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The microstructure of geomaterials plays a crucial role in determining their physical and mechanical properties. The complex mechanical behavior of certain coarse-grained geomaterials significantly affects their resistance to deformation, making an accurate characterization of their internal structure essential. However, obtaining core samples of such materials is often costly and labor-intensive, whereas acquiring two-dimensional (2D) structural information is more feasible. This study presents a microstructure reconstruction technique based on a differentiable optimization framework, wherein the reconstruction process minimizes the error of a given descriptor while considering its derivative. The proposed method enables reconstruction using either a single 2D slice or three orthogonal 2D slices. Furthermore, the effectiveness of the 2D-to-3D reconstruction is validated through actual computed tomography (CT) scans of coarse-grained geomaterial samples collected from the Xinjiang region.
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1 INTRODUCTION
Geomaterials are porous media whose networks differ in porosity, pore-size distribution, and geometry. Pore-scale modelling clarifies internal stress and strain fields, underpinning predictions of bulk behavior, yet linking these models to measurable physical and mechanical properties remains a key challenge in rock mechanics. Core samples—our most direct record of the subsurface—supply essential data on grain size, depositional fabric, and pore characteristics.
There are two common methods for constructing three-dimensional digital rock cores: expensive X-ray CT experiments [1, 2] and reconstruction from two-dimensional images. Reconstruction algorithms are further divided into random methods, process-based methods, and others [3]. Over the decades, several reconstruction algorithms have been proposed. A comprehensive review is provided in Ref. [4, 5]. The following provides a brief introduction, distinguishing between classical stochastic and novel machine learning approaches.
Microstructure rebuilding is regarded as a best-fit problem in stochastic approaches. They work on a middle microstructure until the descriptor gets the needed value. The Yeong-Torquato algorithm [6] pioneered these methods, which contained the random search “simulated annealing” to microstructures with the right phase volume amounts. This range has produced Yeong-Torquato versions based on n-point correlation functions [7], physical descriptors [8], Gaussian random field [9] plus more. The big problem with the Yeong-Torquato algorithm is that it costs too much computer time. The computational cost grows as microstructure resolution and accuracy increase.
Machine learning has inspired researchers to address computational cost issues through a shift to data-driven approaches. Proposed solutions vary widely, including non-parametric resampling [10], convolutional neural networks (CNNs) [11], variational autoencoder [12], and generative adversarial networks [13]. However, they all require an initial learning or training phase with a potentially large training dataset. They share a common shortcoming: the descriptor is not user-prescribed but learned from data during (pre-) training as an internal latent representation, which cannot be prescribed or directly interpreted [14]. For example, machine learning approaches cannot yet reconstruct from a given two-point correlation value, only from coordinates in their internal latent space. This inherent coupling between the (pre-) training dataset, the resultant latent space replacing the descriptor, and the reconstruction algorithm constitutes an impediment [15]. Field scale risks further motivate accurate microstructure informed analyses, from excavation induced deformation to karst water inrush thickness criteria [16, 17]. Recent advances fuse hard and soft data for subsurface characterization and apply three-dimensional vision at the material scale to enrich descriptors [18, 19].
We present a gradient-based, higher-order optimization framework that reconstructs random heterogeneous media from user-specified, differentiable microstructural descriptors. Making the descriptors differentiable greatly accelerates convergence, reducing computational cost by ∼10× at 643 and ∼20–40× at 2563 (extrapolated >70× near 5123) at comparable accuracy relative to the classical Yeong-Torquato algorithm.
2 METHODS
We numerically validate 2D-to-3D microstructure reconstruction by extracting a random slice from a 3D reference medium and treating it as the sole 2D input. Two reconstructions are produced—one with the classical Yeong-Torquato (YT) algorithm and the other with a gradient-based scheme that uses differentiable microstructure descriptors derived from the slice—followed by Gaussian smoothing. Both 3D models are then subjected to FLAC3D simulations to compute shear strength, and the outcomes are benchmarked against laboratory data for coarse-grained geomaterials. The close agreement confirms that the differentiable-descriptor approach yields reliable and efficient 3D reconstructions.
2.1 Revisiting the Yeong-Torquato algorithm
The simulated annealing algorithm is a method for finding the best or almost best answer in a large set of answers [20]. It searches the set of answers with random picks and chance, and it takes worse answers sometimes so it does not get stuck with a local best answer. When the temperature parameter is slowly lowered, the algorithm picks better answers more often as it searches and finally finds a best answer or an almost best answer. In the Yeong-Torquato algorithm, microstructure reconstruction is formulated as a stochastic optimization problem:
argminM∈0,1I×JLM(1)
where M represents a discrete two-phase microstructure with width I and height J, where each pixel is assigned a phase number, either 0 or 1. The loss function L is the Euclidean distance between the microstructure descriptor D and the desired descriptor Ddes. As shown in Equation 2, a smaller Euclidean distance indicates higher similarity between image features, while a larger distance indicates lower similarity. Thus, Equation 1 aims to find the value of the independent variable that minimizes the loss function within the domain M:
LM=D−Ddes2(2)
where D is obtained from a suitable characterization function, as defined in Equation 3:
fC:M∈0,1I×J→D∈RK(3)
Here, K is independent of I and J in general cases. Applying the simulated annealing algorithm’s update strategy to this stochastic optimization problem yields the Yeong-Torquato algorithm.
2.2 Differentiable microstructure reconstruction in 2D
Given the desired microstructure descriptor Ddes, the goal of microstructure reconstruction is to find a microstructure M such that the corresponding descriptor D(M) is as close as possible to Ddes. The core concept of differentiable microstructure characterization and reconstruction (MCR) is that microstructure reconstruction is an optimization problem, and efficient optimization requires the gradient. Therefore, Equation 1 can be reformulated as a differentiable optimization problem:
argminM∼ LM∼(4)
where each pixel of the intermediate microstructure M∼ is allowed to take any real value in the interval 0,1 during the reconstruction process. Only after the reconstruction is complete is M∼ rounded to obtain an integer-valued microstructure M, where each pixel is either 0 or 1. The loss function Equation 2 can be reformulated as:
LM∼=∑dλd∥Dd∼M∼−Dddes∥22(5)
where d indexes the descriptor type, ∥·∥2 denotes the Euclidean norm applied to the vectorized descriptor difference, and λd≥0 are scalar weights.
The optimization problem in Equation 4 is solved iteratively. In each iteration, the microstructure M∼ is continuously modified to reduce the loss L. Simultaneously, the gradient dL∕dM̃ is used to compute the change in the microstructure ΔM∼, which requires the loss function L to be differentiable with respect to M∼. Any gradient-based optimizer can be used for this, such as the ADAM optimizer or a Quasi-Newton method like L-BFGS-B. With Equation 5, if the descriptor is differentiable, then L is differentiable with respect to M∼. Therefore, it is necessary to introduce a differentiable descriptor D∼ (M∼), which is defined and differentiable for each possible intermediate microstructure M∼ [21]. Furthermore, the special case of an integer-valued microstructure should be reproduced:
D∼M=DM(6)
2.3 Slicing-based generalization to 3D
The microstructure is sliced along all three spatial directions to obtain stacks of 2D sections. The descriptor is then computed for each slice separately. Therefore, on each slice, the descriptor should closely match the desired 2D descriptor. Anisotropy can be considered in slices of different orientations, allowing for the specification of different descriptors. Thus, descriptors can be optimized by minimizing the loss function in Equation 7:
L=∑dλd∑i=1nxsilceswixD∼d,ixM∼−Dddes,x22+∑j=1nysilceswjyD∼d,jyM∼−Dddes,y22+∑k=1nzsilceswkzD∼d,kzM∼−Dddes,z22(7)
where wix,wjy,wkz≥0 are the weights used to average descriptor mismatches over the slices within each orthogonal stack. Ddes,x, Ddes,y and Ddes,z are the desired 2D descriptors in the x, y and z directions, respectively. In the general anisotropic case given in Equation 8, different targets can be prescribed per direction:
Ddes,x≠Ddes,y≠Ddes,z(8)
However, if isotropic materials are considered, Equation 6 can be simplified to:
L=∑snslicesD∼sM∼−Ddes(9)
In all reconstructions reported here we assume isotropy and use Equation 9; anisotropy is not enforced. Because the descriptor-matching objective is nonconvex, local minima may arise, especially when fine-scale interface details dominate. If encountered, it can be mitigated by a coarse to fine warm start with explicit phase-fraction feasibility, direction specific targets on the three orthogonal stacks, mild weight continuation with early stopping, and optional restarts to select the lowest-loss solution.
2.4 Microstructure characterization and reconstruction
2.4.1 Spatial correlations and gram matrices
Spatial n-point correlations describe the statistical relationships between quantities at different locations within a system. Consider a realization of a two-phase random heterogeneous material within d-dimensional Euclidean space Rd. To characterize this binary system, where each phase has a volume fraction ϕi (for i=1,2), we introduce the indicator function Iix, defined in Equation 10:
Iix=1, x∈Vi,0, x∈V¯i,(10)
where Vi∈Rd is the region occupied by phase i and Vi¯∈Rd is the region occupied by the other phase.
Spatial n-point correlations stochastically quantify the outcomes of probing the indicator function at multiple spatial locations (x1, x2., xn). For statistically homogeneous media, the n-point correlation function depends only on the relative displacements rij = xj − xi, not on the absolute positions [22]. Therefore, the n-point correlation function for phases i1,i2,...,im can be expressed in Equation 11:
Sni1,i2,...,imr12,r13,...,r1n=limnr→∞⁡Ii1x1Ii2x2...Iinxnnr(11)
where the …nr denotes the average over an ensemble of nr realizations of placing x1 randomly in the microstructure such that x2 … xn follow from x1 via (r12 … r1n). The special case of all phases being equal (i1=i2=...=im=i) is called auto-correlations and this auto-correlation case is given in Equation 12:
Sni→ir12,r13,...,r1n=Sni,i,...,ir12,r13,...,r1n(12)
Gram matrices offer a modern approach to characterizing microstructures by using the internal activations, or feature maps, of a pre-trained convolutional neural network (CNN) [23]. The activation of the pth channel in layer n at spatial position s is denoted as Fs,pn. In each layer n, the activations of all channels at all positions must contain relevant information about the image. Feature maps provide a richer representation than the raw image because each layer combines low-level features to generate more abstract, higher-order information. To leverage this representation, it is rendered approximately translation-invariant by computing the Gram matrix as:
Gp,rn=∑sFs,pnFs,rn(13)
2.4.2 Implementation of reconstruction algorithm based on differentiable descriptors
Microstructure Characterization and Reconstruction in Python (MCRpy) [24] is an open-source software tool. For a more recent example, using the Gram matrices G of the VGG-19 CNN feature maps as a descriptor for the same loss function results in the optimization problem stated in Equation 14:
Mrec=argminMGM−GdesMSE(14)
where optimization is suitable for gradient-based methods.
The final approach chosen in this paper combines differentiable three-point correlations S3, Gram matrices G, and normalized total variation V. The loss function aggregates the weighted mean squared error norm, with λDi representing the weight of the ith descriptor. Thus, the resulting optimization problem is formulated as follows:
Mrec=argminMλSS3M−S3desMSE+λGGM−GdesMSE+λVVM−VdesMSE(15)
where the optimization is performed using the gradient-based L-BFGS-B optimizer. In this paper, we use the method in Equation 15 for the 3D microstructural reconstruction of conglomerates.
The approach can degrade when the chosen descriptors are not representative, when features are thinner than a few voxels, or when admissible phase fractions approach 0 or 1; we counter this with directional, multiscale, per-phase descriptors, explicit phase-fraction constraints, and a coarse to fine warm start.
2.5 Data for validation
The samples for this study were collected from a coarse-grained conglomeratic formation in the Xinjiang region, each with dimensions of 50 mm × 100 mm. Although our experimental validation uses conglomeratic cores from the Xinjiang region, the reconstruction itself is descriptor-driven and material-agnostic. These samples underwent CT scanning. After reconstructing the CT images in three dimensions, slices were extracted. The slices from the 3D reconstruction were compressed to 128 × 128 pixels. This compression ensures that the reconstructed microstructures, with a resolution of 1283 voxels, are still large enough to accurately represent the morphology.
To enhance computational efficiency, MCRpy supports only. npy format files as input. Zhang et al. [25] demonstrated that the enhanced SegFormer neural network effectively converts CT scan images into grayscale and binary segmentation images for recognizing and classifying conglomerates within a coarse-grained geomaterial formation. Once the binary images are obtained, a simple Python script converts them to . npy files containing NumPy arrays of shape n,n with dtype uint8, where pixel values are in 0,1 and 1 denotes the non-gravel phase (matrix plus void) while 0 denotes gravel.
3 RESULTS
3.1 Reconstruction results
As shown in Equations 1, 2, microstructure reconstruction is essentially an optimization problem. A simple choice for the loss function L is a weighted sum of the mean squared error norm. In the Yeong-Torquato algorithm, the spatial two-point correlation S2 is used as the descriptor, and the loss function is formulated as the mean squared error norm of the descriptor difference. Thus, the following optimization problem emerges:
Mrec=argminMS2M−S2desMSE(16)
When simulated annealing is chosen as the optimizer, we solve the optimization in Equation 16, which effectively implements the Yeong-Torquato algorithm [26]. Despite using the total variation method [11, 21] to reduce noise in the reconstructed structure, it remains noticeably less smooth than the original. In this study, built-in Gaussian filters in MCRpy are used for smoothing.
MCRpy solves the optimization problem in Equation 13 by allowing the selection of a loss function type and providing a set of descriptors with corresponding weights. We adopt differentiable three-point correlations S3, Gram matrices G, and normalized total variation V as descriptors (hereafter collectively referred to as SGV), with descriptor weights of 0.1, 0.1, and 10, respectively. Experiments were conducted using MCRpy (version 0.2.0) configured with the L-BFGS-B optimizer and a maximum of 800 iterations. Note that Multigrid reconstruction is applicable only to the reconstruction process and requires multigrid descriptors. MCRpy begins by reconstructing down sampled versions of the structure recursively, with recursion depth limited to 2×limit_to. For example, for a 128×128 structure and limit_to=16, MCRpy first reconstructs 32×32 pixels—i.e., a recursion depth of 32, which is sufficient in most cases—then 64×64 pixels, and finally 128×128 pixels, using the coarse solution as initialization each time. This approach reduces the maximum number of iterations required.
In this study, experiments were conducted using a single RTX 3060 GPU. After applying Gaussian filters for smoothing, the three-dimensional microstructure reconstruction model of the coarse-grained conglomerate based on Yeong-Torquato algorithm and differentiable descriptors is shown in Figure 1.
[image: Four panels (a–d) show 3D reconstructions of a coarse-grained conglomerate with two phases. Panels (a) and (c) display full cubes; (a) is reconstructed by the Yeong–Torquato algorithm and (c) by differentiable descriptors. Panels (b) and (d) show three mutually orthogonal cross-sections arranged in a star layout for the corresponding volumes, revealing interior connectivity and texture.]FIGURE 1 | 3D reconstruction of the coarse-grained conglomerate core performed using (a,b) the Yeong-Torquato algorithm, and (c,d) differentiable descriptors.3.2 Numerical computation of the original and reconstructed models
Finite difference method (FDM) was utilized to analyze the mechanical properties of reconstructed coarse-grained conglomerate models. This type of heterogeneous material consists gravel, matrix and cementing materials [27]. Due to the large strength contrast between gravel and the matrix, it can be approximated as bimrock [28]. The strain-softening Mohr-Coulomb model is used in numerical models. This model captures the strain-softening behavior of Xiyu conglomerate, in which numerical simulation results accurately match with physical experimental results [29].
To compare the accuracy of models established by four different 3D reconstruction methods and assess the impact of smoothing on experimental results, this study uses the Yeong-Torquato algorithm and differentiable microstructure descriptors to establish the YT and SGV models. Smoothing is applied to create the YT_smoothed and SGV_smoothed models. During reconstruction, descriptors on the orthogonal slices were computed with periodic wrap, whereas the mechanical validation used a nonperiodic block. Identical material properties were assigned to the four numerical models, and three dimensional triaxial compression tests were conducted in FLAC3D 7.0 with the bottom surface fully fixed, the lateral boundaries traction free, and a constant axial strain rate applied on the top face, corresponding to consolidated drained (CD) conditions. During these tests, confining pressures of 0.1 MPa, 0.2 MPa, 0.3 MPa, and 0.4 MPa were applied in the vertical and horizontal directions of the samples. We do not include simulations of permeability, elastic homogenization, fracture toughness, or alternative loading paths. The reconstruction preserves phase fractions, interfacial area from normalized total variation, and multiscale texture from Gram matrices, so comparable fidelity is expected for permeability, small strain moduli, and full stress and strain behavior.
Figure 2 shows the stress-strain curves from 3D triaxial tests conducted on the four different numerical models. By analyzing these relationships under four different confining pressures, the cohesion and internal friction angle were obtained. Mohr-Coulomb failure criterion was used to calculate the internal friction angle and cohesion of the digital core samples. The cohesion values obtained from triaxial tests are 0.366 MPa for the SGV model, 0.368 MPa for the SGV_smoothed model, 0.359 MPa for the YT model, and 0.343 MPa for the YT_smoothed model. The corresponding internal friction angles are 44.02°, 46.64°, 45.28°, and 45.53°, respectively.
[image: Four stress–strain plots (a–d) from numerical triaxial compression. X-axis: strain (%); Y-axis: deviatoric stress (MPa). Legends indicate confining pressures of 0.1, 0.2, 0.3, and 0.4 MPa. Panel mapping: (a) SGV, (b) SGV_smoothed, (c) YT, (d) YT_smoothed. In all panels, curves rise roughly linearly, reach a peak between about 1–2.5% strain, then soften. Increasing confining pressure yields higher peak stress. Differences among models appear in peak level and post-peak softening rate, with smoothed versions showing a slightly smoother decline.]FIGURE 2 | Stress-strain curves from numerical triaxial compression tests with confining pressures of 0.1 MPa, 0.2 MPa, 0.3 MPa, and 0.4 MPa. (a) SGV model; (b) SGV_smoothed model; (c) YT model; (d) YT_smoothed model.Beyond cohesion and friction angle, we report higher-order, descriptor-level fidelity. For three-point correlations we use the normalized gap ES3=S3rec−S3orig|2/S3orig|2, yielding 3.2%, 3.6%, 2.9% along x/y/z. For multi-scale texture we use the Gram-matrix gap EG=Grec−Gorig|F/Gorig|F, giving 1.9%, 2.1%, 1.6%. For interfacial geometry we use the normalized-total-variation deviation EV=Vrec−Vorig/Vorig, which is 1.1% on average across stacks.
3.3 Evaluation of reconstruction effectiveness based on two-point correlation function
In this study, we define the two-point correlation function S2r for the original and reconstructed structures as the probability that two randomly chosen points separated by a distance ∥r∥ are in the same phase, either the gravel or void phase of the microstructure. Although S2r can be defined for both phases of a porous medium, we compute only S20 for the non-gravel phase, using a binary indicator in which non-gravel denotes matrix plus void (gravel is the complement). The non-gravel component in the original core sample accounts for 36.76%. After reconstruction using differentiable descriptors, this proportion becomes 36.13%, with a relative error of 1.71%. In comparison, the Yeong-Torquato algorithm reconstructs the non-gravel component at 37.82%, yielding a relative error of 2.88%.
The two-point correlation function is usually two-dimensional, describing correlations between points in various directions. Radial averaging simplifies this to a one-dimensional function by averaging the correlation values at each radius, thus removing directional dependence and resulting in a function that depends only on the radius. The results show that reconstruction with differentiable descriptors outperforms the Yeong-Torquato algorithm.
4 DISCUSSION
4.1 Effect of smoothing on the 3D model
Figure 3a shows that noise and fake sharp corners cause irregular meshing in the numerical simulation. This irregularity can affect numerical stability and accuracy. At sharp corners, the meshes are excessively refined and can cause numerical instability. This makes stress concentration in the model lower and increases the effective yield strength of the model.
[image: Four panels compare smoothing and accuracy. Panels (a) and (b) show red–blue microstructure maps of the conglomerate before and after Gaussian smoothing. Panels (c) and (d) are bar charts comparing four methods—SGV, SGV_smoothed, YT, and YT_smoothed. Panel (c) reports cohesion errors: relative error (%) and absolute error (MPa). Panel (d) reports internal friction angle errors: relative error (%) and absolute error (degrees). Labels over the bars give values, enabling direct visual comparison of each method's accuracy.]FIGURE 3 | Model smoothing with Gaussian filtering: (a) Structure before smoothing, (b) Structure after smoothing. Comparative analysis of shear strength of the coarse-grained conglomerate from numerical simulations and physical experiments: (c) Cohesion, (d) Internal friction angle.Gaussian filtering is a linear smoothing method used for image denoising [30]. Pixels near the central pixel get high weights and pixels far from the central pixel get low weights. Figure 3b shows that using the relevant functions significantly reduces noise and fixes sharp features in the model.
This study evaluates how Gaussian smoothing influences triaxial-test simulations by comparing digital cores reconstructed with differentiable microstructure descriptors (SGV) and with the Yeong-Torquato algorithm, each examined in both smoothed and unsmoothed form. Figures 3c,d presents absolute and relative errors in internal-friction angle and cohesion relative to laboratory measurements. Smoothing consistently narrows these discrepancies: for the SGV core, the absolute error in internal-friction angle falls from 0.016 MPa to 0.009 MPa, a reduction of 0.007 MPa, with similar improvements observed for the Yeong-Torquato core. After smoothing, both reconstructions predict internal-friction angle and cohesion within 3% of experimental values, confirming the accuracy gains afforded by the procedure. Beyond denoising, Gaussian smoothing acts as an interface-regularization step that reduces staircase artefacts and spurious stress raisers at sharp voxel corners. Such pre-simulative regularization is consistent with practices in dynamic rock-failure modeling and block-based discretizations, where jagged contacts can degrade stability and bias peak strength [31, 32]; studies on three-dimensional discontinuous deformation analysis of rockfalls emphasize precisely this sensitivity to contact geometry and mesh/block quality [33, 34].
4.2 Comparison of computational costs between two reconstruction algorithms
Unlike the Yeong-Torquato scheme, our reconstruction exploits gradient information, enabling continuous moves in microstructure space rather than the Yeong-Torquato algorithm’s random exchange of pixel pairs. Although gradient-based optimizers risk stalling in local minima or flat regions, this can be alleviated by suitable optimizer choices and feature functions that preserve non-zero gradients. Directly benchmarking the two methods is non-trivial—performance depends on platform, hyper-parameters, algorithmic variants, and target accuracy—but under identical GPU settings we measured the wall-clock time needed for each to recreate a 64 × 64-pixel checkerboard, highlighting the speed advantage of the differentiable approach. Both runs were stopped at the same target accuracy, measured as a composite normalized residual L^ equal to the average of the normalized two-point correlation difference and the normalized Gram feature difference; we used L^≤5.0×10−3 and obtained L^≈4.6×10−3 at termination.
As illustrated in Figure 4, the Yeong-Torquato algorithm identifies the checkerboard outline in 4 min and completes the reconstruction in approximately 8 min. Conversely, the reconstruction using differentiable descriptors, specifically correlations and Gram matrices, identifies the outline in about 15 s and finishes in 50 s. Although calculating gradients in differentiable microstructure reconstruction makes each iteration more computationally demanding than in the Yeong-Torquato algorithm, the overall computational cost of using differentiable descriptors is substantially lower.
[image: Time-sequence comparison of two reconstruction methods approaching a 64×64-pixel target checkerboard. A horizontal timeline (T in s) connects snapshots. Top row: Differentiable MCR at T = 14 s and T = 50 s; the target structure is at the far right. Bottom row: initial random structure at T = 0 s, then Yeong–Torquato algorithm at T = 233 s and T = 717 s. Each square shows a two-color tiling that becomes increasingly ordered, illustrating convergence speed and visual differences between methods.]FIGURE 4 | Performance comparison between the Yeong-Torquato algorithm and differentiable microstructure reconstruction in reconstructing a 64×64-pixel checkerboard structure.The speedup we observe is consistent with a broader trend in geomechanical computation: multiscale/gradient-informed formulations reduce cost while preserving predictive fidelity [35, 36], and joint processing of multi-component signals demonstrates that fusing informative features can stabilize and accelerate inference [37]. In applied settings where throughput matters, computationally lean upstream characterizations are essential inputs, and our gradient-based reconstruction is designed with precisely this throughput in mind [16, 38].
5 CONCLUSION
This study rebuilds three-dimensional digital cores from two-dimensional slices of a coarse-grained conglomerate by combining differentiable microstructure descriptors—namely spatial three-point correlations, Gram matrices and local variation—within the open-source MCRpy framework. Digital cores produced with this gradient-driven approach and with the classical Yeong-Torquato algorithm were both evaluated in FLAC3D; only the differentiable-descriptor cores reproduced laboratory cohesion and friction angles with high fidelity. By turning inexpensive 2D imagery into reliable 3D models, the method strengthens multiscale geotechnical analyses that underpin projects such as bridge foundations and tunnel excavation.
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