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The microstructure of geomaterials plays a crucial role in determining their
physical and mechanical properties. The complex mechanical behavior of
certain coarse-grained geomaterials significantly affects their resistance to
deformation, making an accurate characterization of their internal structure
essential. However, obtaining core samples of such materials is often costly and
labor-intensive, whereas acquiring two-dimensional (2D) structural information
is more feasible. This study presents a microstructure reconstruction technique
based on a differentiable optimization framework, wherein the reconstruction
process minimizes the error of a given descriptor while considering its derivative.
The proposed method enables reconstruction using either a single 2D slice
or three orthogonal 2D slices. Furthermore, the effectiveness of the 2D-to-3D
reconstruction is validated through actual computed tomography (CT) scans of
coarse-grained geomaterial samples collected from the Xinjiang region.

KEYWORDS

microstructure reconstruction, differentiable descriptors, digital rock analysis, two-
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1 Introduction

Geomaterials are porous media whose networks differ in porosity, pore-size
distribution, and geometry. Pore-scale modelling clarifies internal stress and strain fields,
underpinning predictions of bulk behavior, yet linking these models to measurable physical
and mechanical properties remains a key challenge in rock mechanics. Core samples—our
most direct record of the subsurface—supply essential data on grain size, depositional fabric,
and pore characteristics.

There are two common methods for constructing three-dimensional digital rock
cores: expensive X-ray CT experiments [1, 2] and reconstruction from two-dimensional
images. Reconstruction algorithms are further divided into random methods, process-based
methods, and others [3]. Over the decades, several reconstruction algorithms have been
proposed. A comprehensive review is provided in Ref. [4, 5]. The following provides a
brief introduction, distinguishing between classical stochastic and novel machine learning
approaches.

Microstructure rebuilding is regarded as a best-fit problem in stochastic approaches.
They work on a middle microstructure until the descriptor gets the needed value. The Yeong-
Torquato algorithm [6] pioneered these methods, which contained the random search
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“simulated annealing” to microstructures with the right phase
volume amounts. This range has produced Yeong-Torquato versions
based on n-point correlation functions [7], physical descriptors [8],
Gaussian random field [9] plus more. The big problem with the
Yeong-Torquato algorithm is that it costs too much computer time.
The computational cost grows as microstructure resolution and
accuracy increase.

Machine learning has inspired researchers to address
computational cost issues through a shift to data-driven approaches.
Proposed solutions vary widely, including non-parametric
resampling [10], convolutional neural networks (CNNs) [11],
variational autoencoder [12], and generative adversarial networks
[13]. However, they all require an initial learning or training phase
with a potentially large training dataset. They share a common
shortcoming: the descriptor is not user-prescribed but learned from
data during (pre-) training as an internal latent representation,
which cannot be prescribed or directly interpreted [14]. For
example, machine learning approaches cannot yet reconstruct from
a given two-point correlation value, only from coordinates in their
internal latent space. This inherent coupling between the (pre-)
training dataset, the resultant latent space replacing the descriptor,
and the reconstruction algorithm constitutes an impediment [15].
Field scale risks further motivate accurate microstructure informed
analyses, from excavation induced deformation to karst water inrush
thickness criteria [16, 17]. Recent advances fuse hard and soft data
for subsurface characterization and apply three-dimensional vision
at the material scale to enrich descriptors [18, 19].

We present a gradient-based, higher-order optimization
framework that reconstructs random heterogeneous media from
user-specified, differentiable microstructural descriptors. Making
the descriptors differentiable greatly accelerates convergence,
reducing computational cost by ~10x at 64> and ~20-40x at 256°
(extrapolated >70x near 512°) at comparable accuracy relative to

the classical Yeong-Torquato algorithm.

2 Methods

2D-to-3D
reconstruction by extracting a random slice from a 3D reference

We  numerically  validate microstructure
medium and treating it as the sole 2D input. Two reconstructions are
produced—one with the classical Yeong-Torquato (YT) algorithm
and the other with a gradient-based scheme that uses differentiable
microstructure descriptors derived from the slice—followed
by Gaussian smoothing. Both 3D models are then subjected
to FLAC3D simulations to compute shear strength, and the
outcomes are benchmarked against laboratory data for coarse-
grained geomaterials. The close agreement confirms that the
differentiable-descriptor approach yields reliable and efficient 3D
reconstructions.

2.1 Revisiting the Yeong-Torquato
algorithm

The simulated annealing algorithm is a method for finding the
best or almost best answer in a large set of answers [20]. It searches
the set of answers with random picks and chance, and it takes
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worse answers sometimes so it does not get stuck with a local
best answer. When the temperature parameter is slowly lowered,
the algorithm picks better answers more often as it searches and
finally finds a best answer or an almost best answer. In the Yeong-
Torquato algorithm, microstructure reconstruction is formulated as
a stochastic optimization problem:

argmin L(M) (1)

Me{0,1)
where M represents a discrete two-phase microstructure with width
I and height J, where each pixel is assigned a phase number, either
0 or 1. The loss function L is the Euclidean distance between the
microstructure descriptor D and the desired descriptor DI, As
shown in Equation 2, a smaller Euclidean distance indicates higher
similarity between image features, while a larger distance indicates
lower similarity. Thus, Equation 1 aims to find the value of the
independent variable that minimizes the loss function within the

domain M:

L(M) = |p-D @)
where D is obtained from a suitable characterization function, as
defined in Equation 3:

feMe 0,1} - DeRK (3)

Here, K is independent of I and ] in general cases. Applying the
simulated annealing algorithm’s update strategy to this stochastic
optimization problem yields the Yeong-Torquato algorithm.

2.2 Differentiable microstructure
reconstruction in 2D

Given the desired microstructure descriptor Dd“, the goal
of microstructure reconstruction is to find a microstructure
M such that the corresponding descriptor D(M) is as close as
possible to DY, The core concept of differentiable microstructure
characterization and reconstruction (MCR) is that microstructure
reconstruction is an optimization problem, and efficient
optimization requires the gradient. Therefore, Equation 1 can be

reformulated as a differentiable optimization problem:
argminM L(M) (4)

where each pixel of the intermediate microstructure M is allowed to
take any real value in the interval (0,1) during the reconstruction
process. Only after the reconstruction is complete is M rounded
to obtain an integer-valued microstructure M, where each pixel is
either 0 or 1. The loss function Equation 2 can be reformulated as:

L(M) =Y dAy || Dy(81) - D3 (5)

where d indexes the descriptor type, | - ||, denotes the Euclidean
norm applied to the vectorized descriptor difference, and A; > 0 are
scalar weights.

The optimization problem in Equation 4 is solved iteratively. In
each iteration, the microstructure M is continuously modified to
reduce the loss L. Simultaneously, the gradient dL/dM is used to
compute the change in the microstructure AM, which requires the
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loss function L to be differentiable with respect to M. Any gradient-
based optimizer can be used for this, such as the ADAM optimizer
or a Quasi-Newton method like L-BFGS-B. With Equation 5, if the
descriptor is differentiable, then L is differentiable with respect to
M. Therefore, it is necessary to introduce a differentiable descriptor
D (M), which is defined and differentiable for each possible
intermediate microstructure M [21]. Furthermore, the special case
of an integer-valued microstructure should be reproduced:

D(M) = D(M) (6)

2.3 Slicing-based generalization to 3D

The microstructure is sliced along all three spatial directions
to obtain stacks of 2D sections. The descriptor is then computed
for each slice separately. Therefore, on each slice, the descriptor
should closely match the desired 2D descriptor. Anisotropy can
be considered in slices of different orientations, allowing for the
specification of different descriptors. Thus, descriptors can be
optimized by minimizing the loss function in Equation 7:

ilees silees
2

Ed y
YD AL P LA

d

piilees

o Y WDy, 0) - D
k=1
(7)

where wf,m{ ,w; 20 are the weights used to average descriptor
mismatches over the slices within each orthogonal stack.
Des* D9y and D% are the desired 2D descriptors in the
x, y and z directions, respectively. In the general anisotropic
case given in Equation 8, different targets can be prescribed

per direction:

Ddes,x :#Ddes,y :/:Ddes,z (8)

However, if isotropic materials are considered, Equation 6 can
be simplified to:
nshces

L= D(M)-D%* )

In all
isotropy and use Equation 9; anisotropy is not enforced. Because
the descriptor-matching objective is nonconvex, local minima

reconstructions  reported here we assume

may arise, especially when fine-scale interface details dominate.
If encountered, it can be mitigated by a coarse to fine warm start
with explicit phase-fraction feasibility, direction specific targets on
the three orthogonal stacks, mild weight continuation with early
stopping, and optional restarts to select the lowest-loss solution.

2.4 Microstructure characterization and
reconstruction

2.4.1 Spatial correlations and gram matrices

Spatial n-point correlations describe the statistical relationships
between quantities at different locations within a system. Consider a
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realization of a two-phase random heterogeneous material within d-
dimensional Euclidean space RY. To characterize this binary system,
where each phase has a volume fraction ¢, (for i = 1,2), we introduce
the indicator function I”(x), defined in Equation 10:

1, xeV,

_ (10)
0, xeV,

1(x) = {
where V; € R? is the region occupied by phase i and V, € R is the
region occupied by the other phase.

Spatial n-point correlations stochastically quantify the outcomes
of probing the indicator function at multiple spatial locations

1 x%., x™). For statistically homogeneous media, the n-point

(x
correlation function depends only on the relative displacements
i = x — x', not on the absolute positions [22]. Therefore, the n-
point correlation function for phases i, 1,,...,i,, can be expressed in
Equation 11:

Sy (2,1, ) = lim,, o, [T (61220 (") (11)
where the [...]"" denotes the average over an ensemble of nr
realizations of placing x' randomly in the microstructure such that
x* ...x" follow from x! via (#'? ...r'"). The special case of all phases
being equal (i, = i, = ... = i, = i) is called auto-correlations and this
auto-correlation case is given in Equation 12:

S, 3L = SERH(12 13 ) (12)

Gram matrices offer a modern approach to characterizing
microstructures by using the internal activations, or feature maps,
of a pre-trained convolutional neural network (CNN) [23]. The
activation of the pth channel in layer » at spatial position s is
denoted as F{,. In each layer n, the activations of all channels at
all positions must contain relevant information about the image.
Feature maps provide a richer representation than the raw image
because each layer combines low-level features to generate more
abstract, higher-order information. To leverage this representation,
it is rendered approximately translation-invariant by computing the
Gram matrix as:

sptsr

Gy, =) Fi,F (13)
s

2.4.2 Implementation of reconstruction
algorithm based on differentiable descriptors

Microstructure Characterization and Reconstruction in Python
(MCRpy) [24] is an open-source software tool. For a more recent
example, using the Gram matrices G of the VGG-19 CNN feature
maps as a descriptor for the same loss function results in the
optimization problem stated in Equation 14:

(14)

M = argmin || G(M) - G*|| MSE
M

where optimization is suitable for gradient-based methods.

The final approach chosen in this paper combines differentiable
three-point correlations S5, Gram matrices G, and normalized total
variation V. The loss function aggregates the weighted mean squared
error norm, with Ap; representing the weight of the ith descriptor.
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Thus, the resulting optimization problem is formulated as follows:

MreC — arg]\;}/unAs||S3(M) - SgesnMSE

+Ag]| G - G| (15)

MSE
+Ay]| v —vdes||MsE

where the optimization is performed using the gradient-based L-
BFGS-B optimizer. In this paper, we use the method in Equation 15
for the 3D microstructural reconstruction of conglomerates.

The approach can degrade when the chosen descriptors are
not representative, when features are thinner than a few voxels, or
when admissible phase fractions approach 0 or 1; we counter this
with directional, multiscale, per-phase descriptors, explicit phase-
fraction constraints, and a coarse to fine warm start.

2.5 Data for validation

The samples for this study were collected from a coarse-
grained conglomeratic formation in the Xinjiang region, each
with dimensions of 50 mm x 100 mm. Although our experimental
validation uses conglomeratic cores from the Xinjiang region, the
reconstruction itself is descriptor-driven and material-agnostic.
These samples underwent CT scanning. After reconstructing the
CT images in three dimensions, slices were extracted. The slices
from the 3D reconstruction were compressed to 128 x 128 pixels.
This compression ensures that the reconstructed microstructures,
with a resolution of 128° voxels, are still large enough to accurately
represent the morphology.

To enhance computational efficiency, MCRpy supports only.
npy format files as input. Zhang etal. [25] demonstrated that
the enhanced SegFormer neural network effectively converts CT
scan images into grayscale and binary segmentation images for
recognizing and classifying conglomerates within a coarse-grained
geomaterial formation. Once the binary images are obtained, a
simple Python script converts them to . npy files containing NumPy
arrays of shape (n,n) with dtype uint8, where pixel values are in
{0,1} and 1 denotes the non-gravel phase (matrix plus void) while
0 denotes gravel.

3 Results
3.1 Reconstruction results

As shown in Equations 1, 2, microstructure reconstruction is
essentially an optimization problem. A simple choice for the loss
function L is a weighted sum of the mean squared error norm. In
the Yeong-Torquato algorithm, the spatial two-point correlation S,
is used as the descriptor, and the loss function is formulated as the
mean squared error norm of the descriptor difference. Thus, the
following optimization problem emerges:

(16)

MTeC = argAl:Iflin ||52(M) - SgeS"MSE

When simulated annealing is chosen as the optimizer, we solve

the optimization in Equation 16, which effectively implements the
Yeong-Torquato algorithm [26]. Despite using the total variation
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(a)
(©)

(d)

FIGURE 1

3D reconstruction of the coarse-grained conglomerate core
performed using (a,b) the Yeong-Torquato algorithm, and (c,d)
differentiable descriptors.

method [11, 21] to reduce noise in the reconstructed structure,
it remains noticeably less smooth than the original. In this study,
built-in Gaussian filters in MCRpy are used for smoothing.

MCRpy solves the optimization problem in Equation 13 by
allowing the selection of a loss function type and providing a set
of descriptors with corresponding weights. We adopt differentiable
three-point correlations S;, Gram matrices G, and normalized total
variation V as descriptors (hereafter collectively referred to as SGV),
with descriptor weights of 0.1, 0.1, and 10, respectively. Experiments
were conducted using MCRpy (version 0.2.0) configured with the
L-BFGS-B optimizer and a maximum of 800 iterations. Note that
Multigrid reconstruction is applicable only to the reconstruction
process and requires multigrid descriptors. MCRpy begins by
reconstructing down sampled versions of the structure recursively,
with recursion depth limited to 2 x limit_to. For example, for a 128 x
128 structure and limit_to = 16, MCRpy first reconstructs 32 x 32
pixels—i.e., a recursion depth of 32, which is sufficient in most
cases—then 64 x 64 pixels, and finally 128 x 128 pixels, using the
coarse solution as initialization each time. This approach reduces the
maximum number of iterations required.

In this study, experiments were conducted using a single RTX
3060 GPU. After applying Gaussian filters for smoothing, the three-
dimensional microstructure reconstruction model of the coarse-
grained conglomerate based on Yeong-Torquato algorithm and
differentiable descriptors is shown in Figure 1.

3.2 Numerical computation of the original
and reconstructed models

Finite difference method (FDM) was utilized to analyze

the mechanical properties of reconstructed coarse-grained
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FIGURE 2

SGV_smoothed model; (c) YT model; (d) YT_smoothed model.

Stress-strain curves from numerical triaxial compression tests with confining pressures of 0.1 MPa, 0.2 MPa, 0.3 MPa, and 0.4 MPa. (a) SGV model; (b)
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conglomerate models. This type of heterogeneous material
consists gravel, matrix and cementing materials [27]. Due to the
large strength contrast between gravel and the matrix, it can
be approximated as bimrock [28]. The strain-softening Mohr-
Coulomb model is used in numerical models. This model captures
the strain-softening behavior of Xiyu conglomerate, in which
numerical simulation results accurately match with physical
experimental results [29].

To compare the accuracy of models established by four different
3D reconstruction methods and assess the impact of smoothing on
experimental results, this study uses the Yeong-Torquato algorithm
and differentiable microstructure descriptors to establish the YT and
SGV models. Smoothing is applied to create the YT_smoothed and
SGV_smoothed models. During reconstruction, descriptors on the
orthogonal slices were computed with periodic wrap, whereas the
mechanical validation used a nonperiodic block. Identical material
properties were assigned to the four numerical models, and three
dimensional triaxial compression tests were conducted in FLAC3D
7.0 with the bottom surface fully fixed, the lateral boundaries
traction free, and a constant axial strain rate applied on the top face,
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corresponding to consolidated drained (CD) conditions. During
these tests, confining pressures of 0.1 MPa, 0.2 MPa, 0.3 MPa,
and 0.4 MPa were applied in the vertical and horizontal directions
of the samples. We do not include simulations of permeability,
elastic homogenization, fracture toughness, or alternative loading
paths. The reconstruction preserves phase fractions, interfacial
area from normalized total variation, and multiscale texture
from Gram matrices, so comparable fidelity is expected for
permeability, small strain moduli, and full stress and strain
behavior.

Figure 2 shows the stress-strain curves from 3D triaxial tests
conducted on the four different numerical models. By analyzing
these relationships under four different confining pressures, the
cohesion and internal friction angle were obtained. Mohr-Coulomb
failure criterion was used to calculate the internal friction angle and
cohesion of the digital core samples. The cohesion values obtained
from triaxial tests are 0.366 MPa for the SGV model, 0.368 MPa
for the SGV_smoothed model, 0.359 MPa for the YT model, and
0.343 MPa for the YT_smoothed model. The corresponding internal
friction angles are 44.02°, 46.64°, 45.28°, and 45.53°, respectively.
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Model smoothing with Gaussian filtering: (a) Structure before smoothing, (b) Structure after smoothing. Comparative analysis of shear strength of the
coarse-grained conglomerate from numerical simulations and physical experiments: (c) Cohesion, (d) Internal friction angle.

Beyond cohesion and friction angle, we report higher-order,
descriptor-level fidelity. For three-point correlations we use the
normalized gap Eg = IS5ec — S2781, /1S5 85, yielding 3.2%, 3.6%,
2.9% along x/y/z. For multi-scale texture we use the Gram-
matrix gap Eg = |G™ — G8| /|G|, giving 1.9%, 2.1%, 1.6%.
For interfacial geometry we use the normalized-total-variation
deviation Ey =|V™ - V°U8|/V°"8, which is 1.1% on average
across stacks.

3.3 Evaluation of reconstruction
effectiveness based on two-point
correlation function

In this study, we define the two-point correlation function S,(r)
for the original and reconstructed structures as the probability
that two randomly chosen points separated by a distance || r ||
are in the same phase, either the gravel or void phase of the
microstructure. Although S,(r) can be defined for both phases of a
porous medium, we compute only S,(0) for the non-gravel phase,
using a binary indicator in which non-gravel denotes matrix plus
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void (gravel is the complement). The non-gravel component in
the original core sample accounts for 36.76%. After reconstruction
using differentiable descriptors, this proportion becomes 36.13%,
with a relative error of 1.71%. In comparison, the Yeong-Torquato
algorithm reconstructs the non-gravel component at 37.82%,
yielding a relative error of 2.88%.

The two-point correlation function is usually two-dimensional,
describing correlations between points in various directions. Radial
averaging simplifies this to a one-dimensional function by averaging
the correlation values at each radius, thus removing directional
dependence and resulting in a function that depends only on the
radius. The results show that reconstruction with differentiable
descriptors outperforms the Yeong-Torquato algorithm.

4 Discussion
4.1 Effect of smoothing on the 3D model

Figure 3a shows that noise and fake sharp corners cause irregular
meshing in the numerical simulation. This irregularity can affect
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FIGURE 4

Performance comparison between the Yeong-Torquato algorithm and differentiable microstructure reconstruction in reconstructing a 64 x 64-pixel

checkerboard structure.

numerical stability and accuracy. At sharp corners, the meshes are
excessively refined and can cause numerical instability. This makes
stress concentration in the model lower and increases the effective
yield strength of the model.

Gaussian filtering is a linear smoothing method used for image
denoising [30]. Pixels near the central pixel get high weights and
pixels far from the central pixel get low weights. Figure 3b shows
that using the relevant functions significantly reduces noise and fixes
sharp features in the model.

This study evaluates how Gaussian smoothing influences
triaxial-test simulations by comparing digital cores reconstructed
with differentiable (SGV) and
with the Yeong-Torquato algorithm, each examined in both

microstructure  descriptors
smoothed and unsmoothed form. Figures 3c,d presents absolute
and relative errors in internal-friction angle and cohesion
relative to laboratory measurements. Smoothing consistently
narrows these discrepancies: for the SGV core, the absolute
error in internal-friction angle falls from 0.016 MPa to 0.009
MPa, a reduction of 0.007 MPa, with similar improvements
observed for the Yeong-Torquato core. After smoothing, both
reconstructions predict internal-friction angle and cohesion
within 3% of experimental values, confirming the accuracy
gains afforded by the procedure. Beyond denoising, Gaussian
smoothing acts as an interface-regularization step that reduces
staircase artefacts and spurious stress raisers at sharp voxel
corners. Such pre-simulative regularization is consistent with
practices in dynamic rock-failure modeling and block-based
discretizations, where jagged contacts can degrade stability
and bias peak strength [31, 32]; studies on three-dimensional
of rockfalls
precisely this sensitivity to contact geometry and mesh/block
quality 33, 34].

discontinuous deformation analysis emphasize
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4.2 Comparison of computational costs
between two reconstruction algorithms

Unlike the Yeong-Torquato scheme, our reconstruction exploits
gradient information, enabling continuous moves in microstructure
space rather than the Yeong-Torquato algorithm’s random exchange
of pixel pairs. Although gradient-based optimizers risk stalling
in local minima or flat regions, this can be alleviated by
suitable optimizer choices and feature functions that preserve
non-zero gradients. Directly benchmarking the two methods is
non-trivial—performance depends on platform, hyper-parameters,
algorithmic variants, and target accuracy—but under identical GPU
settings we measured the wall-clock time needed for each to recreate
a 64 x 64-pixel checkerboard, highlighting the speed advantage
of the differentiable approach. Both runs were stopped at the
same target accuracy, measured as a composite normalized residual
L equal to the average of the normalized two-point correlation
difference and the normalized Gram feature difference; we used
L <5.0x 107 and obtained L = 4.6 x 107 at termination.

As illustrated in Figure 4, the Yeong-Torquato algorithm
identifies the checkerboard outline in 4 minand completes
the reconstruction in approximately 8 min. Conversely, the
reconstruction using differentiable descriptors, specifically
correlations and Gram matrices, identifies the outline in about
15s and finishes in 50s. Although calculating gradients in
differentiable microstructure reconstruction makes each iteration
more computationally demanding than in the Yeong-Torquato
algorithm, the overall computational cost of using differentiable
descriptors is substantially lower.

The speedup we observe is consistent with a broader trend
in geomechanical

computation: multiscale/gradient-informed

formulations reduce cost while preserving predictive fidelity [35,
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36], and joint processing of multi-component signals
demonstrates that fusing informative features can stabilize and
accelerate inference [37]. In applied settings where throughput
matters, computationally upstream
are essential inputs, and our gradient-based reconstruction

lean characterizations

is designed with precisely this mind

(16, 38].

throughput  in

5 Conclusion

This study rebuilds three-dimensional digital cores from two-
dimensional slices of a coarse-grained conglomerate by combining
differentiable microstructure descriptors—namely spatial three-
point correlations, Gram matrices and local variation—within the
open-source MCRpy framework. Digital cores produced with this
gradient-driven approach and with the classical Yeong-Torquato
algorithm were both evaluated in FLAC3D; only the differentiable-
descriptor cores reproduced laboratory cohesion and friction angles
with high fidelity. By turning inexpensive 2D imagery into reliable
3D models, the method strengthens multiscale geotechnical analyses
that underpin projects such as bridge foundations and tunnel
excavation.
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