therapy and 
dosimetry applications. Med Phys (2014) 41:064301. doi:10.1118/1.4871617

15. Papadimitroulas P. Dosimetry applications in Gate Monte Carlo toolkit. Physica 
Med (2017) 41:136–40. doi:10.1016/j.ejmp.2017.02.005

16. Arce P, Lagares JI. CPU time optimization and precise adjustment of the Geant4 
physics parameters for a VARIAN 2100 C/D gamma radiotherapy linear accelerator 
simulation using GAMOS. Phys Med Biol (2018) 63:035007. doi:10.1088/1361-
6560/aaa2b0

17. Park Hyojun KJ-I, Choi HJ, Hee MC. Analysis of dose distribution according to 
the initial electron beam of the linear accelerator: a monte carlo study. J Radiat Prot Res
(2018) 43:10–9. doi:10.14407/jrpr.2018.43.1.10

18. Jung H, Shin J, Chung K, Han Y, Kim J, Choi DH. Feasibility of using Geant4 
Monte Carlo simulation for IMRT dose calculations for the Novalis Tx with a HD-120 
multi-leaf collimator. J Korean Phys Soc (2015) 66:1489–94. doi:10.3938/jkps.66.1489

19. Gholami S, Longo F, Nedaie HA, Berti A, Mousavi M, Meigooni AS. Application 
of Geant4 Monte Carlo simulation in dose calculations for small radiosurgical fields. 
Med Dosimetry (2018) 43:214–23. doi:10.1016/j.meddos.2017.08.007

20. Yani S, Rhani M, Soh R, Haryanto F, Arif I. Monte Carlo simulation of varian 
clinac iX 10 MV photon beam for small field dosimetry. Int J Radiat Res (2017) 15. 
doi:10.18869/ACADPUB.IJRR.15.3.275

21. Onizuka R, Araki F, Ohno T. Monte Carlo dose verification of VMAT 
treatment plans using Elekta agility 160-leaf MLC. Physica Med (2018) 51:22–31. 
doi:10.1016/j.ejmp.2018.06.003

22. OpenGATE Collaboration. GATE Documentation (2025). Available online at: 
https://opengate.readthedocs.io/en/latest/index.html#.

23. Geant4. Geant4 physics reference manual (2024).

24. Perl J, Shin J, Schumann J, Faddegon B, Paganetti H. Topas: an innovative 
proton monte carlo platform for research and clinical applications. Med Phys (2012) 
39:6818–37. doi:10.1118/1.4758060

25. Faddegon B, Ramos-Mendez J, Schuemann J, McNamara A, Shin J, Perl J, 
et al. The topas tool for particle simulation, a Monte Carlo simulation tool for 
physics, biology and clinical research. Physica Med (2020) 10:1016. doi:10.1016/j.ejmp.
2020.03.019

26. Mesbahi A, Fix M, Allahverdi M, Grein E, Garaati H. Monte Carlo calculation 
of Varian 2300c/d Linac photon beam characteristics: a comparison between 
MCNP4C, GEANT3 and measurements. Appl Radiat Isot (2005) 62:469–77. 
doi:10.1016/j.apradiso.2004.07.008

27. Aljarrah K, Sharp GC, Neicu T, Jiang SB. Determination of the initial 
beam parameters in Monte Carlo linac simulation. Med Phys (2006) 33:850–8. 
doi:10.1118/1.2168433

28. Fix M, Keall P, Dawson K, Siebers J. Monte Carlo source model for photon 
beam radiotherapy: photon source characteristics. Med Phys (2004) 31:3106–21. 
doi:10.1118/1.1803431

29. Pena J, Gonzalez-Castano DM, Gomez F, Sanchez-Doblado F, Hartmann GH. 
Automatic determination of primary electron beam parameters in Monte Carlo 
simulation. Med Phys (2007) 34:1076–84. doi:10.1118/1.2514155

30. Bouhali O, Sheharyar A, Mohamed T. Accelerating avalanche simulation 
in gas based charged particle detectors. Nucl Instr Methods Phys Res Section 
A: Acc Spectrometers, Detectors Associated Equipment (2018) 901:92–8. 
doi:10.1016/j.nima.2018.05.061

31. Faddegon B, Ross C, Rogers D. Angular distribution of bremsstrahlung from 15-
mev electrons incident on thick targets of be, al and pb. Med Phys (1991) 18:727–39. 
doi:10.1118/1.596667

32. Mohan R, Chui C, Lidofski L. Energy and angular distributions of photons from 
medical linear accelerators. Med Phys (1985) 12:592–7. doi:10.1118/1.595680

33. Chaney E, Cullip T, Gabriel T. A Monte Carlo study of accelerator head scatter. 
Med Phys (1994) 21:1383–90. doi:10.1118/1.597194

34. Nilsson B, Brahme A. Contamination of high-energy photon beams by scattered 
photons. Strahlentherapie (1981) 157:1181–6.

35. Capote R, Jeraj R, Ma C, Rogers D, Sanchez-Doblado F, Sempau J, et al. Phase-
space database for external beam radiotherpy. In: Nuclear data section. Vienna, Austria: 
International Atomic Energy Agency (2006).

36. Antcheva I, Ballintijn M, Bellenot B, Biskup M, Brun R, Buncic N, et al. ROOT: 
a C++ framework for petabyte data storage, statistical analysis and visualization. 
Computer Phys Commun (2009) 180:2499–512. doi:10.1016/j.cpc.2009.08.005

37. Capote R. IAEA nuclear and atomic data for medical applications: phase-space 
database for external beam radiotherapy nuclear data for heavy charged-particle 
radiotherapy. Radiother Oncol (2007) 84:S217.

38. Blazy L. Controle qualite des systemes de planification dosimetrique des 
traitements en radiotherapie externe au moyen du code Monte-Carlo PENELOPE. 
Ph.D. thesis. Toulouse, France: Paul Sabatier University (2007).

39. Franchisseur E. Modelisation et validation de l’accelerateur PRIMUS de 
SIEMENS par le code Monte Carlo PENELOPE dans le cadre de la Radiotherapie du 
Cancer. Ph.D. thesis. Nice, France: Nice-Sophia Antipolis University (2007).

Frontiers in Physics 15 frontiersin.org

https://doi.org/10.3389/fphy.2025.1671778
https://doi.org/10.1118/1.2219778
https://doi.org/10.3389/fonc.2016.00116
https://doi.org/10.2172/843024
https://doi.org/10.1109/TNS.2006.869826
https://doi.org/10.1016/j.ejmp.2018.06.636
https://doi.org/10.1118/1.4861711
https://doi.org/10.1118/1.1445413
https://doi.org/10.1120/jacmp.v5i2.1976
https://doi.org/10.1118/1.3570579
https://doi.org/10.1016/j.radmeas.2013.01.019
https://doi.org/10.1016/j.ejmp.2015.02.014
https://doi.org/10.1109/ICOA.2018.8370602
https://doi.org/10.1118/1.4871617
https://doi.org/10.1016/j.ejmp.2017.02.005
https://doi.org/10.1088/1361-6560/aaa2b0
https://doi.org/10.1088/1361-6560/aaa2b0
https://doi.org/10.14407/jrpr.2018.43.1.10
https://doi.org/10.3938/jkps.66.1489
https://doi.org/10.1016/j.meddos.2017.08.007
https://doi.org/10.18869/ACADPUB.IJRR.15.3.275
https://doi.org/10.1016/j.ejmp.2018.06.003
https://opengate.readthedocs.io/en/latest/index.html
https://doi.org/10.1118/1.4758060
https://doi.org/10.1016/j.ejmp.2020.03.019
https://doi.org/10.1016/j.ejmp.2020.03.019
https://doi.org/10.1016/j.apradiso.2004.07.008
https://doi.org/10.1118/1.2168433
https://doi.org/10.1118/1.1803431
https://doi.org/10.1118/1.2514155
https://doi.org/10.1016/j.nima.2018.05.061
https://doi.org/10.1118/1.596667
https://doi.org/10.1118/1.595680
https://doi.org/10.1118/1.597194
https://doi.org/10.1016/j.cpc.2009.08.005
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Elcadi et al. 10.3389/fphy.2025.1671778

40. Jaffray D, Battista J, Fenster A, Munro P. X-ray sources of medical linear 
accelerators: focal and extra-focal radiation. Med Phys (1993) 20:1417–27. 
doi:10.1118/1.597106

41. Anai S, Arimura H, Nakamura K, Araki F, Matsuki T, Yoshikawa H, et al. 
Estimation of focal and extra-focal radiation profiles based on Gaussian modeling in 
medical linear accelerators. Radiol Phys Technol (2011) 4:173–9. doi:10.1007/s12194-
011-0118-1

42. Verhaegen F, Seuntjens J. Monte carlo modelling of external radiotherapy photon 
beams. Phys Med (2003) 48:107–64. doi:10.1088/0031-9155/48/21/r01

43. Childress N, Bloch C, White R, Salehpour M, Rosen I. Detection of IMRT 
delivery errors using a quantitative 2D dosimetric verification system. Med Phys (2005) 
32:153–62. doi:10.1118/1.1829171

44. Nelms B, Simon J. A survey on planar IMRT QA analysis. J Appl Clin Med Phys
(2007) 8:76–90. doi:10.1120/jacmp.v8i3.2448

45. Esch AV, Bohsung J, Sorvari P, Tenhunen M, Paiusco M, Iori M, et al. Acceptance 
tests and quality control (QC) procedures for the clinical implementation of intensity 
modulated radiotherapy (IMRT) using inverse planning and the sliding window 
technique: experience from five radiotherapy departments. Radiother Oncol J Eur Soc 
Ther Radiol Oncol (2002) 65:53–70. doi:10.1016/s0167-8140(02)00174-3

46. Salvat F, FernÃ¡ndez-Varea J, Sempau J. PENELOPE-2008: a code system for Monte 
Carlo simulation of electron and photon transport. Barcelona: NEA Data Bank (2008). p. 
4–7.

47. Bergstorm PM, Pratt RH. An overview of the theories used in compton scattering 
calculations. Radiat Phys Chem (1997) 50:3–29. doi:10.1016/s0969-806x(97)00022-4

48. Cullen DE. A simple model of photon transport. Nucl Instr Methods Phys Res 
Section B: Beam Interactions Mater Atoms (1995) 101:499–510. doi:10.1016/0168-
583x(95)00480-7

49. Poon E, Verhaegen F. Accuracy of the photon and electron physics in 
GEANT4 for radiotherapy applications. J Med Phys (2005) 32:1696–711. doi:10.1118/1.
1895796

50. Keall P, Siebers J, Libby B, Mohan R. Determining the incident electron fluence 
for Monte Carlo-based photon treatment planning using a standard measured data set. 
Med Phys (2003) 30:574–82. doi:10.1118/1.1561623

51. DeMarco J, Solberg T, Smathers J. A ct-based monte carlo simulation tool for 
dosimetry planning and analysis. Med Phys (1998) 25:1–11. doi:10.1118/1.598167

52. Libby B, Siebers J, Mohan R. Validation of monte carlo generated phase-
space descriptions of medical linear accelerator. Med Phys (1999) 26:1476–83. 
doi:10.1118/1.598643

53. Sadoughi H-R, Nasseri S, Momennezhad M, Sadeghi H-R, Bahreyni-Toosi M-H. 
A comparison between GATE and MCNPX Monte Carlo codes in simulation of medical 
linear accelerator. J Med signals sensors (2014) 4:10–7. doi:10.4103/2228-7477.128433

54. Sheikh-Bagheri D, Rogers D. Sensitivity of megavoltage photon beam Monte 
Carlo simulations to electron beam and other parameters. Med Phys (2002a) 29:379–90. 
doi:10.1118/1.1446109

55. Ait Elcadi Z, El Moussaoui M, Aouadi S, Sukumaran R, Hammoud R, Al-
Hammadi N, et al. Gate monte carlo approach to heterogeneity dose distribution in 
small fields used in radiation therapy. Biomed Phys and Eng Express (2024) 10:035021. 
doi:10.1088/2057-1976/ad36cd

56. Tang H, Simancas-Garcia JL, Mai J, Cheng M, Iqbal I, Por LY. Overview of digital 
quantum simulator: applications and comparison with latest methods. SPIN (2024) 
15:2440004. doi:10.1142/S2010324724400046

57. Walayat K, Haeri S, Iqbal I, Zhang Y. PD-DEM hybrid modeling of leading edge 
erosion in wind turbine blades under controlled impact scenarios. Comput Part Mech
(2024) 11:1903–21. doi:10.1007/s40571-024-00717-y

Frontiers in Physics 16 frontiersin.org

https://doi.org/10.3389/fphy.2025.1671778
https://doi.org/10.1118/1.597106
https://doi.org/10.1007/s12194-011-0118-1
https://doi.org/10.1007/s12194-011-0118-1
https://doi.org/10.1088/0031-9155/48/21/r01
https://doi.org/10.1118/1.1829171
https://doi.org/10.1120/jacmp.v8i3.2448
https://doi.org/10.1016/s0167-8140(02)00174-3
https://doi.org/10.1016/s0969-806x(97)00022-4
https://doi.org/10.1016/0168-583x(95)00480-7
https://doi.org/10.1016/0168-583x(95)00480-7
https://doi.org/10.1118/1.1895796
https://doi.org/10.1118/1.1895796
https://doi.org/10.1118/1.1561623
https://doi.org/10.1118/1.598167
https://doi.org/10.1118/1.598643
https://doi.org/10.4103/2228-7477.128433
https://doi.org/10.1118/1.1446109
https://doi.org/10.1088/2057-1976/ad36cd
https://doi.org/10.1142/S2010324724400046
https://doi.org/10.1007/s40571-024-00717-y
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

	1 Introduction
	2 Materials and methods
	2.1 Geometry modeling
	2.1.1 GATE V9.1
	2.1.2 TOPAS V3.9
	2.1.3 Varian CLINAC IX head modeling

	2.2 Experimental measurements
	2.3 CPU optimization
	2.3.1 Phase space
	2.3.2 Physics cuts
	2.3.3 Variance reduction technics

	2.4 Electron source modeling
	2.4.1 Comparison of absorbed dose distributions
	2.4.2 Mean energy
	2.4.3 Spot size
	2.4.4 Physics models


	3 Results and discussion
	3.1 CPU timing optimization
	3.1.1 Phase space
	3.1.2 Physics cuts in the phantom
	3.1.3 Variance reduction techniques

	3.2 Adjustement of the beam source
	3.2.1 Mean energy

	3.3 Spot size
	3.3.1 Physics models
	3.3.2 Future work


	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

