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Introduction: This paper proposes FEAM (Fused Emotion-aware Attention 
Model), a dynamic prompting framework for sentiment analysis. Unlike static 
or handcrafted templates, FEAM dynamically selects input-specific prompts, 
aiming to address the challenges of nuanced sentiment expressions, lexical 
ambiguity, and domain variability.
Methods: The framework integrates a query-aware prompt controller with 
a BERT encoder to generate contextualized representations. Emotion-aware 
modulation amplifies sentiment-bearing features, multi-scale convolution 
captures linguistic patterns at different granularities, and topic-aware attention 
aligns local cues with global semantics. Experiments are conducted on four 
benchmark datasets: Rest16, Laptop, Twitter, and FinancialPhraseBank.
Results: FEAM achieves F1-scores of 91.55% on Rest16, 92.83% on Laptop, 
93.10% on Twitter, and 90.11% on FinancialPhraseBank, outperforming strong 
baselines such as transformer-based, graph-enhanced, and prompt-tuned 
models. Ablation studies verify the contribution of each module, and robustness 
tests demonstrate resilience to adversarial perturbations and domain shifts.
Discussion: The results show that FEAM effectively improves sentiment 
classification across diverse and noisy textual domains. By combining dynamic 
prompting with emotion-aware modeling and hierarchical convolutional 
attention, FEAM provides a scalable and robust framework for real-world 
sentiment analysis, with potential extensions in domain adaptation, multimodal 
integration, and automated prompt discovery.

KEYWORDS

dynamic prompting, soft prompts, sentiment classification, prompt selection, emotion-
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 1 Introduction

Sentiment analysis is a fundamental task in natural language processing (NLP), enabling 
the extraction of subjective opinions from unstructured text across a wide range of 
applications, such as social media monitoring, customer feedback analytics, and financial 
opinion mining [1–3]. Despite its broad utility, sentiment classification remains intrinsically 
challenging due to its reliance on subtle contextual cues, lexical ambiguity, and domain-
sensitive semantics. For example, the phrase “not bad” implies a positive sentiment despite a
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superficially negative construction, while the word “hot” may 
express excitement in fashion reviews but denote overheating 
in electronics. Such variations demand models that are both 
semantically precise and contextually adaptable.

Prompt-based learning has recently emerged as a parameter-
efficient alternative to traditional fine-tuning for large pretrained 
language models (PLMs) such as BERT and RoBERTa [4]. 
By prepending task-relevant instructions or continuous prompt 
embeddings to the input, this paradigm enables downstream 
adaptation with minimal updates to model weights [5]. However, 
existing soft prompt approaches typically employ a static prompt 
vector for all instances, disregarding the semantic diversity and 
emotional variability inherent in sentiment-laden text. This one-
size-fits-all strategy often fails to capture fine-grained polarity, 
especially when applied across domains with different linguistic 
expressions or stylistic patterns.

To alleviate these limitations, dynamic prompting methods have 
been introduced, wherein prompt representations are adapted based 
on the input context [6–8]. While offering improved flexibility, 
many such methods require either generating prompts via large 
decoders or modifying templates at inference time, leading to 
high computational overhead and reduced interpretability. More 
importantly, most of these methods are designed for general 
NLP tasks, with limited emphasis on the unique requirements of 
sentiment analysis–such as emotional salience, domain sensitivity, 
and polarity contrast.

To this end, we propose FEAM (Fused Emotion-aware Attention 
Model), a dynamic prompting framework tailored specifically 
for sentiment classification [9–11]. FEAM employs a lightweight 
query-aware soft prompt selection strategy, wherein a controller 
network dynamically retrieves soft prompt vectors from a learnable 
prompt pool according to the semantic embedding of each 
input. This enables instance-specific supervision without relying 
on handcrafted templates or computationally expensive generative 
mechanisms.

In addition, FEAM enhances sentiment-aware representation 
through a unified architecture that integrates three key components 
[1]: a token-wise emotion modulation layer that amplifies 
sentiment-bearing features [2], a multi-scale convolutional 
module that captures patterns at varied linguistic granularities, 
and [3] a topic-aware attention mechanism that aligns local 
features with global semantic context. These components 
collectively improve the model’s ability to detect nuanced 
sentiment expressions across domains, even under noisy or 
adversarial conditions. An overview of the FEAM framework is 
illustrated in Figure 1, which serves as the research overview for 
this work, highlighting the motivation, architectural design, and
key findings.

We conduct extensive evaluations on four representative 
benchmarks–Rest16, Laptop, Twitter, and FinancialPhraseBank–as 
well as a large-scale single-domain corpus (Combined Dataset). 
FEAM consistently outperforms strong baselines, including 
transformer-based, graph-enhanced, and instruction-tuned models, 
showing a significant improvement in F1-score. Ablation and 
robustness analyses further validate the contributions of each 
module and demonstrate the model’s resilience under domain shifts 
and prompt perturbations [12, 13].

Our main contributions are summarized as follows. 

1. We propose a lightweight and template-free dynamic 
prompting mechanism that enables interpretable, input-
conditioned prompt selection without relying on handcrafted 
templates or generative modules.

2. We introduce FEAM, a framework that integrates dynamic 
prompting with emotion-aware token modulation, multi-scale 
convolutional encoding, and topic-aware attention to enhance 
sentiment representation and generalization.

3. We perform comprehensive evaluations on multi-domain 
datasets, showing that FEAM achieves superior accuracy, 
robustness, and domain adaptability compared to existing 
state-of-the-art models.

The rest of this paper is organized as follows. Section 2 reviews 
related work. Section 3 formulates the problem. Section 4 presents 
the FEAM architecture. Section 5 describes the experimental setup 
and evaluation results. Section 6 discusses robustness, design 
implications, and limitations. Section 7 concludes the paper and 
outlines future directions. 

2 Related work

Sentiment analysis has long played a critical role in natural 
language processing (NLP), serving applications ranging from 
social media monitoring and public opinion mining to customer 
experience analysis and market forecasting [14–16]. Early 
approaches primarily relied on classical machine learning 
techniques with handcrafted features–such as n-grams, sentiment 
lexicons, and part-of-speech tags–combined with classifiers like 
Support Vector Machines and Naive Bayes [17–19]. Despite their 
simplicity, these methods lacked contextual understanding and 
exhibited poor generalizability across domains, particularly when 
dealing with implicit sentiment, sarcasm, or domain-specific 
expressions [20–23].

The rise of deep learning introduced automatic hierarchical 
representation learning into sentiment classification. Convolutional 
neural networks (CNNs) were effective for capturing localized 
polarity cues, while recurrent models such as LSTMs and GRUs 
could model sequential dependencies [24]. Nonetheless, these 
architectures typically require large-scale labeled data and often 
degrade in performance when deployed in domain-shifted or noisy 
scenarios.

More recently, prompt-based learning has emerged as a 
parameter-efficient paradigm for adapting pretrained language 
models (PLMs) to downstream tasks. Approaches such as Prefix-
Tuning, P-Tuning v2, and Prompt-Tuning [26] reformulate tasks as 
conditional language modeling by prepending task-specific tokens 
or embeddings to the input sequence. While soft prompt tuning 
offers improved flexibility and efficiency by avoiding full model fine-
tuning [27], it typically employs a static prompt across all inputs. This 
limits its ability to capture the diverse sentiment cues found in real-
world text, especially in cases involving emotional nuance, sarcasm, 
or domain-dependent semantics.

To address this, dynamic prompting strategies have been 
proposed to enable instance-conditioned prompt generation 
or selection [28, 29]. These include routing-based controllers, 
attention-based prompt retrieval, and embedding-conditioned 
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FIGURE 1
Research overview of the proposed FEAM framework, including task challenges, design principles, core modules, contributions, and results. FEAM 
integrates dynamic prompting, emotion-aware modulation, and convolution-attention encoding, achieving 93.10% F1 on the Twitter dataset.

generation. While these methods improve adaptability, they are 
often computationally expensive and offer limited interpretability. 
Moreover, most are designed for generic NLP tasks, and their 
effectiveness in sentiment analysis–where polarity is often subtle 
and context-dependent–remains underexplored.

Another complementary direction is domain adaptation, which 
aims to mitigate performance degradation across heterogeneous 
sentiment domains. Techniques such as adversarial training, 
contrastive learning, and domain-aware alignment have been 
developed to bridge distributional gaps [30, 31]. Prompt-based 
domain adaptation, which adjusts input representations via prompts 
to emphasize domain-relevant patterns, provides a lightweight 
alternative. However, these methods rarely integrate sentiment-
specific refinements such as emotion-guided modulation or affective 
reasoning.

Hybrid neural architectures combining CNNs and transformers 
have also demonstrated competitive performance for sentiment 
tasks [32–34]. CNN modules effectively extract local features such 
as short phrases or negations, while transformer-based encoders 
model global dependencies. Yet, these hybrid models generally 
lack dynamic adaptability and seldom incorporate explicit emotion 
modeling mechanisms.

In parallel, emotion-aware representation learning has gained 
momentum for enhancing sentiment understanding. Approaches 
such as gated attention [35], lexicon-guided enhancement [36], 
and emotion-channel modeling [37] have been introduced to 
highlight affective content. However, such methods remain largely 
disconnected from the prompt learning paradigm. The synergy 
between prompt selection and emotion-aware encoding is seldom 
explored in current literature.

Although notable progress has been made across prompt-
based adaptation, domain generalization, and emotion-sensitive 
modeling, existing efforts remain fragmented, rarely unifying 

dynamic prompt selection, emotion-aware modulation, and multi-
scale hierarchical modeling in a coherent architecture. To address 
this gap, we propose FEAM, a framework that integrates instance-
specific prompting with emotion-guided feature enhancement, 
multi-scale convolution (Conv), and topic-aware attention (Attn), 
offering a lightweight yet sentiment-focused alternative that 
effectively bridges these gaps for robust sentiment classification 
across diverse and noisy textual domains.

As shown in Table 1, existing methods such as P-Tuning v2, 
SynPrompt, and Adaptive Prompt Retrieval each have limitations: 
P-Tuning v2 uses static prompts that fail to adapt to diverse 
input contexts, SynPrompt relies on template-based prompts 
that overlook sentiment signals, and Adaptive Prompt Retrieval, 
while input-dependent, neglects sentiment-aware representation. 
In contrast, FEAM integrates dynamic instance-specific prompting 
with emotion-guided feature enhancement, multi-scale convolution 
(Conv), and topic-aware attention (Attn), offering a lightweight 
yet sentiment-focused alternative that effectively bridges these 
gaps for robust sentiment classification across diverse and noisy 
textual domains.

3 Problem formulation

We formalize sentiment classification with dynamic prompting 
as a supervised learning task. Given a dataset D = {(qi,ci)}Ni=1, 
where each input qi is a tokenized sentence and ci ∈ C =
{Positive,Neutral,Negative} is the corresponding 
sentiment label, the objective is to learn a prediction function 
f that maps inputs to labels based on instance-aware prompt 
representations, as shown in Equation 1:

̂ci = f (qi) = argmax
c∈C

P(c ∣ qi, Pqi
) (1)
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TABLE 1  Comparison between FEAM and representative prompt-based approaches.

Method Prompt type Adaptivity Sentiment-aware design

P-Tuning v2 [38] Continuous soft prompts Static across instances ✗

SynPrompt [39] Syntax-enhanced prompts Template-dependent, partial adaptivity ✗

Adaptive Prompt Retrieval [40] Retrieved prompts from memory Input-dependent retrieval ✗

FEAM (ours) Dynamic soft prompt pool Fully input-conditioned, query-aware selection ✓ (EM + Conv + Attn)

EM, emotion modulation; Conv, Convolution; Attn, Attention.

FIGURE 2
Architecture of FEAM. (a) Dynamic prompt pooling. (b) BERT encoding. (c) Emotion-aware modulation. (d) Multi-scale convolution and topic-aware 
attention. (e) Dropout and classification.

Here, Pqi
 denotes a dynamically selected soft prompt tailored 

to qi, computed by attending over a learnable prompt pool. Unlike 
static prompting, this formulation enables input-specific alignment 
between prompts and semantic-emotional features. The task poses 
challenges such as handling diverse sentiment expressions, adapting 
to cross-domain variation, and capturing both local polarity cues 
and global contextual semantics. 

4 Methodology

To address the limitations of static, manually designed 
prompts–which often result in performance instability across 
diverse tasks and input distributions–we propose the FEAM 
framework. FEAM integrates instance-aware dynamic prompting 
with hierarchical semantic modeling to enhance both adaptability 
and robustness in sentiment classification. As illustrated in Figure 2, 
the framework consists of two main stages: dynamic prompt 
selection and hierarchical feature refinement.

In the first stage, Dynamic Prompt Selection and Input Encoding, 
the input is reformulated by prepending a dynamically generated 
soft prompt to the token sequence of the query. Specifically, 

FEAM maintains a learnable prompt pool composed of multiple 
soft prompt vectors. A query-aware controller network processes 
the semantic embedding of the input sentence and computes a 
set of attention weights, which are used to aggregate relevant 
prompt vectors into a composite prompt Pq ∈ ℝm×d, where m
denotes the prompt length and d is the hidden dimension. This 
instance-specific prompt is then concatenated with the token 
embeddings of the input sentence and passed through a pretrained 
BERT encoder, producing contextualized representations that 
incorporate both task-specific supervision and domain-sensitive
semantics.

In the second stage, Hierarchical Feature Modulation and 
Aggregation, the contextual representations are refined to emphasize 
sentiment-relevant and structurally significant information. A 
token-level sentiment modulation layer (see Figure 2b) employs a 
gating mechanism to selectively adjust embedding dimensions based 
on the emotional salience of each token. The modulated features 
are subsequently passed through a multi-scale convolutional 
module (Figure 2a) consisting of parallel convolutional filters with 
varying kernel sizes, enabling the extraction of sentiment cues 
at different levels of linguistic granularity. To further improve 
semantic coherence, a topic-aware attention mechanism (Figure 2c) 
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aggregates the multi-scale features using global sentence-level 
contextual information.

Finally, the aggregated representation is fed into a softmax 
classification layer to predict the sentiment polarity of the input (i.e., 
positive, neutral, or negative). By jointly leveraging dynamic prompt 
selection, emotion-aware feature modulation, and multi-scale 
hierarchical encoding, FEAM achieves robust and generalizable 
performance across diverse sentiment classification scenarios. 

4.1 Prompt-based supervision encoding

To handle semantic variability and domain-specific sentiment 
divergence, the first stage of FEAM introduces an instance-aware 
dynamic prompt encoding strategy. This component enables the 
model to adaptively select soft prompt representations that align 
with the semantic content of each input, thereby providing query-
specific supervision without relying on handcrafted templates or 
static patterns. 

4.1.1 Instance-aware dynamic prompt selection
To enable input-specific adaptation, we introduce a dynamic 

prompt selection mechanism in which a controller network attends 
over a learnable prompt pool to generate soft prompts tailored to 
each query instance. Unlike conventional prompting paradigms that 
rely on fixed templates or demonstration-based in-context learning, 
the proposed approach facilitates continuous, differentiable, and 
semantically aligned prompt construction conditioned on the input.

The prompt pool is defined as a learnable tensor P ∈ ℝN×m×d, 
where N denotes the number of candidate prompts, m is the 
length of each prompt in tokens, and d is the hidden embedding 
dimension. Given an input instance xq, a query embedding vector 
q ∈ ℝd is computed by aggregating the [CLS] token representation 
with the mean of all token embeddings from the input sequence. 
This embedding is then passed through a controller network 
to produce an attention distribution over the prompt pool, 
as shown in Equation 2:

αi =
exp(q⊤ki)

∑N
j=1

exp(q⊤kj)
for i = 1,…,N (2)

In this formulation, ki denotes the learned key vector 
corresponding to the i-th prompt. The final instance-specific prompt 
Ps ∈ ℝm×d is obtained via attention-weighted aggregation over the 
candidate prompts, as shown in Equation 3:

Ps =
N

∑
i=1

αi ⋅Pi (3)

Let Eq ∈ ℝ
lq×d represent the token embeddings of the query 

input. The prompt-augmented encoder input is then constructed by 
concatenating Ps with Eq, as shown in Equation 4:

X′ = Concat(Ps,Eq) ∈ ℝ
(m+lq)×d (4)

The resulting sequence X′ is subsequently processed by a 
pretrained BERT encoder to obtain contextualized representations. 
Both the prompt pool and the controller network are trained jointly 
with the end-task objective, enabling the model to learn instance-
aware prompt selection strategies that improve semantic alignment 
and task performance. 

4.1.2 Contextual representation via BERT
To obtain contextually enriched representations from the 

prompt-augmented input, we utilize a pretrained BERT encoder. 
Owing to its bidirectional self-attention mechanism, BERT is well-
suited for modeling long-range dependencies and capturing subtle 
sentiment expressions–both of which are essential for accurate 
sentiment inference under diverse linguistic and domain-specific 
conditions.

Let X = {x1,x2,…,xn} denote the input sequence formed by 
concatenating the dynamically selected prompt with the tokenized 
query. Each token xi is embedded by summing its token, positional, 
and segment embeddings, as shown in Equation 5:

H0
i = Exi
+Eposi
+Esegi

(5)

These initial embeddings H0 are subsequently propagated 
through a stack of L transformer layers, each comprising a 
multi-head self-attention mechanism followed by a position-
wise feed-forward network. The attention operation is computed 
as shown in Equation 6:

Attention (Q,K,V) = softmax(QK⊤

√dk

)V (6)

The output of the multi-head attention module is produced by 
concatenating the individual attention heads and projecting them 
through a linear transformation, as shown in Equation 7:

MultiHead (Q,K,V) = Concat(head1,…,headh)WO (7)

To facilitate gradient flow and training stability, each 
transformer layer includes residual connections and layer 
normalization, as defined in Equation 8:

Hl+1 = LayerNorm(FFN(Hl) +Hl) (8)

After processing through all L layers, the output HBERT ∈ ℝn×d

encodes the contextual semantics of the entire input, integrating 
both the content of the query and the semantics induced by the 
instance-specific prompt. These representations are then forwarded 
to the emotion-aware modulation module for sentiment-focused 
refinement. 

4.2 Hierarchical Feature Modulation and 
Aggregation

While the instance-aware dynamic prompting mechanism 
enables contextual alignment by injecting adaptive supervision, it 
does not explicitly enhance sentiment-relevant features or handle 
syntactic and semantic variability. To overcome these limitations, 
the second phase of the proposed FEAM framework introduces 
a hierarchical feature refinement pipeline. This phase consists of 
three key components [1]: an emotion-aware gating layer that 
selectively amplifies sentiment-bearing tokens [2], a multi-scale 
convolutional module that captures features across diverse linguistic 
granularities, and [3] a topic-aware attention mechanism that 
integrates local features with global sentence-level semantics to 
guide final representation aggregation. 
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FIGURE 3
Architecture of the multi-scale convolutional module. Parallel 1D convolutions with kernel sizes of 2, 3, and four extract features at different linguistic 
granularities. Outputs are concatenated and globally pooled to form a unified representation.

4.2.1 Emotion-aware modulation

One major challenge in sentiment classification lies in the 
inconsistent encoding of emotionally salient tokens (e.g., “not,” 
“great,” “terrible”) by general-purpose language encoders such as 
BERT. These models often struggle to distinguish sentiment-critical 
expressions from neutral context, particularly in domain-divergent 
or low-signal scenarios.

To alleviate this limitation, we introduce an emotion-aware 
modulation layer that operates immediately after the BERT 
encoder. This layer applies a token-wise gating mechanism to 
selectively amplify or suppress token representations based on their 
emotional salience. Specifically, for each token embedding hi ∈ ℝd, 
a sentiment gate gi ∈ [0,1]

d is computed using a sigmoid-activated 
linear transformation. The gated representation ̃hi is obtained 
as shown in Equation 9:

̃hi = gi ⊙ hi (9)

where ⊙ denotes element-wise multiplication. The resulting 
modulated sequence H̃ = { ̃h1,…, ̃hn} preserves the syntactic 
structure of the input while selectively enhancing sentiment-relevant 
components, thereby improving downstream interpretability and 
discrimination. 

4.2.2 Multi-scale convolutional feature 
extraction

Sentiment indicators can manifest at multiple linguistic 
granularities, ranging from short phrases (e.g., “too bad”) to 
full clauses (e.g., “did not meet expectations”). To capture such 
hierarchical patterns, we incorporate a multi-scale convolutional 
module that applies parallel convolutions with varying kernel sizes, 
as illustrated in Figure 3.

The input to this module is the modulated sequence H̃ ∈ ℝn×d

obtained from the previous layer. After transposing to HT ∈ ℝd×n, 

three parallel 1D convolutional filters with kernel sizes k ∈ {2,3,4}
are applied to extract local features, as shown in Equation 10:

Fk = ReLU(Convk (HT)) , k ∈ {2,3,4} (10)

To ensure alignment among branches with differing temporal 
resolutions, each output is truncated to a common length n′, as 
defined in Equation 11:

̃Fk = Fk [:, :n
′] , n′ =min(n2,n3,n4) (11)

The truncated feature maps are then concatenated along the 
channel dimension to yield a unified multi-scale representation 
Fmulti, as shown in Equation 12:

Fmulti = Concat( ̃F2, ̃F3, ̃F4) (12)

A global average pooling operation is subsequently applied 
along the temporal axis to obtain a fixed-dimensional representation 
vector fpool, as shown in Equation 13:

fpool =
1
n′

n′

∑
i=1

Fmulti [:, i] (13)

This pooled feature vector aggregates sentiment-relevant 
information across different granularities and serves as a 
compact, expressive representation for downstream attention and 
classification modules. 

4.2.3 Topic-aware attention and classification
While the multi-scale convolutional module is effective in 

capturing localized sentiment features, it lacks the capacity to 
align such features with the global semantic structure of the 
input. To address this limitation, we introduce a topic-aware 
attention mechanism that modulates token-level importance based 
on sentence-level context, as illustrated in Figure 4.
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FIGURE 4
Architecture of the topic-aware attention mechanism. The [CLS] embedding from BERT serves as a global query to compute attention weights over 
multi-scale token features, allowing the model to dynamically emphasize sentiment-relevant information aligned with global sentence semantics.

Let h[CLS] ∈ ℝ
d denote the global sentence representation 

obtained from BERT. A query vector q is computed by projecting 
h[CLS] into the attention space, as shown in Equation 14:

q =Wqh[CLS] (14)

Each multi-scale token feature fi ∈ ℝ
d′  is compared with 

q to compute attention weights via softmax normalization, 
as shown in Equation 15:

αi =
exp( f⊤i q)

∑n
j=1

exp( f⊤j q)
(15)

The attention-weighted sentence representation Fatt is then 
obtained by computing the weighted sum over token features, as 
defined in Equation 16:

Fatt =
n

∑
i=1

αi fi (16)

This global representation is subsequently passed through 
a linear classification layer to predict sentiment polarity, 
as shown in Equation 17:

ŷ = softmax(WclsFatt + bcls) (17)

Model parameters are optimized using cross-entropy loss 
between the predicted distribution ŷ and the ground-truth label 
distribution y, as defined in Equation 18:

LCE = −
3

∑
i=1

yi log(ŷi) (18)

Taken together, the integration of topic-aware attention 
enables the model to align sentiment-expressive local features 
with global sentence-level semantics. In conjunction with the 
emotion-aware modulation and multi-scale convolution modules, 
this component enhances FEAM’s ability to construct sentiment-
focused, domain-robust representations suitable for nuanced
classification tasks. 

5 Experiments

5.1 Datasets

To assess the generalization capability and robustness of the 
proposed FEAM framework under diverse linguistic conditions, 
we conduct experiments on four sentiment classification datasets: 
Rest16, Laptop, Twitter, and FinancialPhraseBank. These datasets 
span restaurant reviews, consumer electronics, social media, and 
financial news, offering diverse lexical and stylistic patterns for 
comprehensive evaluation.

The Rest16 and Laptop datasets originate from the SemEval-
2016 Task 5 benchmark, which was designed for aspect-based 
sentiment classification. Rest16 contains hospitality reviews, while 
Laptop includes product reviews from the electronics domain.

Sentence-level conversion. To adapt these corpora into sentence-
level classification, aspect annotations were aggregated: if all aspects 
shared the same polarity, it was assigned as the sentence label; in 
case of disagreement, the majority label was kept, and sentences with 
irreconcilable conflicts were discarded. This ensured clean sentence-
level labels without severe imbalance.
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TABLE 2  Dataset statistics.

Dataset Training 
set

Validation 
set

Test set Total

Rest16 1,257 292 283 2,332

Laptop 4,142 530 617 5,789

Twitter 4,131 552 621 5,307

Financial 4,010 529 585 5,115

The Twitter dataset consists of user-generated posts, 
characterized by informal grammar, slang, and noisy expressions, 
providing a challenging real-world benchmark.

The FinancialPhraseBank dataset contains financial news 
headlines and company-related statements, annotated by experts 
with sentence-level polarity. Its domain-specific vocabulary 
(e.g., “dividend”, “merger”) makes it valuable for testing model 
generalization in professional contexts.

All four datasets were standardized into three sentiment 
classes (positive, neutral, negative). Table 2 summarizes their 
train/validation/test splits. A unified preprocessing pipeline 
(lowercasing, tokenization, sequence truncation) was applied to 
ensure comparability across domains.

To illustrate domain divergence, Figure 5 shows word clouds: 
Rest16 emphasizes hospitality terms, Laptop highlights electronics 
vocabulary, Twitter reflects informal open-domain language, and 
FinancialPhraseBank contains finance-specific expressions.

5.2 Experimental environment and 
hyperparameter settings

All experiments were conducted on a dedicated single-node 
computational server equipped with an NVIDIA A10 GPU (24 GB 
VRAM), 64 GiB of system memory, and running the Ubuntu 
20.04 LTS operating system. The model implementation was 
based on the PyTorch deep learning framework (version 2.1.2), 
with CUDA 12.1 utilized to enable hardware-accelerated training
and inference.

Model training was carried out over 20 full epochs using 
a mini-batch size of 32. Optimization was performed using 
the AdamW optimizer, with an initial learning rate set to 
5× 10−5 and a weight decay coefficient of 1× 10−2 to prevent 
overfitting. To further stabilize the optimization process and 
promote convergence, a cosine annealing scheduler was employed 
to dynamically adjust the learning rate across epochs. Regularization 
was incorporated via a dropout mechanism with a rate of 0.3 
applied to selected layers. In addition, gradient clipping with a 
maximum norm of 1.0 was enforced to address the risk of gradient
explosion.

The FEAM architecture is composed of several inductive bias 
modules designed to enhance the representation of sentiment-
relevant features. First, a multi-scale convolutional encoding block 
is employed, consisting of three parallel 1D convolutional layers 
with kernel sizes of 2, 3, and 4, respectively. Each layer comprises 

128 filters, enabling the model to extract sentiment cues at various 
linguistic granularities–ranging from bi-grams to short clauses. In 
addition, the dynamic prompt pool is configured with N = 5 prompts 
of length m = 10, and a lightweight controller network projects input 
embeddings (1536→768→768) to compute prompt selection scores. 
A topic-aware attention mechanism then aligns local convolutional 
features with global semantic context for final classification.

A concise overview of the system specifications and 
hyperparameter configurations is provided in Table 3. These settings 
were held constant across all experiments to ensure comparability 
and reproducibility of results.

5.3 Comparison experiment

To rigorously evaluate the effectiveness of the proposed 
FEAM framework, we benchmark it against a set of state-of-the-
art baselines across three sentiment classification tasks: Rest16, 
Laptop, and Twitter. The comparison includes standard transformer 
models (e.g., BERT, KDGN), graph-based architectures (e.g., 
EK-GCN, DGGCN), hybrid convolution-attention models (e.g., 
MambaForGCN + BERT), and a customized large language model 
Prompt-Qwen-2.5B. Specifically, Prompt-Qwen-2.5B is fine-tuned 
using LoRA (Low-Rank Adaptation) and prompt tuning in a fully 
supervised manner. The fine-tuning process uses cross-entropy loss 
with a learning rate of 2× 10−5, batch size of 8, and a maximum 
sequence length of 128.

As reported in Tables 4, 5, and others, FEAM consistently 
outperforms all competitive baselines in both accuracy and 
F1-score across the four datasets. The results demonstrate 
statistically significant improvements over both conventional neural 
architectures and large-scale instruction-tuned models.

On the Rest16 benchmark, FEAM achieves an F1-score of 
91.55%, surpassing Prompt-Qwen-2.5B (90.09%) by 1.46 points and 
RoBERTa-large (89.09%) by 2.46 points. It also outperforms classical 
transformer variants such as BERT and KDGN + BERT by more than 
11 points, highlighting FEAM’s superior ability to model sentiment-
rich content in domain-specific, low-resource settings.

In the Laptop domain, which presents technical and fragmented 
sentiment expressions, FEAM attains 92.83% F1, exceeding Prompt-
Qwen-2.5B by 1.61 points and RoBERTa-large (85.45%) by 7.38 
points. Compared to graph-based approaches like EK-GCN + BERT 
(77.59%), the performance gap exceeds 15 points, underscoring 
the importance of adaptive prompt selection in complex domain-
specific scenarios.

On the Twitter dataset–characterized by high lexical variability, 
informal expressions, and semantic noise–FEAM achieves a new 
state-of-the-art with an F1-score of 93.10%, outperforming Prompt-
Qwen-2.5B (91.13%) and RoBERTa-large (87.68%) by 5.42 points. 
It also surpasses strong hybrid models like MambaForGCN + 
BERT (76.88%), demonstrating its robustness in real-world, user-
generated text environments.

On the FinancialPhraseBank dataset, FEAM achieves an F1-
score of 90.11%, exceeding Prompt-Qwen-2.5B (89.00%) and 
RoBERTa-large (84.14%) by 1.11 and 5.97 points, respectively. 
This indicates that FEAM’s adaptive prompting and sentiment 
modulation mechanisms generalize effectively to domain-specific 
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FIGURE 5
Word cloud visualizations of training samples from three benchmark domains (Left) Rest16, (Middle) Laptop, and (Right) Twitter. Each word cloud 
highlights the most frequent tokens, revealing domain-specific vocabulary and linguistic diversity.

TABLE 3  Experimental environment and hyperparameter configurations 
used in FEAM training.

Setting Value

GPU NVIDIA A10 (24 GB)

System Memory 64 GiB

Operating System Ubuntu 20.04

Python Version 3.10

CUDA Version 12.1

PyTorch Version 2.1.2

Batch Size 32

Number of Epochs 20

Learning Rate 5× 10−5

Weight Decay 1× 10−2

Dropout Rate 0.3

Gradient Clipping 1.0 (maximum norm)

Convolution Kernels 2, 3, 4 (128 filters each)

Optimizer AdamW

Learning Rate Scheduler CosineAnnealingLR

Prompt Pool Size (N) 5 prompts

Prompt Length (m) red10 tokens per prompt

Controller Network Two linear layers: 1536→768→768 (ReLU, dropout 
0.1)

financial sentiment tasks, which are often challenging due to 
specialized vocabulary and subtle sentiment cues.

These consistent gains can be attributed to FEAM’s architectural 
design. Its instance-aware dynamic prompting module adapts 
supervision to the semantic properties of each input. The sentiment 
modulation layer enhances emotionally salient features, while the 

multi-scale convolution and topic-aware attention mechanisms jointly 
capture both local sentiment expressions and global contextual cues.

In summary, FEAM establishes a new performance benchmark 
across all four tasks under evaluation, validating its effectiveness 
in cross-domain sentiment classification under the few-shot 
prompting paradigm. Its adaptability, lightweight supervision, and 
robustness to linguistic noise make it highly suitable for deployment 
in sentiment-driven applications across sectors such as e-commerce, 
financial analysis, customer experience management, and social 
media monitoring. 

5.4 Ablation studies

To evaluate the individual contributions of each architectural 
component in the proposed FEAM framework, we conduct a 
series of ablation experiments by selectively disabling key modules. 
Specifically, we examine the impact of removing the following 
components [1]: the few-shot dynamic prompting mechanism (DP) 
[2], the sentiment modulation layer (SM) [3], the multi-scale 
convolutional encoder (Conv), and [4] the topic-aware attention 
mechanism (TA). Results are averaged over multiple runs and 
presented in Table 6.

The results clearly show that each module makes an 
indispensable contribution to FEAM’s performance. Removing 
the dynamic prompting mechanism (w/o DP) causes the most 
severe degradation, with F1 dropping from 93.14% to 61.18% 
and recall plunging from 93.28% to 50.93%. This emphasizes that 
instance-aware prompt selection is the cornerstone for maintaining 
generalization and robustness under few-shot or cross-domain 
conditions.

Excluding the sentiment modulation layer (w/o SM) also results 
in a sharp performance decline, with F1 decreasing by 30.62 points 
and recall falling from 93.28% to 51.20%. This confirms the gating 
layer’s crucial role in amplifying emotionally salient features while 
filtering out neutral or noisy tokens, especially in informal and short-
text environments like Twitter.

When the multi-scale convolution module is removed (w/o 
Conv), F1 drops by 28.40 points (to 64.74%), despite precision 
remaining relatively higher (77.80%). This highlights the necessity 
of capturing sentiment cues at multiple granularities, particularly 
phrases and local syntactic structures that attention-only encoders 
tend to overlook.
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TABLE 4  Accuracy, precision, recall, and F1-score (%) on Rest16 and Laptop (averaged over three runs with random seeds 42, 43, and 44, with standard 
deviation).

Model Rest16 Laptop

Acc P R F1 Acc P R F1

BERT 85.79 ± 0.80 85.10 ± 0.70 84.90 ± 0.75 80.09 ± 0.85 79.91 ± 0.82 79.50 ± 0.78 79.20 ± 0.80 76.00 ± 0.83

KDGN + BERT 86.10 ± 0.82 85.60 ± 0.75 85.40 ± 0.78 80.29 ± 0.84 80.80 ± 0.83 80.40 ± 0.80 80.10 ± 0.81 78.55 ± 0.85

EK-GCN + BERT 87.01 ± 0.85 86.50 ± 0.80 86.30 ± 0.82 81.94 ± 0.86 81.32 ± 0.84 81.00 ± 0.81 80.70 ± 0.82 77.59 ± 0.85

DGGCN + BERT 87.65 ± 0.84 87.20 ± 0.81 87.00 ± 0.82 82.55 ± 0.85 81.30 ± 0.85 81.10 ± 0.82 80.90 ± 0.83 79.19 ± 0.86

DCN-CA + BERT 86.89 ± 0.83 86.40 ± 0.80 86.10 ± 0.81 80.32 ± 0.85 81.50 ± 0.86 81.20 ± 0.82 81.00 ± 0.84 78.51 ± 0.87

IA-HiNET + BERT 87.72 ± 0.85 87.30 ± 0.81 87.00 ± 0.83 82.65 ± 0.86 81.53 ± 0.87 81.20 ± 0.83 80.90 ± 0.84 77.97 ± 0.88

APSCL + BERT 86.79 ± 0.84 86.30 ± 0.80 86.00 ± 0.82 81.84 ± 0.85 79.45 ± 0.85 79.00 ± 0.82 78.80 ± 0.83 76.56 ± 0.86

MambaForGCN + BERT 86.68 ± 0.85 86.20 ± 0.82 85.90 ± 0.83 80.86 ± 0.86 81.80 ± 0.87 81.50 ± 0.83 81.20 ± 0.85 78.59 ± 0.88

RoBERTa-large 88.76 ± 0.85 89.94 ± 0.83 88.76 ± 0.82 89.09 ± 0.84 92.63 ± 0.87 84.62 ± 0.82 86.36 ± 0.83 85.45 ± 0.85

Prompt-Qwen-2.5B 90.19 ± 0.88 90.00 ± 0.84 89.80 ± 0.86 90.09 ± 0.87 91.22 ± 0.89 91.00 ± 0.85 90.90 ± 0.87 91.22 ± 0.88

FEAM 91.52 ± 0.90 91.55 ± 1.68 91.79 ± 0.28 91.55 ± 0.56 92.84 ± 0.87 92.83 ± 1.21 92.86 ± 1.87 92.83 ± 1.05

TABLE 5  Accuracy, precision, recall, and F1-score (%) on Twitter and FinancialPhraseBank (averaged over three runs with random seeds 42, 43, and 44, 
with standard deviation).

Model Twitter Financial

Acc P R F1 Acc P R F1

BERT 75.92 ± 0.85 75.50 ± 0.80 75.40 ± 0.82 75.18 ± 0.84 76.50 ± 0.88 76.20 ± 0.85 76.00 ± 0.86 75.90 ± 0.87

KDGN + BERT 75.00 ± 0.85 74.60 ± 0.83 74.40 ± 0.84 76.10 ± 0.86 77.00 ± 0.89 76.70 ± 0.86 76.50 ± 0.87 76.40 ± 0.88

EK-GCN + BERT 77.64 ± 0.87 77.20 ± 0.83 77.00 ± 0.84 75.55 ± 0.86 78.00 ± 0.90 77.80 ± 0.87 77.50 ± 0.88 77.30 ± 0.89

DGGCN + BERT 75.89 ± 0.85 75.50 ± 0.82 74.90 ± 0.84 75.16 ± 0.86 78.20 ± 0.90 78.00 ± 0.87 77.80 ± 0.88 77.60 ± 0.89

DCN-CA + BERT 76.94 ± 0.86 76.50 ± 0.83 76.30 ± 0.85 75.07 ± 0.87 77.80 ± 0.89 77.50 ± 0.86 77.30 ± 0.87 77.10 ± 0.88

IA-HiNET + BERT 77.59 ± 0.88 77.10 ± 0.85 76.90 ± 0.86 76.85 ± 0.87 78.50 ± 0.91 78.20 ± 0.87 78.00 ± 0.88 77.80 ± 0.89

APSCL + BERT 75.88 ± 0.86 75.50 ± 0.83 75.20 ± 0.85 75.36 ± 0.87 77.20 ± 0.89 76.90 ± 0.86 76.70 ± 0.87 76.50 ± 0.88

MambaForGCN + BERT 77.67 ± 0.87 77.20 ± 0.84 76.50 ± 0.86 76.88 ± 0.88 77.90 ± 0.90 77.60 ± 0.87 77.40 ± 0.88 77.20 ± 0.89

RoBERTa-large 87.70 ± 0.86 88.67 ± 0.84 87.69 ± 0.83 87.68 ± 0.85 85.08 ± 0.87 87.38 ± 0.85 85.08 ± 0.86 84.14 ± 0.88

Prompt-Qwen-2.5B 91.20 ± 0.90 91.00 ± 0.86 90.80 ± 0.88 91.13 ± 0.89 89.50 ± 0.92 89.30 ± 0.88 89.10 ± 0.90 89.00 ± 0.91

FEAM 93.14 ± 2.70 93.10 ± 2.23 93.28 ± 2.04 93.10 ± 2.25 90.12 ± 0.42 91.05 ± 0.29 90.12 ± 0.42 90.11 ± 0.40

Ablating the topic-aware attention mechanism (w/o TA) 
leads to a 19.78-point F1 reduction, with precision decreasing 
from 93.10% to 80.77%. This indicates that aligning local 
sentiment-bearing features with the global sentence-level 
context is essential for coherent and accurate sentiment
classification.

In summary, the ablation study validates that all four 
components–dynamic prompting, sentiment modulation, multi-
scale convolutional encoding, and topic-aware attention–are 
critical and complementary. Their synergistic integration ensures 
FEAM maintains superior performance across noisy, informal, and 
domain-diverse input conditions.
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TABLE 6  Ablation Study: Average Accuracy, Precision, Recall, and F1-score (%) on the Twitter Dataset (mean ± std, averaged over three runs with 
random seeds 42, 43, and 44).

Models Acc. (%) P (%) R (%) F1 (%)

FEAM (Full Model) 93.28 ± 2.70 93.10 ± 2.23 93.28 ± 2.04 93.14 ± 2.25

w/o DP (Dynamic Prompting) 84.28 ± 1.52 71.05 ± 1.46 50.93 ± 1.38 61.18 ± 1.42

w/o SM (Sentiment Modulation) 85.71 ± 1.63 75.18 ± 1.55 51.20 ± 1.44 62.52 ± 1.49

w/o Conv (Convolution Module) 79.71 ± 1.44 77.80 ± 1.39 54.60 ± 1.30 64.74 ± 1.36

w/o TA (Topic-Aware Attention) 80.77 ± 1.48 80.77 ± 1.41 66.07 ± 1.33 73.36 ± 1.37

It is worth noting that, in Table 6, accuracy drops appear 
marginal compared to the drastic decrease in F1. This discrepancy 
arises from the class imbalance in the Twitter dataset, which in 
our setting contains 5,307 samples with neutral instances being the 
majority (2,844), followed by positive (1,682) and negative (781). 
Accuracy therefore remains relatively stable when the model still 
correctly predicts the majority class, even if its performance on 
minority classes deteriorates. In contrast, F1–being more sensitive 
to per-class precision and recall–exposes the sharp degradation in 
handling positive and negative cases. Additional per-class analysis 
confirmed that variants without DP or SM suffer severe recall loss on 
minority categories, which explains the sharp F1 drop despite only 
moderate accuracy decline. 

6 Discussion

6.1 Generalization and feature space 
visualization

To assess the generalization ability of FEAM under low-resource 
and cross-domain conditions, we construct a Combined Dataset 
by merging the Rest16, Laptop, and Twitter datasets into a unified 
multi-domain benchmark. This setting reflects real-world scenarios 
in which input distributions vary widely across topics, writing styles, 
and sentiment expressions.

Table 7 presents the average precision, recall, and F1-score 
on the combined test set. FEAM is evaluated against several 
strong baselines, including transformer-based models and prompt-
enhanced architectures.

As shown in Table 7, FEAM consistently achieves the best 
results across all metrics. In particular, it surpasses Prompt-
Qwen-2.5B by more than 10 F1 points (91.30% vs. 81.14%) and 
outperforms BERT by over 27 points (91.30% vs. 64.10%). These 
improvements highlight FEAM’s superior capability to generalize 
across heterogeneous domains and to effectively capture sentiment 
signals even under limited supervision and diverse linguistic 
distributions.

To further examine the quality of the learned representations, 
we visualize the output embeddings of FEAM using t-
distributed stochastic neighbor embedding (t-SNE). The resulting 
2D projection of the final-layer sentence embeddings is
shown in Figure 6.

TABLE 7  Accuracy, Precision, Recall, and F1-score (%) on the Combined 
Multi-Domain Dataset (mean ± std, averaged over three runs with 
random seeds 42, 43, and 44).

Model Acc. (%) P (%) R (%) F1 (%)

BERT 74.07 ± 0.92 65.20 ± 0.88 63.10 ± 0.90 64.10 ± 0.91

MSAPT 76.98 ± 0.95 72.40 ± 0.90 70.90 ± 0.93 71.59 ± 0.92

BERT-DAAT 87.05 ± 1.10 75.80 ± 1.03 73.60 ± 1.07 74.62 ± 1.05

MoKa-ADA 84.11 ± 1.05 72.00 ± 0.98 70.90 ± 1.02 71.43 ± 1.01

Prompt-
Qwen-2.5B

88.60 ± 1.15 81.70 ± 1.08 80.60 ± 1.11 81.14 ± 1.10

FEAM 91.39 ± 1.20 91.50 ± 1.15 91.10 ± 1.18 91.30 ± 1.17

Despite the diverse and noisy nature of the combined input 
space, the t-SNE visualization reveals clear and interpretable 
clustering of sentiment categories. Negative samples are tightly 
grouped, indicating strong polarity separation. Meanwhile, neutral 
and positive instances exhibit moderate overlap–reflecting the 
inherent semantic ambiguity of weakly polarized expressions. This 
latent structure illustrates that FEAM’s architecture–integrating 
instance-aware prompting, emotion-aware feature modulation, and 
hierarchical convolution-attention encoding–effectively organizes 
the semantic space for robust sentiment classification.

In conclusion, FEAM not only delivers state-of-the-art 
performance in terms of quantitative metrics but also produces 
well-structured, semantically coherent latent spaces across domains. 
These findings highlight the model’s scalability, interpretability, and 
potential for deployment in practical, real-world sentiment analysis 
applications [41, 42]. 

6.2 Impact of adversarial perturbation 
strength

To evaluate the robustness of FEAM under adversarial input 
conditions, we perform controlled experiments using the Fast 
Gradient Method (FGM), which introduces perturbations into 
the embedding layer during training. We systematically vary the 
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FIGURE 6
t-SNE visualization of FEAM’s learned representations on the Combined Dataset. Each point represents a sentence embedding, color-coded by 
sentiment label: Negative (purple), Neutral (green), Positive (cyan).

TABLE 8  Accuracy, Precision, Recall, and F1-score (%) under Varying Adversarial Perturbation Strength (ϵ) Using FGM (mean ± std, averaged over three 
runs with random seeds 42, 43, and 44).

ϵ Combined dataset Twitter dataset

Acc. (%) P (%) R (%) F1 (%) Acc. (%) P (%) R (%) F1 (%)

None 91.39 ± 1.20 91.50 ± 1.15 91.10 ± 1.18 91.30 ± 1.17 93.14 ± 2.70 93.10 ± 2.23 93.28 ± 2.04 93.10 ± 2.25

0.5 90.62 ± 0.90 90.40 ± 0.86 90.10 ± 0.88 90.23 ± 0.89 92.89 ± 0.92 92.70 ± 0.88 92.60 ± 0.90 92.68 ± 0.91

1.0 90.44 ± 0.91 90.00 ± 0.87 89.40 ± 0.89 89.65 ± 0.90 92.35 ± 0.93 92.10 ± 0.89 92.30 ± 0.91 92.21 ± 0.92

2.0 89.21 ± 0.93 89.00 ± 0.89 89.20 ± 0.91 89.15 ± 0.92 91.50 ± 0.94 91.40 ± 0.90 91.60 ± 0.92 91.57 ± 0.93

perturbation magnitude ϵ ∈ {0,0.5,1.0,2.0}, where ϵ = 0 corresponds 
to the clean, unperturbed baseline. All other training configurations 
are held constant to ensure comparability.

We assess model performance on two test sets [1]: the cross-
domain Combined Dataset (a union of Rest16, Laptop, and Twitter), 
and [2] the highly informal, user-generated Twitter Dataset. The 
results are summarized in Table 8.

As shown in Table 8, FEAM maintains consistently strong 
performance across all perturbation levels. At the highest 
perturbation strength (ϵ = 2.0), the model still achieves 89.15% 
F1 on the Combined Dataset and 91.57% on the Twitter dataset, 
underscoring its robustness to adversarial noise injected at the 
embedding layer.

For mild perturbations (e.g., ϵ = 0.5), performance degradation 
is minimal–an F1-score drop of about 1.07 points on the Combined 
Dataset (from 91.30% to 90.23%) and only 0.42 points on Twitter 
(from 93.10% to 92.68%). Interestingly, recall remains relatively 
stable, suggesting that weak adversarial noise may serve as a 
form of implicit regularization, enhancing generalization capability. 
However, as ϵ increases to 1.0 and 2.0, performance begins to 
decline more noticeably: F1 falls to 89.65% and 89.15% on the 
Combined Dataset, and to 92.21% and 91.57% on Twitter, reflecting 
greater disruption to the model’s ability to capture fine-grained 
sentiment cues.

The observed robustness can be attributed to FEAM’s 
architectural design. Specifically, the instance-aware dynamic 
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prompting mechanism provides context-sensitive supervision, the 
sentiment modulation layer amplifies sentiment-bearing signals, and 
the multi-scale convolutional attention module jointly captures local 
and global sentiment patterns. This synergy enables FEAM to maintain 
high stability even under adversarial perturbations [44–46]. 

In conclusion, FEAM demonstrates strong resilience under 
adversarial conditions. Even when ϵ = 2.0, it sustains nearly 90% 
F1 on the Combined Dataset and over 91% on Twitter, a critical 
capability for real-world deployment in domains such as social 
media sentiment monitoring, e-commerce review mining, and 
opinion tracking–where noisy or corrupted user input is frequent 
and unavoidable. 

6.3 Implications and limitations

The findings of this study offer several key insights into 
advancing instance-aware dynamic prompting for sentiment analysis 
in heterogeneous domains. First, the results underscore the critical 
role of prompt adaptability in enhancing model generalization. 
Unlike static templates or handcrafted demonstrations, dynamically 
selecting soft prompts based on input semantics enables FEAM 
to better align with task-relevant and domain-sensitive cues. This 
underscores the potential of modular prompt selection mechanisms 
that are both interpretable and context-aware.

Second, FEAM,s architectural synergy–integrating dynamic 
prompt supervision, emotion-aware gating, and multi-scale 
convolutional encoding–proves highly effective in capturing both 
localized sentiment expressions and global semantic dependencies. 
This layered design allows the model to perform robustly 
across inputs with varying syntactic and lexical characteristics. 
Consequently, FEAM shows strong promise for deployment in 
real-world, domain-specific scenarios such as healthcare opinion 
monitoring, legal sentiment detection, and educational feedback 
analysis, where affective cues are often subtle, ambiguous, or 
domain-dependent.

Despite its strengths, the current work has several limitations. 
First, FEAM relies on general-purpose pretrained encoders (e.g., 
BERT), which may not fully capture domain-specific terminology, 
stylistic nuances, or linguistic conventions. Future research may 
explore domain-adaptive pretraining or hybrid architectures 
that incorporate symbolic knowledge sources–such as sentiment 
lexicons or expert-annotated rules–into the prompt construction or 
representation refinement process.

Second, although FEAM’s soft prompts are learned in an input-
conditioned manner, they are initialized randomly and trained end-
to-end as latent vectors, limiting interpretability and controllability. 
Future efforts may investigate automated prompt discovery and 
optimization, potentially leveraging contrastive learning, meta-
prompt tuning, or generative prompt synthesis using large language 
models (LLMs) to improve prompt diversity and semantic richness.

Third, the present framework is restricted to unimodal textual 
input. However, sentiment in many real-world settings–such as 
social media, customer service, or online reviews–is often conveyed 
through multiple modalities, including text, images, audio, and 
video. Extending FEAM to support multimodal architectures would 
facilitate more comprehensive sentiment understanding in noisy 
and dynamic environments.

In conclusion, this work introduces a unified and interpretable 
framework for sentiment classification based on instance-
aware dynamic prompting, demonstrating strong generalization, 
robustness, and semantic coherence across domains. To enhance its 
practical applicability, future research should pursue directions such 
as domain adaptation, prompt interpretability, automated prompt 
generation, and multimodal extension–laying the foundation 
for more flexible, scalable, and context-sensitive sentiment 
analysis systems. 

7 Conclusion

This paper presents FEAM, a novel framework for sentiment 
classification that integrates instance-aware dynamic prompting
with hierarchical feature modeling. By unifying dynamic soft 
prompt selection, emotion-aware token modulation, multi-
scale convolutional encoding, and topic-aware attention, FEAM 
effectively addresses key challenges in sentiment analysis, such as 
domain variability, input-level ambiguity, and limited supervision. 
In contrast to traditional fine-tuning or static prompting approaches, 
FEAM dynamically selects prompt representations conditioned 
on the semantic characteristics of each input, thereby enhancing 
contextual alignment and domain robustness.

Comprehensive experiments across single-domain and 
multi-domain benchmarks demonstrate that FEAM consistently 
outperforms a range of strong baselines, including pretrained 
transformer models, domain-adaptive architectures, and recent 
prompt-based methods. The model also exhibits strong resilience to 
adversarial perturbations and maintains robust performance across 
various prompt configurations. Ablation studies confirm the critical 
contributions of each architectural component, with dynamic 
prompting and emotion-aware modulation proving particularly 
impactful in boosting sentiment discrimination accuracy.

Looking forward, promising directions for future research 
include automated prompt synthesis, improved alignment between 
learned prompt representations and internal semantic features, and 
integration with large-scale language models to further enhance 
reasoning capabilities. Moreover, extending FEAM to support 
multimodal sentiment analysis–by incorporating visual, auditory, or 
contextual metadata–would further expand its applicability to real-
world opinion mining scenarios such as social media monitoring, 
customer feedback interpretation, and public discourse analysis 
[47, 48]. In addition, we plan to complement the current quantitative 
evaluation with qualitative interpretability analysis of dynamic 
prompts. Future work will explore visualization of prompt selection, 
token-level attribution, and case studies to provide deeper insights 
into how instance-aware prompts guide sentiment prediction, 
thereby improving transparency and trustworthiness.
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