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approach: time-dependent 
solution
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This paper analyzes the dynamics of the neutron diffusion kinetic system under 
reflector boundaries/zero-flux gradient. An ansatz approach is proposed to 
exactly solve the governing system. The time-dependent solutions are exactly 
obtained in explicit forms, where spatial variations violate and the temporal 
behavior dominates the dynamics. Robust physical interpretation is provided for 
the neutron flux and the precursor concentration under three different cases, 
supercritical, critical, and sub-critical conditions. A key strength of the study 
lies in the effectiveness of the solution technique, particularly the use of the 
ansatz approach, which allows accurate handling of both short-term transients 
and long-term steady states. The method proves computationally efficient and 
stable across a wide range of reactivity levels.
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 1 Introduction

The neutron diffusion system is a popular/basic problem in reactor physics. It describes 
the behavior of neutron profile within a nuclear reactor. Additionally, it gives insight into 
how neutrons diffuse and interact with the reactor medium, accounting for processes 
such as neutron production, absorption, and leakage. Under specific boundary and initial 
conditions, it serves as a reliable approximation to the more comprehensive Boltzmann 
transport equation [1, 2]. A common and physically meaningful simplification is the 
application of the zero-flux gradient boundary condition, which assumes that the spatial 
gradient of the neutron flux is zero at the boundary. This condition is often used to 
model systems with symmetric boundaries or to idealize regions where neutron leakage is 
negligible. The zero-flux gradient implies that there is no net neutron current crossing the 
boundary, making it suitable for analysis of isolated or reflective systems [3].

Studying the neutron diffusion kinetics under this condition allows for a more 
tractable analysis of transient behavior in nuclear reactors, particularly during 
startup, shutdown, or perturbations in reactivity. It also enables the development 
of simplified models for reactor control and safety analysis, without compromising
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essential physical accuracy in specific configurations. This 
approach remains vital for both analytical studies and numerical 
simulations in reactor design and operational planning [4, 5]. 
Recent developments in both analytical and numerical solutions 
have significantly expanded the applicability of diffusion theory 
to modern nuclear systems, enabling more precise simulation of 
reactor transients, heterogeneous cores, and complex geometries. 
Analytical solutions to the neutron diffusion equation are 
particularly valuable for benchmark verification, conceptual design, 
and simplified reactor models. Over the past decade, researchers 
have developed closed-form or semi-analytical solutions for special 
cases [6, 7]. Emerging analytical studies also apply fractional 
calculus to neutron transport, modeling anomalous diffusion in 
disordered or stochastic media [8].

Modern numerical methods have dramatically advanced the 
fidelity and efficiency of neutron diffusion solvers, especially for 
multi-dimensional and time-dependent systems. These have been 
employed for high-resolution simulations in complex geometries, 
handling heterogeneity and material interfaces with improved 
accuracy [9, 10]. This paper analyzes a basic system:

1
V

∂ϕ
∂t
= D

∂2ϕ
∂x2 +(−∑

a
+(1− β)ν∑

f
)ϕ (x, t) + λC (x, t) , (1)

∂C
∂t
= βν∑

f
ϕ (x, t) − λC (x, t) , (2)

under the Neumann boundary conditions (BCs):

∂ϕ
∂x
(0, t) = 0, ,

∂ϕ
∂x
(L, t) = 0, t > 0, (3)

and initial conditions (ICs):

ϕ (x,0) = ϕ0, C (x,0) =
βν∑

f

λ
ϕ0, 0 < x < L, (4)

where ϕ(x, t) and C(x, t) stand for the neutron flux and the delayed 
neutron concentration, respectively.

Details of the parameters V, ∑a, β, ν, ∑ f  and λ can be found 
in Refs. [11, 12]. The boundary conditions assume zero-gradient 
flux at the boundary of the reactor (reflective boundary). In the 
literature [13–18], several authors studied the neutron diffusion 
system under the Dirichlet boundary conditions ϕ(0, t) = 0, ϕ(L, t) =
0 using different analytical/numerical approaches. In Ref. [19], the 
authors proposed a simple approach to solve Equations 1, 2 under 
Dirichlet BCs and the ICs (4). Furthermore, a direct ansatz method 
is developed in Ref. [20] to obtain the same obtained solution in Ref. 
[19]. After that, the authors [21] generalized the ansatz method by 
considering arbitrary ICs and BCs of Dirichlet type. From a practical 
point of view, this modeling approach is particularly valuable in 
several nuclear engineering applications. It can be used to analyze 
the response time of fast reactor systems (critical time analysis) 
and serves as a reliable foundation for lumped parameter models 
in neutron kinetics, where spatial dependence is intentionally 
neglected [1]. This is especially relevant in the design of small 
or compact nuclear reactors, where spatial variations are minimal 
and temporal behavior dominates the dynamics. The objective of 
this work is to solve Equations 1–4 via a direct ansatz method. 
In the literature, a number of methods have been formulated to 
solve numerous mathematical models with applications in different 

fields. For examples, the Laplace transform (LT) [21–30], the DTM 
[31], the HAM [32, 33], the HPM [34–36], and the ADM [37–39]. 
However, the ansatz approach has its own advantage over such 
methods for its simplicity and capability of determining the solution 
in an exact or a closed form. Another advantage and novelty of this 
work is that it shows the effectiveness of the ansatz approach over the 
LT to exactly solve Equations 1–4, actually, the LT encounters some 
difficulties to achieve this target. Consequently, the ansatz approach 
may be suggested for the first time to solve Equations 1, 2 under 
the physical boundary conditions 3 and 4. This suggests further 
extensions of the ansatz approach to solve other complex forms of 
the classical/fractional neutron diffusion systems in the spherical 
and hemispherical reactors in addition to other different geometries 
subject to various physical factors [40–47]. 

2 Ansatz approach

Let us rewrite system (1)–(4) as.

∂ϕ
∂t
= VD

∂2ϕ
∂x2 + μϕ (x, t) + λVC (x, t) , (5)

∂C
∂t
= σϕ (x, t) − λC (x, t) , (6)

under the ICs/BCs.

ϕ (x,0) = ϕ0, C (x,0) = ρϕ0, 0 < x < L, (7)

∂ϕ
∂x
(0, t) = 0,

∂ϕ
∂x
(L, t) = 0, t > 0, (8)

where

μ = V(−∑
a
+(1− β)ν∑

f
), σ = βν∑

f
, ρ =

βν∑
f

λ
= σ

λ
. (9)

The anastz approach assumes that.

ϕ (x, t) =
∞

∑
n=0

cos(γnx)Tn (t) , (10)

C (x, t) =
∞

∑
n=0

cos(γnx)τn (t) , (11)

where γn =
nπ
L

 and Tn(t) and τn(t) are unknown functions. 
Formulas 10, 11, automatically satisfy the Neumann-BCs ∂ϕ

∂x
(0, t) =

0 and ∂ϕ
∂x
(L, t) = 0. Applying the ICs (7) on Equations 10, 11 at t = 0

gives.

∞

∑
n=0

cos(γnx)Tn (0) = ϕ0, (12)

∞

∑
n=0

cos(γnx)τn (0) = ρϕ0. (13)

From Fourier analysis [30], we have

T0 (0) =
1
L
∫

L

0
ϕ0 dx = ϕ0,

Tn (0) =
2
L
∫

L

0
ϕ0 cos(nπx

L
) dx = 0 ∀n = 1,2,3,…

(14)
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and similarly

τ0 (0) =
1
L
∫

L

0
ρϕ0 dx = ρϕ0,

τn (0) =
2
L
∫

L

0
ρϕ0 cos(nπx

L
) dx = 0 ∀n = 1,2,3,….

(15)

Substituting Equations 10, 11 into Equations 5, 6 implies

∞

∑
n=0

cos(γnx)T′n (t) = −VD
∞

∑
n=0

γ2
n cos(γnx)Tn (t)

+μ
∞

∑
n=0

cos(γnx)Tn (t) + λV
∞

∑
n=0

cos(γnx)τn (t) ,

(16)

and
∞

∑
n=0

cos(γnx)τ′n (t) = σ
∞

∑
n=0

cos(γnx)Tn (t) − λ
∞

∑
n=0

cos(γnx)τn (t) ,

(17)

respectively. This leads to the system:

T′n (t) = (μ−VDγ2
n)Tn (t) + λVτn (t) ,

τ′n (t) = σTn (t) − λτn (t) ,
(18)

which is a first-order linear system and to be solved under the 
conditions:

Tn (0) =
{
{
{

ϕ0, n = 0,

0, n = 1,2,3,…,
, τn (0) =

{
{
{

ρϕ0, n = 0,

0, n = 1,2,3,…
.

(19)

 The next section addresses the solution of system (18) under 
the ICs (19). 

3 Theoretical analysis

Theorem 1: The system:

{{
{{
{

T′n (t) = aTn (t) + bτn (t) ,
τ′n (t) = cTn (t) + dτn (t) ,
Tn (0) = un, τn (0) = wn,

(20)

has the exact solution:

{
{
{

Tn (t) = uner1t +wner2t,

τn (t) =
un

b
(r1 − a)er1t +

wn

b
(r2 − a)er2t,

(21)

where

un =
Tn (0) (r2 − a) − bτn (0)

r2 − r1
, wn =

bτn (0) −Tn (0) (r1 − a)
r2 − r1

,

r1,2 =
1
2
(a+ d±√(a+ d)2 + 4 (bc− ad)) .

(22)

Proof. By differentiating the first ODE in system (20) once with 
respect to t, then

T′′n (t) = aT′n (t) + bτ′n (t) . (23)

Substituting τ′n(t) from the second ODE in (20) into 
Equation 23 gives

T′′n (t) = aT′n (t) + bcTn (t) + bdτn (t) . (24)

Inserting bτn(t) = T′n(t) − aTn(t) into Equation 24 yields the 2nd-
order ODE:

T′′n (t) − (a+ d)T′n (t) − (bc− ad)Tn (t) = 0. (25)

Therefore

Tn (t) = uner1t +wner2t, (26)

where r1 and r2 are two distinct roots of the algebraic equation:

r2 − (a+ d) r− (bc− ad) = 0, (27)

given by

r1,2 =
1
2
(a+ d±√(a+ d)2 + 4 (bc− ad)) . (28)

The first ODE in (20) gives τn(t) as

τn (t) =
1
b
(T′n (t) − aTn (t)) . (29)

From (26) and (29), τn(t) takes the form:

τn (t) =
un

b
(r1 − a)er1t +

wn

b
(r2 − a)er2t, (30)

where un and wn are unknown constants. Applying the ICs in 
(20), we obtain

un +wn = Tn (0) ,
un

b
(r1 − a) +

wn

b
(r2 − a) = τn (0) .

(31)

Solving this system for un and wn, we get

un =
Tn (0) (r2 − a) − bτn (0)

r2 − r1
, wn =

bτn (0) −Tn (0) (r1 − a)
r2 − r1

,

(32)

which finalizes the proof.

Theorem 2: Let Γ1 and Γ2 are defined as

Γ1 =
1
2
(a+ d) , Γ2 =

1
2
√(a+ d)2 + 4 (bc− ad), (33)

then Tn(t) and τn(t) read

{{{{{{
{{{{{{
{

Tn (t) = Tn (0)eΓ1t[cosh (Γ2t) + (
a+ ρb− Γ1

Γ2
) sinh (Γ2t)] ,

τn (t) = Tn (0)eΓ1t[ρ cosh (Γ2t) + (
2c+ ρ (d− a)

2Γ2
) sinh (Γ2t)] .

(34)

Proof. The assumptions (33) lead to

r1 = Γ1 + Γ2, r2 = Γ1 − Γ2. (35)
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From Theorem 1, Tn(t) and τn(t) can be rewritten as

Tn (t) = eΓ1t [(un +wn)cosh (Γ2t) + (un −wn) sinh (Γ2t)] , (36)

and

τn (t) =
eΓ1t

b
[(unr1 +wnr2 − a(un +wn))cosh (Γ2t)

+(unr1 −wnr2 − a(un −wn)) sinh (Γ2t)] .
(37)

Employing Equation 22 for un and wn and Equation 35 for r1 and 
r2 we find

un +wn = Tn (0) ,

un −w2 =
(a− Γ1)Tn (0) + bτn (0)

Γ2
.

(38)

Substituting (38) into (36), then Tn(t) becomes

Tn (t) = eΓ1t[Tn (0)cosh (Γ2t) + (
(a− Γ1)Tn (0) + bτn (0)

Γ2
) sinh (Γ2t)] .

(39)

 From Equation 19, one can write τn(0) = ρTn(0), therefore

Tn (t) = Tn (0)eΓ1t[cosh (Γ2t) + (
a+ ρb− Γ1

Γ2
) sinh (Γ2t)] . (40)

We also have

unr1 +wnr2 − a(un +wn) = bτn (0) = ρbTn (0) , (41)

and

unr1 −wnr2 − a(un −wn) =
Tn (0)

Γ2
[(2a+ ρb)Γ1 − r1r2 − a (a+ ρb)] .

(42)

The product r1r2 is

r1r2 = ad− bc. (43)

Inserting Γ1 =
1
2
(a+ d) and r1r2 = ad− bc into Equation 42 yields

unr1 −wnr2 − a(un −w2) =
bTn (0)

2Γ2
[2c+ ρ (d− a)] . (44)

Thus τn(t) takes the form:

τn (t) = Tn (0)eΓ1t[ρ cosh (Γ2t) + (
2c+ ρ (d− a)

2Γ2
) sinh (Γ2t)] , (45)

and this completes the proof. 

4 The exact solution

In the previous section, the solution of system (20) was explicitly 
obtained in terms of exponential and hyperbolic functions. This 
section invests the results obtained by Theorem 2 to construct 
the exact solution of problem (1)–(4). To do that, we begin with 
assigning the values of a, b, c, and d as

a = μ−VDγ2
n, b = λV, c = σ, d = −λ, ρ = σ/λ. (46)

Consequently.

Γ1 =
1
2
(a− λ) , Γ2 =

1
2
√(a− λ)2 + 4 (σλV+ λa) = 1

2
√(a+ λ)2 + 4σλV,

(47)

a+ ρb− Γ1
Γ2
= 2σV+ λ+ a

√(λ+ a)2 + 4σλV
,

2c+ ρ (d− a)
2Γ2

=
ρ (λ− a)

√(λ+ a)2 + 4σλV
.

(48)

Accordingly, we obtain Tn(t) and τn(t) in the following final form

Tn (t) =Tn (0)e
1
2
(a−λ)t

×[[

[

cosh( 1
2
√(λ+ a)2 + 4σλVt)+ 2σV+ λ+ a

√(λ+ a)2 + 4σλV
sinh( 1

2
√(λ+ a)2 + 4σλVt)]]

]

,

(49)

 and

τn (t) =ρTn (0)e
1
2
(a−λ)t

×[[

[

cosh( 1
2
√(λ+ a)2 + 4σλVt)+ λ− a

√(λ+ a)2 + 4σλV
sinh( 1

2
√(λ+ a)2 + 4σλVt)]]

]

.

(50)

 Therefore, ϕ(x, t) and C(x, t) are

ϕ (x, t) =
∞

∑
n=0

Tn (0)e
1
2
(an−λ)t cos(γnx)

×[[

[

cosh( 1
2
√(λ+ an)

2 + 4σλVt)+
2σV+ λ+ an

√(λ+ an)
2 + 4σλV

sinh( 1
2
√(λ+ an)

2 + 4σλVt)]]

]

,

(51)

 and

C (x, t) =ρ
∞

∑
n=0

Tn (0)e
1
2
(an−λ)t cos(γnx)

×[[

[

cosh( 1
2
√(λ+ an)

2 + 4σλVt)+
λ− an

√(λ+ an)
2 + 4σλV

sinh( 1
2
√(λ+ an)

2 + 4σλVt)]]

]

,

(52)

 respectively, where

an = μ−VDγ2
n = μ−VD(nπ

L
)

2
. (53)

Equation 19 declare that Tn(0) = ϕ0 for n = 0 while Tn(0) vanishes 
∀n = 1,2,3,… , hence, the two sums in Equations 51, 52 are non-
trivial only at n = 0. Thus, only the first term survives and 
accordingly

ϕ (x, t) =ϕ0e
1
2 (a0−λ)t cos(γ0x)

×[[

[

cosh( 1
2
√(λ+ a0)

2 + 4σλVt)+
2σV+ λ+ a0

√(λ+ a0)
2 + 4σλV

sinh( 1
2
√(λ+ a0)

2 + 4σλVt)]]

]

,

(54)

 and

C (x, t) =ρϕ0e
1
2
(a0−λ)t cos(γ0x)

×[[

[

cosh( 1
2
√(λ+ a0)

2 + 4σλVt)+
λ− a0

√(λ+ a0)
2 + 4σλV

sinh( 1
2
√(λ+ a0)

2 + 4σλVt)]]

]

.

(55)

 Employing the quantities a0 = μ and γ0 = 0, then Equations 54, 55 
reveal that ϕ(x, t) and C(x, t) are independent of x. Thus, the time-
dependent solutions ϕ(t) and C(t) are finally given by
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ϕ (t) =ϕ0e
1
2
(μ−λ)t

×[[

[

cosh( 1
2
√(λ+ μ)2 + 4σλVt)+

2σV+ λ+ μ

√(λ+ μ)2 + 4σλV
sinh( 1

2
√(λ+ μ)2 + 4σλVt)]]

]

,

(56)

 and

C (t) =ρϕ0e
1
2
(μ−λ)t

×[[

[

cosh( 1
2
√(λ+ μ)2 + 4σλVt)+

λ− μ

√(λ+ μ)2 + 4σλV
sinh( 1

2
√(λ+ μ)2 + 4σλVt)]]

]

.

(57)

 It can be shown that the solutions (56) and (57) satisfy problem 
(1)–(4) through direct substitution. Physical interpretation of such 
solutions is to be addressed in the next section. 

5 Numerical results and behavior of 
the system

This section conducts some numerical results for the behavior of 
the neutron flux and the precursor concentration. The parameters 
values D = 0.96343, V = 1.103497× 107, L = 22.9, β = 0.0045, and 
λ = 0.08 are used to generate the numerical results as taken in Refs. 
[11, 12]. Three different cases are considered to interpret the physical 
behavior of the system. 

5.1 Supercritical case

Figures 1, 2 present the time evolution of the neutron flux 
ϕ(t) [n/(cm2.s)] under supercritical conditions ν∑ f = 3.33029×
10−2, ∑a = 1.58430× 10−2. In Figure 1, which focuses on the short 
time interval 0 ≤ t ≤ 10−5 the neutron flux increases progressively 
in an exponential fashion, starting from its initial value. This 
behavior reflects the early phase of a supercritical response, where 
neutron production outpaces absorption in the absence of any 
leakage mechanisms. The moderate rise in flux at this stage results 
from the combined contributions of prompt and delayed neutrons. 
As the simulation time extends to 10−4, as shown in Figure 2, 
a significant and rapid increase in the neutron flux is observed. 
The sharp exponential growth, reaching values on the order 
of 108, is a clear indication that the system has entered a 
prompt-supercritical regime. In this state, the influence of delayed 
neutrons diminishes rapidly, and the system is primarily driven 
by prompt neutron generation. This outcome is consistent with 
theoretical expectations in idealized models without feedback or
control mechanisms.

Figure 3 shows the corresponding behavior of the delayed 
neutron precursor concentration C(t) [n/cm2] over the interval 
0 ≤ t ≤ 10−5. The results indicate that the precursor concentration 
remains nearly unchanged during this initial stage. This is attributed 
to the relatively low decay constant of the precursors and the 
short time frame considered, which is insufficient for a noticeable 
change in the precursor population. While the neutron flux grows 
rapidly, the precursor response is delayed and follows a slower 
time scale. These observations are in agreement with the known 
dynamics of reactor kinetics in supercritical scenarios, particularly 
under idealized assumptions with no neutron losses. The results also 

FIGURE 1
Behavior of the neutron flux ϕ(t) [n/(cm2.s)], supercritical case, over 
the domain 0 ≤ t ≤ 10−5.

FIGURE 2
Behavior of the neutron flux ϕ(t) [n/(cm2.s)], supercritical case, over 
the domain 10−5 ≤ t ≤ 10−4.

FIGURE 3
Behavior of the precursor concentration flux C(t) [n/cm2], 
supercritical case, over the domain 0 ≤ t ≤ 10−5.

support the effectiveness of the ansatz technique in capturing the 
early-time behavior of the system.

Figures 4, 5 offer a closer look at how the delayed neutron 
precursor concentration C(t) evolves during a supercritical 
transient. In Figure 4, which spans the time interval from 10−5
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FIGURE 4
Behavior of the precursor concentration flux C(t) [n/cm2], 
supercritical case, over the domain 10−5 ≤ t ≤ 10−4.

FIGURE 5
Behavior of the precursor concentration flux C(t) [n/cm2], 
supercritical case, over the domain 10−4 ≤ t ≤ 10−3.5.

to 10−4 seconds, the concentration begins to rise noticeably 
after approximately t = 8× 10−5 seconds, eventually reaching a 
value around 0.1 [n/cm2]. This gradual response reflects the 
delayed nature of precursor production, which requires sustained 
neutron flux to accumulate—a process that lags behind the more 
immediate growth of the neutron flux observed earlier (as shown in
previous figures).

In Figure 5, which covers a slightly longer time domain 
up to 10−3.5 seconds, the behavior changes significantly. The 
precursor concentration undergoes rapid exponential growth, 
exceeding 8× 1016 [n/cm2], shortly after t = 3× 10−4 seconds. 
This sharp increase is driven by the sustained high levels of 
neutron flux, which continually fuel precursor production. Once 
production dominates over decay, the concentration increases 
rapidly without bound. While the absolute values reflect an 
idealized scenario—due to the exclusion of feedback, leakage, 
or absorption effects. Consequently, the underlying trend is 
physically consistent with expected supercritical behavior. These 
results highlight the time-scale separation between prompt and 
delayed components in reactor kinetics. The neutron flux responds 
almost instantaneously to changes in reactivity, whereas the 
precursor population builds up more slowly, only becoming 

FIGURE 6
Behavior of the neutron flux ϕ(t) [n/(cm2.s)], critical case.

significant after a brief delay. This distinction, evident in both 
the current and previous figures, reinforces the importance of 
accounting for delayed neutron dynamics when analyzing transient
reactor behavior. 

5.2 Critical case

Figure 6 shows how the neutron flux ϕ(t) behaves over a 
long time period, from t = 0 to t = 105 seconds, in a critical state 
for which ν∑ f = ∑a = 3.4× 10−2. The flux stays almost constant 
throughout the entire simulation, settling around the initial value 
0.7 [n/(cm2.s)]. This indicates that the system is in perfect 
balance: the number of neutrons produced by fission matches 
those lost due to absorption or decay. Since Neumann–Neumann 
boundary conditions are applied, there is no neutron leakage at 
the boundaries, which means this stable behavior is due only 
to what’s happening inside the entire system. Figure 7 shows the 
corresponding trend of the delayed neutron precursor concentration 
C(t) under the same conditions. Just like the neutron flux, the 
precursor concentration stays nearly unchanged—around the initial 
value ρϕ0 = 0.00112 [n/cm2]—throughout the simulation. This is 
expected in a critical system, where the production of precursors is 
balanced by their natural decay, leading to a steady-state condition.

5.3 Sub-critical case

In contrast, Figure 8 presents the sub-critical case, ν∑ f = 2.85×
10−2, ∑a = 3.0× 10−2, over a shorter period of time, from t = 0 to 
t = 50 seconds. Here, the neutron flux starts at 0.7 [n/(cm2.s)] and 
decreases gradually, following a clear exponential trend, until it 
drops to below 0.005 [n/(cm2.s)]. Even though no neutrons escape 
the domain, the system still shows a steady decline in neutron 
population. This is simply because the rate of neutron production 
is not enough to overcome absorption and decay as typical 
as sub-critical conditions. Figure 9, describes how the precursor 
concentration changes in the same sub-critical case and time range. 
It starts at roughly 0.00112 [n/cm2] at t = 0, and gradually decreases 
to less than 0.00005 [n/cm2] by the time t = 50 seconds. This drop in 
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FIGURE 7
Behavior of the precursor concentration flux C(t) [n/cm2], 
critical case.

FIGURE 8
Behavior of the neutron flux ϕ(t) [n/(cm2.s)], sub-critical case.

FIGURE 9
Behavior of the precursor concentration flux C(t) [n/cm2], 
sub-critical case.

concentration happens because the lower neutron flux can no longer 
support the production of precursors, so they just decay over time 
without being replaced.

6 Conclusion

In this paper, a direct ansatz approach was applied to solve 
the neutron diffusion system under Neumann-Neumann boundary 
conditions (zero-flux gradient at boundary). An ansatz approach 
was applied to exactly solve the governing system. Explicit time-
dependent solutions were obtained, where spatial variations violate. 
Detailed physical explanation was discussed for the behavior 
of the neutron flux and the precursor concentration under the 
supercritical, the critical, and the sub-critical conditions. Although 
the methodology is classic, it reflects the simplicity of the ansatz 
approach to solve the current system under the boundary conditions 
3 and 4. The presented simulation cases offer a clear and consistent 
picture of neutron flux and precursor dynamics across different 
reactivity conditions. In supercritical scenarios, the model captures 
the sharp rise in neutron flux and the delayed buildup of precursors, 
while critical conditions show stable behavior, and sub-critical 
cases exhibit smooth decay over time. All results align well with 
theoretical expectations and reflect the core physics of reactor 
kinetics. The results revealed that the suggested approach was 
computationally efficient and stable across a wide range of reactivity 
levels. Overall, the model offers both theoretical clarity and practical 
utility, making it a useful tool for early-stage reactor design, control 
analysis, and safety assessment in systems where simplified kinetics 
are appropriate. Although the present model assumes idealized 
conditions: no neutron leakage, no feedback mechanisms, one-
group approximation and constant parameters, it can be viewed 
as an application of the ansatz approach to solve a basic neutron 
diffusion model under zero-flux conditions. To overcome such 
limitations, the ansatz approach may deserve further extension 
to analyze other complex forms (realistic reactor scenarios) of 
the classical/fractional diffusion systems in the spherical and 
hemispherical reactors in addition to other different geometries 
subject to various physical factors [40–47].
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