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The microstructure of geomaterials plays a crucial role in determining their 
physical and mechanical properties. The complex mechanical behavior of 
certain coarse-grained geomaterials significantly affects their resistance to 
deformation, making an accurate characterization of their internal structure 
essential. However, obtaining core samples of such materials is often costly and 
labor-intensive, whereas acquiring two-dimensional (2D) structural information 
is more feasible. This study presents a microstructure reconstruction technique 
based on a differentiable optimization framework, wherein the reconstruction 
process minimizes the error of a given descriptor while considering its derivative. 
The proposed method enables reconstruction using either a single 2D slice 
or three orthogonal 2D slices. Furthermore, the effectiveness of the 2D-to-3D 
reconstruction is validated through actual computed tomography (CT) scans of 
coarse-grained geomaterial samples collected from the Xinjiang region.
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 1 Introduction

Geomaterials are porous media whose networks differ in porosity, pore-size 
distribution, and geometry. Pore-scale modelling clarifies internal stress and strain fields, 
underpinning predictions of bulk behavior, yet linking these models to measurable physical 
and mechanical properties remains a key challenge in rock mechanics. Core samples—our 
most direct record of the subsurface—supply essential data on grain size, depositional fabric, 
and pore characteristics.

There are two common methods for constructing three-dimensional digital rock 
cores: expensive X-ray CT experiments [1, 2] and reconstruction from two-dimensional 
images. Reconstruction algorithms are further divided into random methods, process-based 
methods, and others [3]. Over the decades, several reconstruction algorithms have been 
proposed. A comprehensive review is provided in Ref. [4, 5]. The following provides a 
brief introduction, distinguishing between classical stochastic and novel machine learning 
approaches.

Microstructure rebuilding is regarded as a best-fit problem in stochastic approaches. 
They work on a middle microstructure until the descriptor gets the needed value. The Yeong-
Torquato algorithm [6] pioneered these methods, which contained the random search
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“simulated annealing” to microstructures with the right phase 
volume amounts. This range has produced Yeong-Torquato versions 
based on n-point correlation functions [7], physical descriptors [8], 
Gaussian random field [9] plus more. The big problem with the 
Yeong-Torquato algorithm is that it costs too much computer time. 
The computational cost grows as microstructure resolution and 
accuracy increase.

Machine learning has inspired researchers to address 
computational cost issues through a shift to data-driven approaches. 
Proposed solutions vary widely, including non-parametric 
resampling [10], convolutional neural networks (CNNs) [11], 
variational autoencoder [12], and generative adversarial networks 
[13]. However, they all require an initial learning or training phase 
with a potentially large training dataset. They share a common 
shortcoming: the descriptor is not user-prescribed but learned from 
data during (pre-) training as an internal latent representation, 
which cannot be prescribed or directly interpreted [14]. For 
example, machine learning approaches cannot yet reconstruct from 
a given two-point correlation value, only from coordinates in their 
internal latent space. This inherent coupling between the (pre-) 
training dataset, the resultant latent space replacing the descriptor, 
and the reconstruction algorithm constitutes an impediment [15]. 
Field scale risks further motivate accurate microstructure informed 
analyses, from excavation induced deformation to karst water inrush 
thickness criteria [16, 17]. Recent advances fuse hard and soft data 
for subsurface characterization and apply three-dimensional vision 
at the material scale to enrich descriptors [18, 19].

We present a gradient-based, higher-order optimization 
framework that reconstructs random heterogeneous media from 
user-specified, differentiable microstructural descriptors. Making 
the descriptors differentiable greatly accelerates convergence, 
reducing computational cost by ∼10× at 643 and ∼20–40× at 2563

(extrapolated >70× near 5123) at comparable accuracy relative to 
the classical Yeong-Torquato algorithm. 

2 Methods

We numerically validate 2D-to-3D microstructure 
reconstruction by extracting a random slice from a 3D reference 
medium and treating it as the sole 2D input. Two reconstructions are 
produced—one with the classical Yeong-Torquato (YT) algorithm 
and the other with a gradient-based scheme that uses differentiable 
microstructure descriptors derived from the slice—followed 
by Gaussian smoothing. Both 3D models are then subjected 
to FLAC3D simulations to compute shear strength, and the 
outcomes are benchmarked against laboratory data for coarse-
grained geomaterials. The close agreement confirms that the 
differentiable-descriptor approach yields reliable and efficient 3D 
reconstructions. 

2.1 Revisiting the Yeong-Torquato 
algorithm

The simulated annealing algorithm is a method for finding the 
best or almost best answer in a large set of answers [20]. It searches 
the set of answers with random picks and chance, and it takes 

worse answers sometimes so it does not get stuck with a local 
best answer. When the temperature parameter is slowly lowered, 
the algorithm picks better answers more often as it searches and 
finally finds a best answer or an almost best answer. In the Yeong-
Torquato algorithm, microstructure reconstruction is formulated as 
a stochastic optimization problem:

argmin
M∈{0,1}I×J

L(M) (1)

where M represents a discrete two-phase microstructure with width 
I and height J, where each pixel is assigned a phase number, either 
0 or 1. The loss function L is the Euclidean distance between the 
microstructure descriptor D and the desired descriptor Ddes. As 
shown in Equation 2, a smaller Euclidean distance indicates higher 
similarity between image features, while a larger distance indicates 
lower similarity. Thus, Equation 1 aims to find the value of the 
independent variable that minimizes the loss function within the 
domain M:

L(M) = ‖D−Ddes‖
2

(2)

where D is obtained from a suitable characterization function, as 
defined in Equation 3:

fC:M ∈ {0,1}I×J → D ∈ ℝK (3)

Here, K is independent of I and J in general cases. Applying the 
simulated annealing algorithm’s update strategy to this stochastic 
optimization problem yields the Yeong-Torquato algorithm. 

2.2 Differentiable microstructure 
reconstruction in 2D

Given the desired microstructure descriptor Ddes, the goal 
of microstructure reconstruction is to find a microstructure
M such that the corresponding descriptor D(M) is as close as 
possible to Ddes. The core concept of differentiable microstructure 
characterization and reconstruction (MCR) is that microstructure 
reconstruction is an optimization problem, and efficient 
optimization requires the gradient. Therefore, Equation 1 can be 
reformulated as a differentiable optimization problem:

argminM̃L(M̃) (4)

where each pixel of the intermediate microstructure M̃ is allowed to 
take any real value in the interval (0,1) during the reconstruction 
process. Only after the reconstruction is complete is M̃ rounded 
to obtain an integer-valued microstructure M, where each pixel is 
either 0 or 1. The loss function Equation 2 can be reformulated as:

L(M̃) =∑dλd ∥ ̃Dd(M̃) −Ddes
d ∥

2
2 (5)

where d indexes the descriptor type, ∥ · ∥2 denotes the Euclidean 
norm applied to the vectorized descriptor difference, and λd ≥ 0 are 
scalar weights.

The optimization problem in Equation 4 is solved iteratively. In 
each iteration, the microstructure M̃ is continuously modified to 
reduce the loss L. Simultaneously, the gradient dL ∕ dM̃ is used to 
compute the change in the microstructure ΔM̃, which requires the 
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loss function L to be differentiable with respect to M̃. Any gradient-
based optimizer can be used for this, such as the ADAM optimizer 
or a Quasi-Newton method like L-BFGS-B. With Equation 5, if the 
descriptor is differentiable, then L is differentiable with respect to 
M̃. Therefore, it is necessary to introduce a differentiable descriptor 
D̃ (M̃), which is defined and differentiable for each possible 
intermediate microstructure M̃ [21]. Furthermore, the special case 
of an integer-valued microstructure should be reproduced:

D̃(M) = D(M) (6)
 

2.3 Slicing-based generalization to 3D

The microstructure is sliced along all three spatial directions 
to obtain stacks of 2D sections. The descriptor is then computed 
for each slice separately. Therefore, on each slice, the descriptor 
should closely match the desired 2D descriptor. Anisotropy can 
be considered in slices of different orientations, allowing for the 
specification of different descriptors. Thus, descriptors can be 
optimized by minimizing the loss function in Equation 7:

L =∑dλd
[

[

nsilces
x

∑
i=1

wx
i ‖D̃

x
d,i(M̃) −Ddes,x

d ‖
2
2
+

nsilces
y

∑
j=1

wy
j ‖D̃

y
d,j(M̃) −Ddes,y

d ‖
2

2

+
nsilces

z

∑
k=1

wz
k‖D̃

z
d,k(M̃) −Ddes,z

d ‖
2
2
]

]
(7)

where wx
i ,w

y
j ,w

z
k ≥ 0 are the weights used to average descriptor 

mismatches over the slices within each orthogonal stack. 
Ddes,x, Ddes,y and Ddes,z are the desired 2D descriptors in the 
x, y and z directions, respectively. In the general anisotropic 
case given in Equation 8, different targets can be prescribed 
per direction:

Ddes,x ≠ Ddes,y ≠ Ddes,z (8)

However, if isotropic materials are considered, Equation 6 can 
be simplified to:

L =
nslices

∑
s

D̃s(M̃) −Ddes (9)

In all reconstructions reported here we assume 
isotropy and use Equation 9; anisotropy is not enforced. Because 
the descriptor-matching objective is nonconvex, local minima 
may arise, especially when fine-scale interface details dominate. 
If encountered, it can be mitigated by a coarse to fine warm start 
with explicit phase-fraction feasibility, direction specific targets on 
the three orthogonal stacks, mild weight continuation with early 
stopping, and optional restarts to select the lowest-loss solution. 

2.4 Microstructure characterization and 
reconstruction

2.4.1 Spatial correlations and gram matrices
Spatial n-point correlations describe the statistical relationships 

between quantities at different locations within a system. Consider a 

realization of a two-phase random heterogeneous material within d-
dimensional Euclidean space ℝd. To characterize this binary system, 
where each phase has a volume fraction ϕi (for i = 1,2), we introduce 
the indicator function I(i)(x), defined in Equation 10:

I(i)(x) = {
1, x ∈ Vi,
0, x ∈ Vi,

(10)

where Vi ∈ ℝd is the region occupied by phase i and Vi ∈ ℝd is the 
region occupied by the other phase.

Spatial n-point correlations stochastically quantify the outcomes 
of probing the indicator function at multiple spatial locations 
(x1, x2., xn). For statistically homogeneous media, the n-point 
correlation function depends only on the relative displacements
rij = xj − xi, not on the absolute positions [22]. Therefore, the n-
point correlation function for phases i1, i2, ..., im can be expressed in 
Equation 11:

Si1,i2,...,im
n (r12,r13, ...,r1n) = limnr→∞ [I

i1(x1)I i2(x2)...I in(xn)]nr (11)

where the […]nr denotes the average over an ensemble of nr 
realizations of placing x1 randomly in the microstructure such that
x2 …xn follow from x1 via (r12 …r1n). The special case of all phases 
being equal (i1 = i2 = ... = im = i) is called auto-correlations and this 
auto-correlation case is given in Equation 12:

Si→i
n (r

12, r13, ..., r1n) = Si,i,...,i
n (r12, r13, ..., r1n) (12)

Gram matrices offer a modern approach to characterizing 
microstructures by using the internal activations, or feature maps, 
of a pre-trained convolutional neural network (CNN) [23]. The 
activation of the pth channel in layer n at spatial position s is 
denoted as Fn

s,p. In each layer n, the activations of all channels at 
all positions must contain relevant information about the image. 
Feature maps provide a richer representation than the raw image 
because each layer combines low-level features to generate more 
abstract, higher-order information. To leverage this representation, 
it is rendered approximately translation-invariant by computing the 
Gram matrix as:

Gn
p,r =∑

s
Fn

s,pFn
s,r (13)

 

2.4.2 Implementation of reconstruction 
algorithm based on differentiable descriptors

Microstructure Characterization and Reconstruction in Python 
(MCRpy) [24] is an open-source software tool. For a more recent 
example, using the Gram matrices G of the VGG-19 CNN feature 
maps as a descriptor for the same loss function results in the 
optimization problem stated in Equation 14:

Mrec = argmin
M
‖G(M) −Gdes‖

MSE
(14)

where optimization is suitable for gradient-based methods.
The final approach chosen in this paper combines differentiable 

three-point correlations S3, Gram matrices G, and normalized total 
variation V. The loss function aggregates the weighted mean squared 
error norm, with λDi representing the weight of the ith descriptor. 
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Thus, the resulting optimization problem is formulated as follows:

Mrec = argmin
M

λS‖S3(M) − Sdes
3 ‖MSE

+λG‖G(M) −Gdes‖
MSE

+λV‖V(M) −Vdes‖
MSE

(15)

where the optimization is performed using the gradient-based L-
BFGS-B optimizer. In this paper, we use the method in Equation 15 
for the 3D microstructural reconstruction of conglomerates.

The approach can degrade when the chosen descriptors are 
not representative, when features are thinner than a few voxels, or 
when admissible phase fractions approach 0 or 1; we counter this 
with directional, multiscale, per-phase descriptors, explicit phase-
fraction constraints, and a coarse to fine warm start. 

2.5 Data for validation

The samples for this study were collected from a coarse-
grained conglomeratic formation in the Xinjiang region, each 
with dimensions of 50 mm × 100 mm. Although our experimental 
validation uses conglomeratic cores from the Xinjiang region, the 
reconstruction itself is descriptor-driven and material-agnostic. 
These samples underwent CT scanning. After reconstructing the 
CT images in three dimensions, slices were extracted. The slices 
from the 3D reconstruction were compressed to 128 × 128 pixels. 
This compression ensures that the reconstructed microstructures, 
with a resolution of 1283 voxels, are still large enough to accurately 
represent the morphology.

To enhance computational efficiency, MCRpy supports only. 
npy format files as input. Zhang et al. [25] demonstrated that 
the enhanced SegFormer neural network effectively converts CT 
scan images into grayscale and binary segmentation images for 
recognizing and classifying conglomerates within a coarse-grained 
geomaterial formation. Once the binary images are obtained, a 
simple Python script converts them to . npy files containing NumPy 
arrays of shape (n,n) with dtype uint8, where pixel values are in 
{0,1} and 1 denotes the non-gravel phase (matrix plus void) while 
0 denotes gravel. 

3 Results

3.1 Reconstruction results

As shown in Equations 1, 2, microstructure reconstruction is 
essentially an optimization problem. A simple choice for the loss 
function L is a weighted sum of the mean squared error norm. In 
the Yeong-Torquato algorithm, the spatial two-point correlation S2
is used as the descriptor, and the loss function is formulated as the 
mean squared error norm of the descriptor difference. Thus, the 
following optimization problem emerges:

Mrec = argmin
M
‖S2(M) − Sdes

2 ‖MSE
(16)

When simulated annealing is chosen as the optimizer, we solve 
the optimization in Equation 16, which effectively implements the 
Yeong-Torquato algorithm [26]. Despite using the total variation 

FIGURE 1
3D reconstruction of the coarse-grained conglomerate core 
performed using (a,b) the Yeong-Torquato algorithm, and (c,d)
differentiable descriptors.

method [11, 21] to reduce noise in the reconstructed structure, 
it remains noticeably less smooth than the original. In this study, 
built-in Gaussian filters in MCRpy are used for smoothing.

MCRpy solves the optimization problem in Equation 13 by 
allowing the selection of a loss function type and providing a set 
of descriptors with corresponding weights. We adopt differentiable 
three-point correlations S3, Gram matrices G, and normalized total 
variation V as descriptors (hereafter collectively referred to as SGV), 
with descriptor weights of 0.1, 0.1, and 10, respectively. Experiments 
were conducted using MCRpy (version 0.2.0) configured with the 
L-BFGS-B optimizer and a maximum of 800 iterations. Note that 
Multigrid reconstruction is applicable only to the reconstruction 
process and requires multigrid descriptors. MCRpy begins by 
reconstructing down sampled versions of the structure recursively, 
with recursion depth limited to 2× limit_to. For example, for a 128×
128 structure and limit_to = 16, MCRpy first reconstructs 32× 32
pixels—i.e., a recursion depth of 32, which is sufficient in most 
cases—then 64× 64 pixels, and finally 128× 128 pixels, using the 
coarse solution as initialization each time. This approach reduces the 
maximum number of iterations required.

In this study, experiments were conducted using a single RTX 
3060 GPU. After applying Gaussian filters for smoothing, the three-
dimensional microstructure reconstruction model of the coarse-
grained conglomerate based on Yeong-Torquato algorithm and 
differentiable descriptors is shown in Figure 1.

3.2 Numerical computation of the original 
and reconstructed models

Finite difference method (FDM) was utilized to analyze 
the mechanical properties of reconstructed coarse-grained 
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FIGURE 2
Stress-strain curves from numerical triaxial compression tests with confining pressures of 0.1 MPa, 0.2 MPa, 0.3 MPa, and 0.4 MPa. (a) SGV model; (b)
SGV_smoothed model; (c) YT model; (d) YT_smoothed model.

conglomerate models. This type of heterogeneous material 
consists gravel, matrix and cementing materials [27]. Due to the 
large strength contrast between gravel and the matrix, it can 
be approximated as bimrock [28]. The strain-softening Mohr-
Coulomb model is used in numerical models. This model captures 
the strain-softening behavior of Xiyu conglomerate, in which 
numerical simulation results accurately match with physical 
experimental results [29].

To compare the accuracy of models established by four different 
3D reconstruction methods and assess the impact of smoothing on 
experimental results, this study uses the Yeong-Torquato algorithm 
and differentiable microstructure descriptors to establish the YT and 
SGV models. Smoothing is applied to create the YT_smoothed and 
SGV_smoothed models. During reconstruction, descriptors on the 
orthogonal slices were computed with periodic wrap, whereas the 
mechanical validation used a nonperiodic block. Identical material 
properties were assigned to the four numerical models, and three 
dimensional triaxial compression tests were conducted in FLAC3D 
7.0 with the bottom surface fully fixed, the lateral boundaries 
traction free, and a constant axial strain rate applied on the top face, 

corresponding to consolidated drained (CD) conditions. During 
these tests, confining pressures of 0.1 MPa, 0.2 MPa, 0.3 MPa, 
and 0.4 MPa were applied in the vertical and horizontal directions 
of the samples. We do not include simulations of permeability, 
elastic homogenization, fracture toughness, or alternative loading 
paths. The reconstruction preserves phase fractions, interfacial 
area from normalized total variation, and multiscale texture 
from Gram matrices, so comparable fidelity is expected for 
permeability, small strain moduli, and full stress and strain
behavior.

Figure 2 shows the stress-strain curves from 3D triaxial tests 
conducted on the four different numerical models. By analyzing 
these relationships under four different confining pressures, the 
cohesion and internal friction angle were obtained. Mohr-Coulomb 
failure criterion was used to calculate the internal friction angle and 
cohesion of the digital core samples. The cohesion values obtained 
from triaxial tests are 0.366 MPa for the SGV model, 0.368 MPa 
for the SGV_smoothed model, 0.359 MPa for the YT model, and 
0.343 MPa for the YT_smoothed model. The corresponding internal 
friction angles are 44.02°, 46.64°, 45.28°, and 45.53°, respectively.
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FIGURE 3
Model smoothing with Gaussian filtering: (a) Structure before smoothing, (b) Structure after smoothing. Comparative analysis of shear strength of the 
coarse-grained conglomerate from numerical simulations and physical experiments: (c) Cohesion, (d) Internal friction angle.

Beyond cohesion and friction angle, we report higher-order, 
descriptor-level fidelity. For three-point correlations we use the 
normalized gap ES3

= |Srec
3 − Sorig

3 |2 /|S
orig
3 |2, yielding 3.2%, 3.6%, 

2.9% along x/y/z. For multi-scale texture we use the Gram-
matrix gap EG = |Grec −Gorig|F /|Gorig|F, giving 1.9%, 2.1%, 1.6%. 
For interfacial geometry we use the normalized-total-variation 
deviation EV = |Vrec −Vorig|/Vorig, which is 1.1% on average 
across stacks. 

3.3 Evaluation of reconstruction 
effectiveness based on two-point 
correlation function

In this study, we define the two-point correlation function S2(r)
for the original and reconstructed structures as the probability 
that two randomly chosen points separated by a distance ∥ r ∥
are in the same phase, either the gravel or void phase of the 
microstructure. Although S2(r) can be defined for both phases of a 
porous medium, we compute only S2(0) for the non-gravel phase, 
using a binary indicator in which non-gravel denotes matrix plus 

void (gravel is the complement). The non-gravel component in 
the original core sample accounts for 36.76%. After reconstruction 
using differentiable descriptors, this proportion becomes 36.13%, 
with a relative error of 1.71%. In comparison, the Yeong-Torquato 
algorithm reconstructs the non-gravel component at 37.82%, 
yielding a relative error of 2.88%.

The two-point correlation function is usually two-dimensional, 
describing correlations between points in various directions. Radial 
averaging simplifies this to a one-dimensional function by averaging 
the correlation values at each radius, thus removing directional 
dependence and resulting in a function that depends only on the 
radius. The results show that reconstruction with differentiable 
descriptors outperforms the Yeong-Torquato algorithm. 

4 Discussion

4.1 Effect of smoothing on the 3D model

Figure 3a shows that noise and fake sharp corners cause irregular 
meshing in the numerical simulation. This irregularity can affect 
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FIGURE 4
Performance comparison between the Yeong-Torquato algorithm and differentiable microstructure reconstruction in reconstructing a 64×64-pixel 
checkerboard structure.

numerical stability and accuracy. At sharp corners, the meshes are 
excessively refined and can cause numerical instability. This makes 
stress concentration in the model lower and increases the effective 
yield strength of the model.

Gaussian filtering is a linear smoothing method used for image 
denoising [30]. Pixels near the central pixel get high weights and 
pixels far from the central pixel get low weights. Figure 3b shows 
that using the relevant functions significantly reduces noise and fixes 
sharp features in the model.

This study evaluates how Gaussian smoothing influences 
triaxial-test simulations by comparing digital cores reconstructed 
with differentiable microstructure descriptors (SGV) and 
with the Yeong-Torquato algorithm, each examined in both 
smoothed and unsmoothed form. Figures 3c,d presents absolute 
and relative errors in internal-friction angle and cohesion 
relative to laboratory measurements. Smoothing consistently 
narrows these discrepancies: for the SGV core, the absolute 
error in internal-friction angle falls from 0.016 MPa to 0.009 
MPa, a reduction of 0.007 MPa, with similar improvements 
observed for the Yeong-Torquato core. After smoothing, both 
reconstructions predict internal-friction angle and cohesion 
within 3% of experimental values, confirming the accuracy 
gains afforded by the procedure. Beyond denoising, Gaussian 
smoothing acts as an interface-regularization step that reduces 
staircase artefacts and spurious stress raisers at sharp voxel 
corners. Such pre-simulative regularization is consistent with 
practices in dynamic rock-failure modeling and block-based 
discretizations, where jagged contacts can degrade stability 
and bias peak strength [31, 32]; studies on three-dimensional 
discontinuous deformation analysis of rockfalls emphasize 
precisely this sensitivity to contact geometry and mesh/block
quality [33, 34]. 

4.2 Comparison of computational costs 
between two reconstruction algorithms

Unlike the Yeong-Torquato scheme, our reconstruction exploits 
gradient information, enabling continuous moves in microstructure 
space rather than the Yeong-Torquato algorithm’s random exchange 
of pixel pairs. Although gradient-based optimizers risk stalling 
in local minima or flat regions, this can be alleviated by 
suitable optimizer choices and feature functions that preserve 
non-zero gradients. Directly benchmarking the two methods is 
non-trivial—performance depends on platform, hyper-parameters, 
algorithmic variants, and target accuracy—but under identical GPU 
settings we measured the wall-clock time needed for each to recreate 
a 64 × 64-pixel checkerboard, highlighting the speed advantage 
of the differentiable approach. Both runs were stopped at the 
same target accuracy, measured as a composite normalized residual 
̂L equal to the average of the normalized two-point correlation 

difference and the normalized Gram feature difference; we used 
̂L ≤ 5.0× 10−3 and obtained ̂L ≈ 4.6× 10−3 at termination.

As illustrated in Figure 4, the Yeong-Torquato algorithm 
identifies the checkerboard outline in 4 min and completes 
the reconstruction in approximately 8 min. Conversely, the 
reconstruction using differentiable descriptors, specifically 
correlations and Gram matrices, identifies the outline in about 
15 s and finishes in 50 s. Although calculating gradients in 
differentiable microstructure reconstruction makes each iteration 
more computationally demanding than in the Yeong-Torquato 
algorithm, the overall computational cost of using differentiable 
descriptors is substantially lower.

The speedup we observe is consistent with a broader trend 
in geomechanical computation: multiscale/gradient-informed 
formulations reduce cost while preserving predictive fidelity [35,
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36], and joint processing of multi-component signals 
demonstrates that fusing informative features can stabilize and 
accelerate inference [37]. In applied settings where throughput 
matters, computationally lean upstream characterizations 
are essential inputs, and our gradient-based reconstruction 
is designed with precisely this throughput in mind
[16, 38]. 

5 Conclusion

This study rebuilds three-dimensional digital cores from two-
dimensional slices of a coarse-grained conglomerate by combining 
differentiable microstructure descriptors—namely spatial three-
point correlations, Gram matrices and local variation—within the 
open-source MCRpy framework. Digital cores produced with this 
gradient-driven approach and with the classical Yeong-Torquato 
algorithm were both evaluated in FLAC3D; only the differentiable-
descriptor cores reproduced laboratory cohesion and friction angles 
with high fidelity. By turning inexpensive 2D imagery into reliable 
3D models, the method strengthens multiscale geotechnical analyses 
that underpin projects such as bridge foundations and tunnel 
excavation.
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