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Real-time detection of trace gas concentrations has a wide range of applications 
in industrial processes and monitoring and various complex environments. 
Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) features high sensitivity 
and selectivity for the detection of single or multiple gases. It is immune 
to environmental noise and also boasts advantages such as miniaturization 
capability, ease of integration, and low cost. However, this technology also faces 
challenges such as limited laser source performance and the need to optimize 
quartz tuning fork (QTF) structural parameters. This paper reviews the current 
research progress in QEPAS, elaborating on its fundamental principle as well 
as the contributions from both laser source improvements (e.g., power, tuning 
range, and size) and QTF optimization (e.g., frequency, structure, and coating) 
to enhanced sensitivity. In addition, this paper systematically evaluates current 
research on auxiliary enhancement strategies, including relaxant selection, 
optical path and waveguide optimization, and dual-spectrum fusion. Finally, 
it summarizes existing technologies and proposes future prospects based on 
current technical bottlenecks.
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 1 Introduction

Trace gas detection technology is directly related to key fields like environmental 
monitoring, industrial safety, and medical diagnosis. For example, in air pollutant 
monitoring, nitric oxide (NO) is not only an acid rain precursor causing stratospheric 
ozone depletion, but also a precursor of the greenhouse gas nitrous oxide [1]. Additionally, 
methane (CH4) and ethane (C2H6) are the most important environmental markers for 
identifying and tracking oil-gas pipeline leaks and wildfires [2]. Therefore, developing 
sensors to monitor NO, CH4, and C2H6 concentrations is crucial for improving 
environmental quality. In medical diagnosis, to address issues with existing transcutaneous 
carbon dioxide (CO2) detectors, such as frequent calibration needs and susceptibility 
to water vapor interference, a non-invasive skin respiration detection method based on 
QEPAS technology has been proposed. This method provides a more portable, stable, 
and chemical reagent-free diagnostic solution for clinical practice [3]. As such, enhancing 
detection sensitivity is paramount for the further development of these applications.
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However, conventional gas detection techniques, including 
electrochemical and polymer-based sensors, as well as absorption 
spectroscopy, are often limited by inherent shortcomings such 
as poor long-term stability, short service life, and limited 
capability for simultaneous multi-component detection [4]. In 
contrast, Photoacoustic spectroscopy (PAS) boasts advantages 
including zero background interference, high sensitivity, and 
rapid response [5]. Nevertheless, its reliance on a low quality-
factor(Q) (<100) microphone as the core detector causes poor 
signal-to-noise ratio (SNR) and a bulky form factor, which severely 
hinders its practical deployment. Quartz-enhanced photoacoustic 
spectroscopy (QEPAS) employs a high-Q quartz tuning fork (QTF) 
as an acoustic transducer to replace conventional microphones; 
such QTFs typically have ∼100,000 Q in vacuum and ∼10,000 
under standard atmospheric pressure. The acoustic quadruple 
characteristic of the QTF makes it sensitive only to symmetrical 
pressure waves, which significantly boosts environmental noise 
immunity. Furthermore, the small volume of the QTF results in 
a sampling volume of <1.3 mm3, ensuring that sensors based on 
QEPAS are smaller than traditional gas sensors [6], and maintain 
structural compactness, making QEPAS widely applicable for trace 
gas detection across various scenarios [7].

However, as trace gas detection advances toward ppb-level 
sensitivity [8], simultaneous multi-component analysis [9], and 
enhanced adaptability to harsh environments [10], QEPAS faces 
increasing constraints from laser source and QTF performance. 
Regarding laser source bottlenecks, current devices generally have 
relatively low output power, which limits signal enhancement [11]. 
As shown in Table 1, commercial near-infrared distributed feedback 
(NIR-DFB) lasers typically output several watts, while high-
sensitivity detection requires watt-level power (>1 W). Additionally, 
a single laser can hardly cover the absorption spectra of multiple 
gas simultaneously [12]. Although mid-infrared (MIR) lasers offer 
higher power and broader spectral coverage, they typically suffer 
from large physical dimensions and high power consumption, 
which hinders system miniaturization [13]. For QTF performance 
bottlenecks, high resonant frequency ( f0) conflicts with low 
relaxation rate gas detection [14]. When the resonant frequency 
of QTF is reduced, the sensing performance of QEPAS can 
be significantly improved [15, 16]. Moreover, lower frequency 
reduces Q value [17, 18]. Furthermore, narrow inter-prong spacing 
complicates optical alignment, causes significant signal attenuation, 
and limits the integration of high-power [19]. Besides, QTF 
piezoelectric conversion efficiency is also affected by circuit 
impedance and structural coatings [20], and the signal intensity of 
the detection structure is limited, making it difficult to extend to 
multi-component measurement [21]. Beyond laser source and QTF 
limitations, QEPAS has other prominent bottlenecks. Conventional 
vertical optical-path design has low light-utilization efficiency [22]. 
Furthermore, the system mostly operates independently, lacks 
multi-technology integration, and needs to account for additional 
effects from relaxants [23].

In this review, we systematically summarize the principle of 
QEPAS, its core components, and the research progress in laser 
source performance enhancement and QTF structural innovation. 
Additionally, from the perspective of multi-technology integration, 
we review performance improvements enabled by technologies such 
as relaxants, optimized optical paths and waveguide structures, and 

TABLE 1  Typical power range of commercial NIR-DFB lasers and power 
range after EDFA amplification.

Laser type Typical power 
level

Ideal power 
level

Commercial NIR-DFB ∼10–50 mW ∼1.0–1.5 W

integrated dual-spectral detection. Finally, we summarize the existing 
technologies and in light of current technical bottlenecks, such as 
limitations in simultaneous multi-gas detection and interference 
from environmental factors, propose potential future development 
directions, including the development of new laser sources, 
continuous optimization of QTF design, and improvements in system
integration. 

2 Analysis of the principle and core 
components based on QEPAS 
detection

QEPAS is a highly sensitive gas detection method based on the 
photoacoustic effect. Its principle is to focus the tunable laser beam 
onto the gap of the QTF fork, and the laser wavelength is modulated 
near the absorption peak of the target gas, and the modulation 
frequency matches the fundamental frequency vibration mode of the 
QTF. After absorbing the modulated light, the gas converts energy 
into thermal energy through non-radiative relaxation, which causes 
thermal expansion and generates periodic pressure waves. Thanks 
to the high-Q of the QTF, this pressure wave is amplified by the 
mechanical resonance of the QTF. Subsequently, the piezoelectric effect 
of the QTF is utilized to convert the pressure wave into an electrical 
signal, whose amplitude is proportional to the gas concentration [24]. 

In trace gas detection based on QEPAS, the role of the laser 
source is crucial. Its main function is to periodically change light 
intensity or wavelength at a frequency matching the resonant 
frequency of the QTF through current modulation, generating 
laser light whose central wavelength is precisely aligned with the 
absorption line of the target gas [25]. As the core transducing 
element of QEPAS technology, the QTF replaces the microphone 
used in traditional PAS. It converts the vibration caused by sound 
waves generated when the target gas absorbs laser light into an 
electrical signal through the piezoelectric effect [26]. Its high f0, 
high Q, and extremely narrow frequency response band (less 
than 4 Hz) endow it with high detection sensitivity and excellent 
immunity to environmental noise. Besides, compared with the large 
photoacoustic cell in PAS, acoustic energy is accumulated in the 
sharply resonating QTF, resulting in a significant reduction in the 
size constraints of the gas cell [27, 28]. 

3 Optimization based on QEPAS 
detection

3.1 Improvement of the laser source

The selection of the laser source is crucial to the detection 
sensitivity and scenario adaptability. In recent years, the 
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optimization of laser sources has shown a multi-dimensional 
development trend, particularly in terms of improved laser power, 
expanded wavelength tuning range, and system miniaturization.

In terms of power improvement, as shown in Equation 1:

S∝ αPQ
f0

(1)

where α is the absorption coefficient, P is the optical power, Q is the 
Q-factor of QTF, f0 is the QTF resonance frequency. The QEPAS 
signal amplitude (S) is proportional to the optical power P (see 
Equation 1), meaning that the gas detection sensitivity of the sensor 
can be enhanced by increasing the power of the laser source [29]. 
When detecting ppb-level H2S gas, measuring trace concentrations 
using NIR-DFB lasers is more challenging compared to MIR lasers. 
This is mainly because the fundamental frequency absorption band 
of MIR is at least one order of magnitude stronger in transition 
than the overtone absorption band of NIR [30]. Increasing laser 
power is an effective way to compensate for the weak intensity 
of overtone vibrational transitions [31]. This enhancement can be 
realized by combining the QEPAS sensor with an erbium-doped 
fiber-amplified 1,582 nm distributed feedback (DFB) laser. Then, 
under atmospheric pressure and room temperature conditions, with 
1.4 W optical excitation power and an averaging time of 67 s, the 
H2S detection sensitivity reaches 142 ppbv [30]. In addition to using 
an erbium-doped fiber amplifier (EDFA) to amplify the power from 
a NIR-DFB laser, an erbium-doped fiber laser (EDFL) based on Q-
switching technology can also achieve relatively high laser power. Bi 
et al. coupled the QTF into the laser cavity, utilizing the high power 
density and round-trip characteristics inside the cavity, as well as the 
fact that the intracavity power is significantly greater than the output 
power [32], to enhance the QEPAS signal. Finally,the system exhibits 
excellent linear response (R2 = 0.99918) over a C2H2 concentration 
range of 10–100 ppmv, with a minimum detection limit (MDL) of 
101 pptv at an integration time of 20 ms [33].

The wavelength tuning range of the laser source also has an 
important impact. Quantum cascade laser (QCL) offers broader 
wavelength tunability compared to NIR-DFB lasers. However, 
their tunable range remains relatively narrow, which limits its 
effectiveness in multi-gas detection applications. Based on the high 
power and wide tuning characteristics of solid-state lasers [34], 
Qiao et al. employed a single-mode solid-state laser with a yttrium 
aluminum perovskite (YAP) crystal as the gain medium, as shown 
in Figure 1A. They placed an etalon inside the laser cavity and 
adjusted its angle to enable single longitudinal mode (SLM) output 
for the target gas. As a result, the laser covers H2O and NH3
with a wide tuning range of 9.44 nm, and the measured values are 
57.3 ppm and 11.2 ppm respectively. In addition, when detecting 
mixed gases, common NIR and MIR lasers are unable to distinguish 
them due to the complex overlap of their spectra. By contrast, THz 
lasers produce distinct fingerprint-like absorption spectra, as their 
gas absorption is dominated by molecular rotational energy level 
transitions, thereby significantly improving detection sensitivity. It 
achieves 30 ppm within 3 s and drops to 13 ppm at a 30-s integration 
time, demonstrating sensitivity several times higher than that of NIR 
and MIR lasers [35]. Besides, in fiber lasers based on fiber Bragg 
gratings (FBGs), multi-gas detection can be achieved by adjusting 
the Bragg wavelength to produce different central wavelengths that 
align with the absorption lines of target gases [33].

To summarize, for ppb-level sensitivity and multi-component 
detection, selecting among NIR-DFB, MIR-QCL and THz lasers 
requires comprehensive consideration of factors such as absorption 
line strength, tuning range, output power and compactness. MIR-
QCLs can provide high-power laser sources, and their absorption 
line strength is at least one order of magnitude stronger than 
that of NIR-DFB lasers. However, their high cost, high power 
consumption, and size constraints limit their scope of application. 
In contrast, NIR-DFB lasers feature smaller volume, lower cost, 
and higher maturity, making them easier to integrate into compact 
QEPAS systems [29]. THz lasers have ultra-high absorption line 
strength and excellent spectral selectivity (avoiding hydrocarbon 
interference) for specific molecules (e.g., H2S) but suffer from poor 
beam quality, severe divergence (causing low SNR) and reliance on 
cryogenic cooling (increasing sensor volume, complexity and cost). 
In practical scenarios, a comprehensive consideration of the above 
aspects is necessary when selecting the appropriate laser. 

3.2 Improvement of the QTF

As QEPAS’ core transduction component, QTF converts 
the acoustic vibrations from gas molecule stimulated emission 
into electrical signals via the piezoelectric effect, and standard-
frequency QTFs with high f0 and high Q can effectively suppress 
environmental noise [36]. However, a relatively high f0 hinders 
slow-relaxation gas detection, while lowering f0 also reduces Q. 
Furthermore, factors including the QTF prong spacing, equivalent 
circuit resistance, micro-resonator groove geometry, and surface 
coating must be considered.

For slow-relaxation gases (e.g., NO, CO, CO2, CH4) or 
high density and mass (e.g., SF6), standard-frequency QTFs 
have low electroacoustic conversion efficiency, significantly limited 
vibrational response and hindered capture of thermoacoustic signals 
from gas molecules resulting in signal loss [37]. Therefore, f0
should be reduced. Lowering f0 helps the QTF better match 
these gases’ thermoacoustic signal time scale (e.g., adapting to 
the prolonged energy release of slow-relaxation gases), reduces 
mechanical resistance from high-density gases, improves capture 
of weak signals lost by standard-frequency QTFs, and thus greatly 
enhances system performance [38, 39]. However, this reduction 
impairs Q, attenuating detection signals and degrading sensor 
performance [36]. Additionally, standard QTFs have only 300 μm 
prong spacing. Consequently, during strict beam alignment, this 
narrow prong spacing easily causes part of the laser beam to strike 
the QTF, resulting in unwanted non-zero background noise. Yet, 
increasing prong spacing raises f0, which contradicts the objective 
of reducing it [37]. According to the Euler-Bernoulli equation:

f0 =
1.1942πW
8√12L2

√E
ρ

(2)

where W, L, E, and ρ denote the prong width, prong length, Young’s 
modulus, and density of quartz, respectively, and:

Q = 3.78× 105 WT
L

(3)

where T represents the QTF thickness. The specific meanings of W, 
L, and T can be referred to as shown in Figure 1B. The highest Q 
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FIGURE 1
(A) Schematic diagram of solid-state laser under free operation mode. LD, laser diode. Reproduced with permission from [34]. (B) Schematic of the QTF 
with microgrooves, (a) structure of QTF and (b) cross sectionof QTF. Reproduced with permission from [40]. (C) Schematic of two sets of QTFs, (a) QTF 
with different groove depths and (b) QTF with different groove widths. Reproduced with permission from [40]. (D) Schematic of the multi-QEPAS 
sensor system with three QTFs for simultaneous detection of H2O, CH4, and C2H2. Reproduced with permission from [42]. (E) Schematic diagrams of 
the three experimental configurations: (a) IP-SQEDS; (b) IP-QEPAS, where a tin foil is used to block the laser from reaching the QTF base, thus 
eliminating the LITES contribution; (c) Traditional QEPAS. Reproduced with permission from [46]. (F) Schematic of the QEPA-PTS sensor. Reproduced 
with permission from [49]. (G) Different schematic diagrams and principle diagrams of QTF: (a) Bare QTF, (b) Chemical etching of the tuning fork to 
remove the bottom silver layer, (c) Multiple chemical etching to excite QTF, (d) The positions where QEPAS and QEPTS signals are excited. Reproduced 
with permission from [50]. (H) Schematic diagrams of QEPAS and LITES: (a) Dual-spectroscopy gas detection structure. (b) Single-excitation QEPAS 
signal gas detection structure. (c) Dual-excitation QEPAS signal gas detection structure. Reproduced with permission from [51]. (I) Schematic of the 
dual-spectroscopy sensor integrating QEPAS and LITES. Reproduced with permission from [47].

(≈16,000) is achieved at f0 = 15 kHz. With L = 9.4 mm, W = 2 mm, 
and T = 0.25 mm held constant, the prong spacing was ultimately set 
to 800 μm to facilitate optical alignment (Combining Equations 2, 
3) [36].

The resistance R in the equivalent circuit is another key 
parameter of the QTF, as it determines the value of the piezoelectric 
current generated when a voltage excitation is applied at f0. When the 
QTF is equivalent to an RLC series circuit, as shown in Equation 4:

Q = 1
2π f0RC

(4)

where C denotes the QTF capacitance, if f0 and Q are kept 
constant, increasing C enables a reduction in R, thereby increasing 
the piezoelectric current and enhancing the piezoelectric effect. 
Additionally, by fixing L and W, C is increased by reducing the 
spacing between the positive and negative electrodes. Concurrently, 
rectangular grooves are fabricated on the surface of the prongs, and 
a central electrode is deposited on the surface of these grooves. 
This design achieves a 30% reduction in R without affecting the 
Q [36]. Furthermore, by comparing the effects of groove depth 
and groove width, it is found that increasing the groove depth 
impairs charge generation, thereby degrading the gas measurement 
performance. In contrast, while increasing the groove width 

initially suppresses charge generation, it begins to enhance charge 
generation once a certain threshold is reached [40]. Moreover, 
compared with the prongs with a rectangular cross-section of 
a standard QTF, T-shaped prongs can increase the intensity of 
the stress field, thereby enhancing the generation of piezoelectric 
charges [41]. Figure 1C shows the T-shaped microgroove QTF with 
grooves of different depths and widths. As a result, Compared 
with the standard frequency QTF, after adopting the T-shaped 
prongs and optimizing the grooves, the signal peak value and 
signal-to-noise ratio (SNR) are increased by 234% and 577%
respectively [40].

In addition to modifying the structural parameters of a single 
QTF, as shown in Figure 1D, Zhang et al. achieved the detection of 
three types of gases by increasing the number of QTFs and using 
three QTFs with different f0. Moreover, they also proposed a multi-
QTF theoretical model and verified that QTFs with different f0 can 
operate simultaneously, and multi-gas detection can be achieved by 
aligning more QTFs [42].

Additionally, improvements can also be made based on the 
piezoelectric effect. By depositing gold thin films with a thickness 
of 600 nm on both sides of the QTF, the piezoelectric charge 
collection efficiency is enhanced, and ambient electromagnetic noise 
is reduced [43]. 
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TABLE 2  Comparison of dual-spectrum detection by QEPAS and QEPTS with that of QEPAS alone.

Detection scheme 2f signal (μV) Noise (μV) SNR MDL (ppmv)

QEPAS + QEPTS 479.25 0.75 639 1.56

Bare QEPAS 44.4 0.66 67.3 14.86

TABLE 3  Comparison of dual-spectrum detection using QEPAS and LITES with QEPAS-only detection in CH4 sensing.

Detection scheme 2f signal (μV) Noise (μV) SNR MDL (ppmv)

LITES 114.7 0.64 179.2 11.16

AMR1 279 0.70 398.6 5.01

AMR1+AMR2 545 0.67 813.4 2.46

Dual-spectroscopy 640 0.66 969.7 2.06

TABLE 4  Comparison of dual-spectrum detection using QEPAS and LITES with QEPAS-only detection in C2H2 sensing.

Detection scheme 2f signal (μV) Noise (μV) SNR MDL (ppmv)

LITES 50.5 0.61 82.8 24.15

AMR1 74.6 0.61 122.3 16.35

AMR1+AMR2 124.5 0.6 207.5 9.64

Dual-spectroscopy 182 0.65 280 7.14

3.3 Other improvement methods

To further enhance sensitivity and anti-interference capability, 
QEPAS improvements have shifted from single-parameter 
optimization to multi-dimensional collaborative innovation, 
with key advancements including relaxants’ introduction, optical 
path and waveguide optimization, and integrated dual-spectrum 
detection.

With standard-frequency QTFs, carbon monoxide (CO) 
exhibits slow energy relaxation after MIR-band excitation, making 
its QEPAS signal highly susceptible to ambient gases like water 
vapor (H2O) and oxygen (O2). H2O, as an efficient relaxation 
catalyst, significantly accelerates CO’s energy release, enhancing 
its QEPAS signal. Conversely, O2 competitively inhibits CO’s energy 
release, reducing signal amplitude. Therefore, to obtain the actual 
CO concentration, it must compensate for the inhibitory effect of 
O2 through a calibration curve [44]. However, water’s role as a 
relaxation promoter is not entirely beneficial, as H2O concentration 
variations can introduce acoustic cross-sensitivity. One solution is to 
correct real-time signal deviation by measuring sample gas humidity 
through independent humidity sensing [45].

In traditional detection, the laser incident perpendicular to the 
QTF plane limits effective interaction between gas molecules and the 
excitation source [46]. Moreover, in Laser-Induced Thermoelastic 
Spectroscopy (LITES), the laser first irradiates the QTF’s coating 

and then transmits to the quartz. However, the coating is a highly 
reflective silver layer for electrical conductivity, resulting in a 
low variation in light absorption by the quartz and consequently 
reducing the QTF sensitivity [47]. Usually, only tuning fork prongs 
surfaces are coated with silver, not gaps [46]. Therefore, to improve 
laser absorption efficiency and enhance the photothermal signal 
intensity [47], an in-plane detection technology (IP-QEPAS) is 
adopted, which changes laser incidence from perpendicular to 
parallel to the QTF plane (see Figures 1B–E). Compared with 
traditional QEPAS, the signal of IP-QEPAS is enhanced by more 
than 40 times [46]. Additionally, Melchiorre et al. utilized silicon 
nitride optical waveguides, leveraging their low propagation loss 
and high refractive index contrast for efficient optical transmission. 
The optical waveguide is S-shaped, which prevents optical path 
interference from scattered light incident on the QTF prongs and 
provides ample space for potential integration of lasers directly 
bonded to the chip [48].

In integrating dual-spectrum detection, most current trace gas 
sensors detect QEPAS, QEPTS, or LITES signals separately, lacking 
multi-signal fusion. As shown in Figure 1F, Hu et al. employed 
quartz-enhanced photoacoustic photothermal spectroscopy 
(QEPA-PTS). The laser first generates the QEPAS signal on 
QTF1, and then injects it into QTF2. Compared to the 2f signals 
from single-QTF QEPAS and QEPTS systems, the QEPA-PTS 
system demonstrates signal intensities 10.2 and 1.1 times greater,
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respectively [49]. Despite its advantages, this method still has 
limited laser utilization efficiency. To address this, as shown in 
Figure 1G, Zhao et al. placed two plane mirrors on both sides of the 
QTF. The laser, incident at a specific angle, reflects multiple times 
between prongs to repeatedly excite QEPAS and QEPTS signals. This 
simple optical path structure enables dual-spectroscopy integrated 
detection and multiple excitations using a single QTF. As shown 
in Table 2, compared with the bare QEPAS, the signal intensity has 
increased by 11.1 times, and the SNR has significantly improved 
[50]. Based on LITES and QEPAS detections (see Figure 1I), a dual-
QTF configuration is employed where chemical etching removes 
the silver layers on both sides of QTF1’s base to enhance laser 
absorption, ensuring the beam passes through QTF1 before hitting 
QTF2. Furthermore, a right-angle prism reflects the laser, enabling 
the superposition of two excited QEPAS signals and two excited 
LITES signals under single-beam excitation for signal enhancement 
[47]. Additionally, a single QTF can detect QEPAS and LITES 
signals simultaneously. As shown in Figure 1H, off-beam acoustic 
microresonators (AMRs) on both sides of the QTF enhance the 
QEPAS signal. With multiple fiber collimators, the final laser 
beam is directed to the QTF sidewall to excite the LITES signal, 
achieving superposition of two QEPAS and one LITES signal. 
As shown in Table 3 and Table 4, when detecting CH4 or C2H2, 
compared with the QEPAS and LITES signals detected separately, 
the dual-spectroscopy signal significantly improves in terms of 
signal strength and SNR, while the noise change is very small [51]. 

4 Summary and outlook

Trace gas detection holds profound significance for fields such as 
environmental protection, industrial safety, and medical diagnosis. 
QEPAS shows great potential for trace gas detection due to its high 
sensitivity, strong anti-interference, and compact structure. This 
paper systematically reviews research progress in QEPAS.

It elaborates on the fundamental principles and core 
components, and analyzes the key roles of light sources, QTFs, and 
auxiliary methods in enhancing detection performance. It focuses 
on the effects of optimizing laser parameters (e.g., laser power, 
wavelength tuning) and QTF properties (e.g., frequency, geometry) 
on enhancing detection sensitivity. In addition, it also summarizes 
the effects of relaxant addition, optical path and optical waveguide 
optimization, and dual-spectral detection.

In the future, the development of new light sources with wide 
tuning ranges and high power will enable coverage of multi-gas 
absorption lines while enhancing signals, supporting on-site multi-
component (e.g., CH4, C2H2) leak detection in industrial settings. 
Additionally, the miniaturized and arrayed design of QTFs is 
expected to realize real-time breath analysis (e.g., CO2, NH3) and 
multi-component simultaneous detection functions in the field of 
medical testing.
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