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This mini-review mainly focuses on the fundamental problem of jet–jet/film 
impingement exhibiting superior fragmentation and atomization characteristics 
compared to single-jet injection; this has been widely used in agricultural 
irrigation and combustion propulsion systems. First, it presents the main 
controlling parameters and spray characteristic for both jet–jet and jet–film 
configurations, analyzes the breakup mechanisms, and points out the coupling 
between jet fragmentation processes and collision-induced or externally 
imposed vorticity fields. Then, the atomization enhancement of jet–jet or 
jet–film impingement is explained from the aspects of vortex generation, 
evolution, identification, and the interactions between vorticity fields and 
spray fields. Finally, representative applications of jet–jet/film impingement in 
agricultural engineering and aerospace engineering are introduced so as to 
achieve spatially uniform spray distribution and efficient fuel/oxidizer mixing 
characteristics. Future advancements require breakthroughs in cross-scale 
vortex–ligament interaction diagnostics and intelligent control of variable-
viscosity fluids to promote deep implementation of this technology in clean 
energy systems.
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 1 Introduction

Liquid jet atomization has been extensively used in various industrial applications, 
such as liquid fuel atomization and combustion in propulsion systems [1, 2], electrostatic 
spray coating [3], high-pressure spray aspirating in mining [4], pesticide spraying and 
agricultural irrigation [5, 6], fire-fighting [7], spray cooling [8], and respiratory disease 
treatment [9]. Liquid atomization describes the dynamic process involving the liquid jet 
breaking up into dispersed droplets by hydrodynamic instabilities [10, 11]. Examples are 
the primary breakup of liquid jet into filaments or large droplets by Kelvin–Helmholtz 
(KH) instability and then secondary breakup of filaments into small dispersed droplets 
by Rayleigh–Plateau (PR) instability or frequent droplet collision dynamics exerted by
aerodynamic forces.

Compared to the direct injection of jet atomization [10, 12], jet–jet/film impingement 
[13] can prominently increase the gas liquid surface area and enhance atomization. 
Jet–jet/film impingement generally involves substantial jet deformation and the
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unstable breakup of a liquid sheet [14, 15] with a broad spray 
distribution in which the breakup mechanism is more complicated 
than that of single jet fragmentation.

This mini-review introduces the jet–jet/film impingement 
phenomenon and the spray characteristics influenced by several 
main controlling parameters in Section 2. The interpretation 
of the atomization enhancement of jet–jet/film impingement 
from a vortical perspective is presented in Section 3, followed 
by some widely used applications in agriculture and engine 
systems in Section 4 and suggestions for future research in
Section 5. 

2 Phenomenal description of 
jet–jet/film impingement and 
atomization

A typical jet–jet impingement configuration [15] is 
schematically shown in Figure 1a. It generally includes four 
main controlling parameters: jet diameter D, impact velocity 
vector U for each jet, impact angle 2α, and liquid viscosity 
μ. The entire atomization process of jet–jet impingement can 
be described as the formation of a thin liquid sheet upon 
impingement, followed by the propagation and intensification 
of surface capillary waves induced by the surface KH instability 
along the liquid sheet as well as the liquid sheet breakup [16, 17] 
either at the center or rim to generate a large number of ligaments 
or dispersed droplets once the impact velocity is sufficiently 
large. As it increases the impact velocity at fixed impact angle, 
liquid sheet formation shows five distinct regimes [18]: liquid 
chain, closed edge, opening edge, unstable edges, and liquid 
sheet breakup.

Jet–jet impingement is symmetrically mirrored [13, 19] based 
on the symmetry plane, leading to a nonuniform distribution of the 
ligament and droplet formation that is merely close to the symmetry 
plane. Thus, Zhang and colleagues [20] proposed misaligned 
impinging jets by defining a misalignment ratio e, where the droplet 
distribution becomes more uniform at a moderately misaligned 
impingement owing to the competition between enhanced mass 
stretching and reduced mass contact volume as increasing e. 
In addition, He and colleagues [14] proposed spinning jet–jet 
impingement by breaking the mirror symmetry to shorten the 
liquid sheet breakup length and promote the ligament breakup into 
dispersed droplets, especially for the small flow rate conditions in 
practical variable-flow engines [21].

Jet–film impingement [22, 23] is schematically shown in 
Figure 1b, with additional controlling parameters of liquid film 
thickness h. Again, increasing the impact velocity shows the three 
distinct breakup modes [22] of close arch spray, mantle sheet, and 
fully developed fan spray. Generally, as the jet perpendicularly 
impacts on the film, the spray angle [22, 24] can be approximately 
determined by the momentum ratio between the radial jet flow 
and axial film flow. Analogously, transverse jet injection (jet–gas 
crossflow) exhibits a characteristic “horseshoe vortex” [25] near the 
jet root. When the gas velocity is sufficiently close to supersonic, a 
bow shock [26, 27] may occur around the jet that interacts with the 
liquid jet breakup. 

3 Vortex interpretation for jet–jet/film 
atomization enhancement

In practical spray environments usually involving complex 
turbulence flow, the liquid jet atomization process is probably 
strongly coupled with the evolution of the vortex field. 
Understanding and controlling vortices can enhance jet–jet and 
jet–film atomization leading to finer droplets, better mixing, and 
higher energy efficiency; vortex field control is thus fundamental to 
advancing jet–jet and jet–film atomization technologies [30]. 

3.1 Vortex formation, evolution, and 
identification of jet–jet/film impingement

When fluid flows through a nozzle, the presence of a boundary 
layer causes fluid molecules near the nozzle wall to move more 
slowly, while those away from the wall move faster, creating a velocity 
gradient [31–33]. As the jet exits the nozzle, shear layer instabilities 
cause the fluid to roll up, forming a toroidal vortex structure. There 
is also an obvious mushroom-shaped entrainment vortex at the 
jet head due to the liquid gas interaction. Vortex rings and vortex 
entrainment are classic coherent structures, commonly observed in 
free jets [34–36].

In jet–jet flow, two colliding jets interact, leading to complex 
vortex dynamics due to stagnation, shear, and flow instabilities 
[17] (Figure 1c). First, the impingement zone forms a high-
pressure stagnation region, deflecting flow radially outward. Velocity 
gradients between the jets generate shear layers, which roll up 
into vortices via KH instability. If the jets are pulsed or turbulent, 
coherent vortex rings may form and interact upon collision [17]. 
Wu and colleagues [37] investigated a moderate Reynolds number 
(Re = 4,050) turbulent opposed jet flow by using direct numerical 
simulation. They analyzed the turbulent flow field by using the 
proper orthogonal decomposition (POD) technique and found that 
the first POD mode includes a vortex ring situated in the impinging 
zone which is capable of shifting the axial position of the stagnation 
point. In contrast, the second to fourth POD modes contain several 
vortices that rotate alternately in two directions along the radial 
axis, and these vortices primarily induce tilting and distortion 
effects on the stagnation plane. Vortex evolution and breakdown in 
opposed-jets flow are governed by shear layer instabilities, Reynolds 
number effects, and nozzle geometry, leading to primary vortex 
stretching, secondary vortex generation, and eventual turbulent 
dissipation [38].

In jet–film impingement, the jet strikes a thin liquid film or 
boundary layer on a surface. The impact creates a stagnation region 
with high pressure, forcing the fluid to spread radially outward. The 
high-velocity jet interacts with the slower-moving film, creating a 
shear layer. KH instabilities may develop, leading to roll-up vortices 
at the jet–film interface [39, 40]. Moreover, the radial outflow 
from the impingement point may form a hydraulic jump (sudden 
increase in film thickness). Behind the jump, vortices can form 
due to adverse pressure gradients. The formation and evolution of 
the vortices are mainly influenced by jet velocity, film thickness, 
impingement angle, and fuel properties. Zhang and colleagues [18] 
investigated the height and distance of the jet–film vortex core 
under different ambient pressures and cross-flow velocities using 
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FIGURE 1
Phenomenal description of jet–jet/film impingement and atomization. (a) Schematic of jet–jet impingement and atomization process (adapted with 
permission from Chen et al. [15] Copyright 2013, Begell House Inc.); (b) distinct breakup modes for jet–film impingement (adapted with permission 
from Cheng et al. [22] Copyright 2018, Elsevier Ltd.); (c) vortex formation for jet–jet impingement at different Reynolds numbers (adapted with 
permission from Xue et al. [28] Copyright 2023, Elsevier B.V.); (d) vortex diagnosis using PIV technology for jet–film impingement (adapted with 
permission from Zhang et al. [29] Copyright 2022, Elsevier Ltd.).

laser sheet technology. An indicator of the “contribution index” 
was proposed to evaluate the degree of influence of different 
influencing factors.

With advancements in vortex dynamics research, a variety 
of vortex identification methods [41–43] have been developed, 
including the Q, k, D, and swirling strength criteria. These 
techniques play a crucial role in analyzing and understanding 
complex vortex structures in fluid dynamics. However, the 
problem of finding the best vortex identification techniques is still 
controversial. 

3.2 Vortex diagnose technics

High-speed imaging is a widely used experimental technique 
for diagnosing vortex dynamics in jet–jet/film impingement studies 
[44, 45]. By employing ultra-fast cameras, researchers can resolve 
transient flow phenomena such as vortex formation, evolution, and 
breakdown. The technique often incorporates tracer particles or 
fluorescent dyes for enhanced contrast, combined with backlight 
illumination or laser sheet lighting to clearly visualize thin film 
dynamics (radial spreading, hydraulic jumps, and vortex roll-up) 
and interfacial instabilities caused by jet–jet/film interactions [5, 38].

For the quantitative measurement of instantaneous velocity 
fields, particle image velocimetry (PIV) is a powerful non-intrusive 
flow diagnostic technique. By illuminating seeded tracer particles 
with a pulsed laser sheet and capturing their displacements via 

synchronized high-speed cameras, PIV provides two- (2D-PIV) or 
three-component (3D stereoscopic/volumetric PIV) velocity vector 
maps of the flow field [46, 47]. In jet–jet/film impingement research, 
PIV enables the precise characterization of vortex dynamics through 
derived quantities like vorticity, swirling strength, and Q-criteria, 
revealing key features such as shear layer roll-up, recirculation zones, 
and vortex-ring structures (Figure 1d).

Modern advances like tomographic PIV (Tomo-PIV) can 
reconstruct 3D vortex tubes and coherent structures [48], while 
microscopic PIV (μPIV) resolves near-wall phenomena [49]. When 
combined with machine-learning-assisted diagnostics, PIV data can 
effectively identify dominant vortex modes [50]. This makes it an 
indispensable tool for validating CFD models and understanding 
complex vortex interactions. 

3.3 Interaction between vortex field and 
spray characteristics

The interaction between jet–jet/film vortex fields and spray 
characteristics represents a complex multiphase phenomenon 
where coherent vortical structures fundamentally govern spray 
development and atomization processes [51, 52]. In dual-jet 
impingement or jet–film interaction systems, the collision and 
merging of vortex filaments from adjacent jets create intricate three-
dimensional flow topologies that dramatically alter spray formation. 
Wang and colleagues [53] compared the hydraulic performance 
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between jet-impingement and non-impinging sprinklers by 
using highspeed photography (HSP). Their results show that the 
developed jet impingement sprinkler achieved a smoother water 
distribution trend.

The primary vortex dynamics include shear layer roll-up 
from individual jets, collision-induced vortex pairing, and film-
driven recirculation zones which collectively control the liquid 
breakup mechanism through several interconnected pathways. 
Large-scale vortex rings generated at jet boundaries enhance 
primary atomization by extruding liquid sheets and promoting 
Rayleigh–Taylor instabilities, while small-scale turbulent vortices in 
the merging region drive secondary droplet fragmentation through 
intense velocity fluctuations [54]. Xia and colleagues [55] found 
that a type of large scale instability due to a vortex ring located 
at the impingement zone promotes the breakup of the water 
sheet or ligaments, forming smaller droplets. Moreover, coherent 
vortices entrain droplets, altering trajectories and enhancing 
radial/axial spreading. These vortices preferentially transport larger 
droplets toward the spray periphery through centrifugal effects 
while simultaneously promoting more homogeneous mixing of 
droplet sizes [56].

In propulsion systems, these vortex-mediated spray patterns 
directly affect combustion stability [57], while in industrial 
coating applications and agricultural production applications they 
determine deposition uniformity [58–60]. Current research is 
focused on active flow control strategies to manipulate vortex 
interactions for optimized spray performance across different Weber 
and Reynolds number regimes, although the nonlinear coupling 
between vortex merging dynamics and droplet formation pathways 
remains a key challenge in predictive modeling. 

4 Applications of jet–jet/film 
impingement

The application of sprinklers [53, 61, 67–70] in agricultural 
engineering (Figure 2a) adopts the asymmetric impingement 
between a primary and a secondary jet to replace the traditional 
single water-jet-dispersing devices in rotating sprinklers [71–73] 
and promote atomized performance, especially for low-pressure 
conditions [32, 67, 74]. Jiang and colleagues [61] found the 
Christiansen’s uniformity coefficient [75] of the jet impingement 
sprinkler with various elevation angles of secondary nozzle greater 
than the non-impingement sprinkler. Many parameter optimization 
studies have demonstrated that the nozzle geometry [34, 51, 76, 
77], angle of dispersion [78], aspect ratio [34, 79], and aperture 
ratio [53, 80] for the primary and secondary jets can significantly 
influence jet instabilities and breakup characteristics in agricultural 
irrigation.

Apart from jet–jet impingement, some other jet-based methods 
can also be used in sprinklers to adapt hydraulic performance. 
Fan-type nozzles [54, 62, 81] increase the total liquid surface 
area to facilitate atomization [82] by forming a fan-shaped liquid 
sheet (Figure 2b), while the penetration distance of the liquid sheet 
is generally smaller than the jet–jet impingement. For oil-based 
emulsion spray [81, 83, 84], the holes and web structures [62, 85, 
86] break up the inner liquid sheet differently from the water liquid 
sheet, generally showing the rim breakup. For larger liquid viscosity, 

the enhanced viscous dissipation would suppress surface capillary 
wave propagation and subsequent liquid sheet breakup. In addition, 
non-Newtonian jet–jet impingement [7, 87] and two miscible liquid 
jets with different surface tensions [85] would further complicate the 
breakup mechanism [88] and enrich the breakup phenomenon.

An air-assisted nozzle [63, 89] can promote the liquid jet 
breakup owing to the large shearing effects and kinetic energy of gas 
(Figure 2c). The combination of air-assisted nozzle and electrostatic 
excitation [5, 63, 90] can further promote atomization and reduce 
the need for pesticide spraying. In addition, as shown in Figure 2d, 
the atomization of a traditional sprinkler can be developed by using 
a driving arm [64] to cut the water jet periodically with appropriate 
driving frequency and injection pressure. Similarly, as shown in 
Figure 2e, a dispersion tooth inserted into the water jet [65, 91, 92] 
has been shown to be an effective way of improving the uniformity 
of water distribution from irrigation sprinklers.

For applications in high-thrust rocket engines [13, 93] and 
opposed-piston compression ignition engines (CIE) [94, 95], liquid 
fuel atomization and subsequent spray combustion would be 
substantially enhanced owing to the promoted droplet collision 
probability (Figure 2f). The impingement is a direct and efficient 
way to promote the atomization of heavy oil or bio-oil [96, 97]. 
In addition, for the pintle injector [24, 25, 66, 98] utilized in the 
applications of variable-thrust rocket engines, the spray cone is 
formed by the radial jet flow impinging the axial annular film flow, 
which has a simple structure, continuous flow regulation, and stable 
combustion superior to other variable-thrust methods.

The phenomenon of jet–jet impingement in agricultural 
irrigation should not be essentially different from that in 
combustion systems once the dynamic similarities are satisfied with 
approximately dimensional parameters. For example, jet–jet/film 
breakup is generally controlled by two important parameters: 
the Weber number We = ρDU2/σ (ρ is the liquid density, D the 
jet diameter, U the relative velocity, and σ the surface tension 
coefficient) measures the relative importance of the jet impact inertia 
compared to the surface tension; the Ohnesorge number Oh =
μ/√ρDσ (μ is the liquid viscosity) represents the relative importance 
of the viscous force to impact inertia and surface tension. A larger 
jet diameter in agricultural irrigation generally leads to a larger We
or a smaller Oh, which is approximately equivalent to an increase 
of jet impact velocity or a decrease of liquid viscosity promoting 
the development of jet instabilities and subsequent jet breakup. 
However, the dispersed droplet size in agricultural irrigation would 
be larger than that in combustion systems owing to its initial 
sufficiently large jet diameter.

In addition, the internal cavitation [99, 100] of various nozzles 
is also a significant factor influencing the flow rate and external 
jet atomization in agriculture [101]; this is the same in combustion 
systems that influence the combustion emission characteristics [102, 
103] based on dual-fuel direct injection [103]. 

5 Discussion and concluding remarks

For jet–jet impingement at given fluid property and impact 
angle, the most direct and straightforward way to enhance 
atomization is to increase the impingement velocity. However, in 
practical applications of fuel injection in engines, achieving higher 
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FIGURE 2
Applications of jet–jet/film impingement in agriculture and propulsion engines. (a) The sprinkler involves a primary jet impacting with a secondary jet 
(adapted with permission from Jiang et al. [61] Copyright 2024, by Elsevier Ltd.); (b) fan-type nozzles of a fan-shaped liquid sheet (adapted with 
permission from Gong et al. [62] Copyright 2020, by Elsevier Ltd.); (c) air-assisted nozzle (adapted with permission from Dai et al. [63] Copyright 2017, 
The Authors); (d) atomization enhancement by a driving arm (adapted with permission from Tang and Chen [64] Copyright 2022, The Authors); (e)
liquid jet impinging a dispersion tooth (adapted with permission from Pan et al. [65] Copyright 2024, by Elsevier Ltd.); (f) pintle injector of jet–film 
impingement (adapted with permission from Zhao et al. [66] Copyright 2022 by Elsevier Ltd.).

injection velocities usually requires a sufficiently large injection 
pressure drop which negatively impacts economic efficiency and 
implementation feasibility owing to the difficulty of creating such a 
large injection pressure drop. In addition, for variable-thrust engines 
at low throttling levels, the injection velocities cannot be sufficiently 
high. Thus, alternative injection strategies—such as swirl injection or 
off-center impingement-to-break symmetry—could be employed to 
attain desirable spray enhancement.

For jet–film impingement, decreasing film thickness leads 
to worse spray characteristics with increased spray angle and 
enhanced nonuniformity of droplet distribution—indicating that 
the atomization is dominated by the local effective impact between 
jet and film. Jet–jet impingement generally has better atomization 
than jet–film impingement owing to sufficient impact; however, 
the jet–film injection element is still widely and successfully used 
in pintle injectors in variable-thrust rocket engines because its 
mixing characteristics between fuel and oxidizer is better than 
jet–jet impingement, although atomization plays a secondary role 
in combustion when the combustor is sufficient large for complete 
combustion.

Jet–jet/film impingement for atomization enhancement has 
been widely applied in agriculture and propulsion systems. The 
most crucial factor causing liquid jet atomization is generating and 
magnifying the non-uniformity induced by such as hydrodynamic 
instabilities, local-strain-rate-dependent non-Newtonian fluid, 
gelled propellants, or exerted in an external electromagnetic field. 
In addition, it is essential to fully exploit interactions between the 
external flow field and droplets, thereby regulating energy transfer 
between hydrodynamic instabilities and external vortical structures. 
This enables precise control over the spatial distribution and droplet 
size of atomization characteristics.

The roles of various hydrodynamic instabilities and possible 
competition among the impact inertia, surface tension, and 
viscosity of various liquid jets in affecting jet–jet/film breakup 
and atomization characteristics are strongly coupled so that it 
is difficult to obtain a general design principle by focusing on 
only one parameter at a time. Fortunately, artificial intelligence 
(AI) techniques and machine learning algorithms in agriculture 
[104–107] could be very powerful for jet/film breakup prediction 
models by importing various experimental data to address the
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prediction bottleneck of traditional physical models in strongly 
nonlinear, multi-scale scenarios; this merits extensive future study.
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