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Role of the mitochondrion in programmed necrosis
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In contrast to the “programmed” nature of apoptosis and autophagy, necrotic cell death has 
always been believed to be a random, uncontrolled process that leads to the “accidental” death 
of the cell. This dogma, however, is being challenged and the concept of necrosis also being 
“programmed” is gaining ground. In particular, mitochondria appear to play a pivotal role in the 
mediation of programmed necrosis. The purpose of this review, therefore, is to appraise the 
current concepts regarding the signaling mechanisms of programmed necrosis, with specific 
attention to the contribution of mitochondria to this process.
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and MAPK signaling (Festjens et al., 2007), i.e., pathways normally 
associated with cell survival. However, under certain conditions 
(such as caspase inhibition) RIP1’s Dr. Jekyll turns into Mr. Hyde 
and induces necrotic death. From an important clinical perspec-
tive, the identification of specific chemical inhibitors of RIP1, the 
necrostatins, has confirmed a pathological role for RIP1 in ischemia/
reperfusion-induced necrosis in the heart, brain, and eye (Degterev 
et al., 2005; Smith et al., 2007; Rosenbaum et al., 2010).

RIP1’s contribution to necrosis has perhaps been the most 
studied of any candidate to date. In particular, several systems 
biology approaches have been conducted in attempts to identify 
downstream signaling molecules that are part of RIP1’s necrotic 
mechanism. Using the L929 cell line where necrosis can be induced 
simply by treating with zVAD-FMK or NIH3T3 cells treated with 
TNFα plus zVAD, Hitomi et al. (2008) used a genome-wide siRNA 
screen to identify 25 “core” components of the necrotic signaling 
pathway. Not surprisingly, the TNFR1 and RIP1 were identified 
as critical mediators, as was Cyld, which regulates RIP1 ubiquiti-
nation. More surprising was the identification of the Bcl2 family 
protein, Bcl2 modifying protein (Bmf, which we will discuss later), 
junctophilin-3, poliovirus receptor (CD155), and the transcription 
factor Foxi1.

Three other genomic screens simultaneously identified RIP3, 
a sister kinase of RIP1, as also being essential for programmed 
necrosis (Cho et al., 2009; He et al., 2009; Zhang et al., 2009). 
Although, the exact relationship between the two RIPs remains to 
be clarified, they do form a complex through interaction with their 
homotypic RHIM motifs (Sun et al., 2002). Moreover, the majority 
of the data suggest that RIP1 phosphorylates and activates RIP3 
in the progression of necrotic signaling (He et al., 2009; Zhang 
et al., 2009). RIP3-deficient cells were less sensitive to TNFα- and 
Smac-mimetic-induced necrosis (in the presence of a caspase 
inhibitor), and Ripk3−/− mice were resistant to necrotic pancreati-
tis and vaccinia virus-induced hepatic necrosis (Cho et al., 2009; 
He et al., 2009).

Cell Death Comes in three Flavors
There are three recognized types of cell death: apoptosis, autophagy, 
and necrosis (Kroemer et al., 2009). Much attention has been paid 
to apoptosis and, especially at the moment, autophagy. This is pri-
marily because of their “programmed’ nature, i.e., there are specific, 
genetically determined pathways that mediate both these proc-
esses. In stark contrast, until recently it was believed that necrosis 
was a random, uncontrolled process that leads to the “accidental” 
death of the cell. Consequently, necrosis as a death modality was 
not well studied, which is unfortunate as necrosis probably plays a 
larger role in the pathogenesis of disease than either apoptosis or 
autophagy. This dogma, however, is changing. With the discovery 
of key mediators of necrotic death such RIP kinases and PARP, 
the concept of programmed necrosis is gaining ground. Here will 
go over our current knowledge as to how programmed necrosis is 
signaled, and then focus on the emerging role of the mitochondrion 
in this process.

ProgrammeD neCrosis: the story so Far
Although the concept of “programmed necrosis” (sometimes inap-
propriately referred to as necroptosis) is a relatively recent one, already 
a considerable body of literature has amassed delineating some key 
mediators of this death process. Specifically, receptor interacting 
protein (RIP) kinases, poly(ADP-ribose) polymerase-1 (PARP1), 
NADPH oxidases, and calpains have been identified as potential 
signaling components of a necrotic program(s) (Figure 1).

riP Kinases
It had been known for sometime that inhibition of TNFα-induced 
apoptosis by pan-caspase inhibitors such as zVAD-FMK could drive 
some cell types into necrosis instead (Vandenabeele et al., 2006). 
It was subsequently found that this switch of death modalities was 
blocked in cells lacking the serine/threonine kinase RIP1 (Holler 
et al., 2000; Zheng et al., 2006; Degterev et al., 2008). Under nor-
mal circumstances, RIP1 mediates TNF-receptor-induced NF-κB 
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proposed that PAR polymers themselves were responsible for cell 
death (Yu et al., 2006). Whether these represent distinct pathways, 
or are simply different components of the same pathway is some-
thing we are currently investigating.

It should be pointed out that, although a pro-necrotic action was 
thought to be restricted to PARP1, PARP2 might also contribute to 
this cell death mechanism. PARP2-null mice are similarly resistant 
to cerebral ischemia as PARP1-deficient mice (Li et al., 2010), and 
PARP2 was also one of the 25 “core” necrotic genes identified by 
Hitomi et al. (2008).

naDPh oxiDases
Several studies have reported that reactive oxygen species (ROS) 
scavengers can abrogate TNFα-induced necrosis in various cell 
types (Goossens et al., 1995; Lin et al., 2004; Kim et al., 2007). The 
site of ROS generation during death receptor-induced necrosis is 
controversial but one postulate is that activation of NADPH oxi-
dases accounts for the increased oxidant production. Kim et al. 
(2007) demonstrated that TNFα-induced necrosis involved the 
recruitment of the nox1 and NOXO1 subunits of NADPH oxidase 
to the receptor complex in a RIP1-dependent manner. Moreover, 

ParP1
Another well-studied necrotic candidate is the DNA repair enzyme 
PARP1. Genotoxic stresses such as oxidants and alkylating agents 
have long been known to cause necrotic cell death that is associ-
ated with an overstimulation of PARP1 (Hassa, 2009). Moreover, 
ischemia/reperfusion-induced myocardial and cerebral necrosis is 
markedly attenuated by genetic inhibition of PARP1 (Zingarelli 
et al., 2003; Li et al., 2010). It was originally thought that necrosis 
induced by PARP1 hyperactivation was simply due to metabolic 
catastrophe, where the overactive PARP1 used up the cell’s supply 
of NAD+, and subsequently ATP (van Wijk and Hageman, 2005). 
However, inhibition of specific proteins, such as calpains or CypD, 
can block PARP1-induced cell death even in the face of severe NAD+ 
depletion (Alano et al., 2004, 2010; Moubarak et al., 2007), sug-
gesting that a more discrete signaling network is responsible for 
PARP1-mediated cell death (although NAD+ deletion could still 
play a role in this signaling network). Susin’s group very elegantly 
demonstrated that PARP1-induced necrosis was dependent on acti-
vation of calpain, which in turn impinged upon the mitochondrion 
(Moubarak et al., 2007). In contrast, Xu et al. (2006) suggested 
a PARP1–RIP1–JNK1 sequence of events, whereas another study 

FIguRe 1 | Signaling components of the necrotic programme. Activation 
of death receptors such as Fas and TNFR, or cellular stresses, induces the 
interaction and activation of the kinases RIP1 and RIP3. These in turn affect 
mitochondria either directly, or indirectly through NADPH oxidase-derived 
ROS to induce necrosis. Necrotic death stimuli can also activate PARP1, 

which can potentially induce necrosis either through activation of the RIP 
kinases, activation of calpains, or through the production of PAR polymers. 
TNFR, TNFα receptor; RIP, receptor interacting protein; ROS, reactive 
oxygen species; PAR, poly(ADP-ribose); PARP1, poly(ADP-ribose) 
polymerase-1.
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reported to be dependent of calpain activation (Chen et al., 2006), 
although whether this is dependent on RIP1 and/or NADPH oxi-
dases has yet to be tested. The cellular events that occur distal to cal-
pains during necrosis are still being elucidated but include cleavage 
and activation of pro-death Bcl2 proteins such as Bax (Moubarak 
et al., 2007), cytoskeletal degradation (Lebart and Benyamin, 2006), 
and lysosomal rupture (Yamashima and Oikawa, 2009).

role oF mitoChonDria in ProgrammeD neCrosis
The establishment of proteins such as RIP kinases and PARPs as 
mediators of programmed necrosis has given us the beginnings of 
a framework upon which to build in terms of novel components. 
In particular, as in apoptosis, it appears that mitochondria play 
a pivotal role in the propagation of the necrotic signal. Indeed, 
the pioneering work of Nicotera’s laboratory demonstrated that 
mitochondria control whether a cell dies by apoptosis or necro-
sis long before the term “programmed necrosis” was even coined 
(Ankarcrona et al., 1995). In this section, we shall review our current 
understanding of the function that mitochondria play in necrosis 
and the molecular mechanisms by which they do so (Figure 2).

mitoChonDria-DeriveD ros
As discussed above, several reports have implicated that NADPH 
oxidase-derived superoxide is required (at least under some circum-
stances) for programmed necrosis. However, others have suggested 

inhibition of nox1, either by siRNA or rottlerin, blocked the 
necrotic actions of TNFα (Kim et al., 2007; Byun et al., 2008). In 
contrast, the nox4 isoform has been implicated in oxidized-LDL-
induced necrosis (Lee et al. 2010). Importantly, genetic deletion of 
gpPhox, nox1, nox2, and/or or nox4 can reduce ischemia/reper-
fusion-induced necrosis in the heart, liver, and brain (Hoffmeyer 
et al., 2000; Lehnert et al., 2003; Jackman et al., 2009; Kahles et al., 
2010). However, it should be noted that some cell types appear 
to undergo programmed necrosis independent of ROS produc-
tion. In particular, necrosis in macrophages, Jurkat cells and HT-29 
carcinoma cells has been shown to be ROS-independent (Moquin 
and Chan, 2010).

CalPains
Just as proteases (i.e., caspases) are critical mediators of apoptosis, it 
appears that proteolytic enzymes, in the shape of the calpains, may 
also mediate programmed necrosis. Calpains are a family of cysteine 
proteases that are activated by Ca2+, and inhibition of calpains has 
been shown to be anti-necrotic in a number of disease models 
(Golstein and Kroemer, 2007; Kennedy et al., 2009; Hernando et al., 
2010). Molecularly, Susin’s laboratory demonstrated that PARP1-
induced necrosis was dependent on activation of calpains, and 
deletion of the Capn4 gene, which encodes an essential regula-
tory subunit for μ- and m-calpain, completely prevented cell death 
(Moubarak et al., 2007). TNFα-induced necrosis has also been 

FIguRe 2 | Mitochondrial mediators of programmed necrosis. Bax can 
induce necrotic cell death through the release of AIF, as can PAR polymers and 
calpain. Another Bcl2 family protein, BNIP3, appears to act directly through 
activation of the MPT pore. RIP kinases, possibly through translocation to the 
mitochondrion itself, can induce ROS production from complex-I of the electron 
transport chain. In addition, RIPs may act through the Bcl2 family protein Bmf, 

although the exact mechanism is unknown. Finally the Bcl2 family protein Nix 
induces release of Ca2+ from the endoplasmic reticulum that is in close proximity 
to the mitochondrion. The Ca2+ is then taken up into the mitochondrial matrix 
where it induced opening of the MPT pore and necrosis. AIF, apoptosis-inducing 
factor; PAR, poly(ADP-ribose); MPT, mitochondrial permeability transition; RIP, 
receptor interacting protein; ROS, reactive oxygen species.
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deletion of the CypD-encoding gene renders  mitochondria and 
cells more resistant to MPT induction and the resultant cell mor-
tality (Baines et al., 2005; Basso et al., 2005; Nakagawa et al., 2005; 
Schinzel et al., 2005).

For many years the MPT pore was believed to contribute to both 
apoptotic and necrotic cell death. However, recent data, especially 
from the CypD-deficient mice has suggested that the MPT pore may 
be more pro-necrotic than pro-apoptotic. Reduction in ischemia/
reperfusion-induced necrosis in the heart by inhibitors of CypD was 
first demonstrated nearly 20 years ago (Griffiths and Halestrap, 1993; 
Duchen et al., 1993). Since then pharmacological inhibition of the 
MPT pore has been shown to be protective in many necrotic syn-
dromes, including muscular dystrophy, acetaminophen-induced liver 
toxicity, and doxorubicin cardiotoxicity (Al-Nasser, 1998; Masubuchi 
et al., 2005; Angelin et al., 2007; Tiepolo et al., 2009). Importantly, 
these findings have been corroborated in the CypD-null mice (Baines 
et al., 2005; Nakagawa et al., 2005; Nakayama et al., 2007; Millay et al., 
2008). What was interesting was that the pro-apoptotic effects of Bcl2 
proteins such as Bax and Bid, and stimuli such as staurosporine and 
etoposide were unaffected in the CypD-deficient mitochondria and 
cells (Baines et al., 2005; Nakagawa et al., 2005; Schinzel et al., 2005). 
In contrast, necrotic cell death induced by oxidative stress was signifi-
cantly attenuated in the knockout cells. One note of caution: although 
the data from the CypD-null cells and animals is suggestive of the 
MPT pore being involved in necrosis, MPT can still occur independ-
ent of CypD under some conditions (Basso et al., 2008). Therefore 
the results described above cannot yet be completely ascribed to the 
MPT pore, and may rather indicate a role for CypD in programmed 
necrosis that is independent of MPT.

How the MPT pore fits into our current model of programmed 
necrosis is the subject of ongoing investigation. Xu et al. (2006) 
demonstrated that PARP1 activation by MNNG led to abolition 
of ∆Ψ

m
 in a RIP1-dependent manner, suggesting that both PARP1 

and RIP1 could potentially induce necrosis via the MPT pore. MPT 
inhibition by cyclosporine-A prevented both the loss of ∆Ψ

m
 and 

necrosis. In another study MNNG was suggested to induce MPT 
through PARP1-mediated depletion of NAD+ (Alano et al., 2004). 
These reports would place the MPT pore distal to PARP1 activation. 
However, Dodoni et al. (2004) reported that the PARP1 activator 
MNNG could directly induce MPT independent of PARP1 suggest-
ing that the MPT pore may in fact be upstream of PARP1 activation 
and NAD+ depletion. TNFα/smac-mimetic/zVAD-induced necrosis 
was also partially rescued in CypD-null MEFs (He et al., 2009). Most 
recently, we have found that depletion of RIP1 could significantly 
reduce H

2
O

2
-induced MPT and necrosis, and that RIP1-induced 

necrotic death was attenuated in CypD-deficient fibroblasts. Taken 
together, all these data point to the MPT pore as being a member 
of the necrotic programme.

Pro-Death BCl2 Proteins
Previously believed to be purely involved in mediation of the 
intrinsic apoptotic pathway, pro-death Bcl2 proteins may also 
contribute to necrotic death as well. In particular, there is evi-
dence implicating Bax, Bmf, BNIP3, and Nix as being part of the 
necrotic programme. Pharmacological or genetic inhibition of 
Bax reduced infarcts in response to cardiac, hepatic, and cerebral 
ischemia/reperfusion (Hochhauser et al., 2003; Hetz et al., 2005; 

that it is mitochondria that are the source of the ROS required for 
necrotic cell death. Schulze-Osthoff et al. (1992) demonstrated that 
TNFα-induced necrosis in L929 cells was dependent on complex-I 
derived ROS. Similar findings have since been reported by other 
labs (Goossens et al., 1999; Festjens et al., 2007). Most recently, 
Davis et al. (2010) showed that the pro-necrotic actions of nitric 
oxide (NO) involved the nitration of complex-I subunits, with a 
subsequent increase in superoxide generation by that complex.

Mechanistically, induction of mitochondria-derived ROS by death 
receptor activation and/or caspase inhibition appears to be dependent 
on the RIP/RIP3 kinase complex (Cho et al., 2009; Zhang et al., 2009). 
Similarly, the increase in complex-I generated ROS in response to NO 
was also mediated by RIP1 and RIP3 (Davis et al., 2010). How the RIP 
kinases are influencing complex-I (or other mitochondrial functions 
for that matter) is still up for debate. Several papers have reported that 
RIP1 or RIP3 can localize to mitochondria in response to a necrotic 
stimulus (Kasof et al., 2000; Temkin et al., 2006; Davis et al., 2010). In 
addition, Zhang et al. (2009) found that RIP3 could interact with the 
mitochondrial protein glutamate dehydrogenase 1 (GLUD1) and that 
depletion of GLUD1 at least partially blocked TNFα/zVAD-induced 
ROS production and necrosis in NIH 3T3 cells.

Activation of PARP1 has also been described as influencing 
mitochondrial respiratory complexes and ROS production. Mary 
Gray’s laboratory showed that ischemia/reperfusion-induced 
 complex-I defects were abrogated in PARP1-deficient mice (Zhou 
et al., 2006). Szabo’s group found an increase in the poly(ADP)-
ribosylation of several mitochondrial proteins in response to H

2
O

2
 

or NO (Pankotai et al., 2009), including α-ketoglutarate dehydro-
genase which itself can act as a source of ROS (Starkov et al., 2004). 
The same group has also reported poly(ADP)-ribosylation of mul-
tiple components of the electron transport chain, which may also 
influence ROS production (Lai et al., 2008). Interestingly, GLUD1 
can also be ADP-ribosylated (Herrero-Yraola et al., 2001). Similar 
to the RIP story, it’s not entirely apparent how PARP1 influences 
mitochondrial function, but PARP1 has been reported in the mito-
chondrion itself (Rossi et al., 2009) and PARP activators could 
directly affect the MPT pore (see below).

CyCloPhilin-D anD the mitoChonDrial PermeaBility  
transition Pore
The mitochondrial permeability transition (MPT) pore is a large, 
non-specific channel in the inner mitochondrial membrane that 
is opened in response to excessive production of ROS and to Ca2+ 
overload of the mitochondrial matrix (Halestrap, 2009; Baines, 
2010), both of which occur during necrosis. This sudden increase in 
inner membrane permeability dissipates the proton electrochemical 
gradient (∆Ψ

m
), leading to ATP depletion, further ROS production, 

and ultimately swelling and rupture of the organelle (Halestrap, 
2009; Baines, 2010). The MPT pore was originally believed to consist 
of the voltage-dependent anion channel (VDAC) in the outer mito-
chondrial membrane, adenine nucleotide translocase (ANT) in the 
inner membrane, and the peptidylprolyl isomerase cyclophilin-D 
(CypD) in the mitochondrial matrix (Hunter and Haworth, 1979; 
Crompton et al., 1988; Szabó et al., 1993). However, mitochondria 
lacking either VDAC or ANT still undergo MPT and cells deficient 
in these proteins are still sensitive to cell death stimuli (Kokoszka 
et al., 2004; Krauskopf et al., 2006; Baines et al., 2007). In contrast, 
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in necrotic cell death too. Kroemer’s group, who identified AIF, first 
demonstrated that AIF release and nuclear translocation occurred 
during both staurosporine-induced apoptosis and ATP depletion-
induced necrosis (Daugas et al., 2000). Since then many groups have 
demonstrated that necrosis induced by many stimuli (e.g., oxidative 
stress, ischemia/reperfusion, alkylating agents) is associated with 
AIF release and translocation (Xiao et al., 2004; Sancho et al., 2006; 
Moubarak et al., 2007; Zhu et al., 2007). Interestingly, Harlequin 
mutant mice, which only have 20% of normal levels of AIF (Klein 
et al., 2002), are more resistant against cerebral ischemia (Zhu et al., 
2007). However, this is complicated by the fact that physiologically 
AIF is required for complex-I function and suppression of ROS 
(Vahsen et al., 2004; van Empel et al., 2006).

From a mechanistic perspective, both Susin’s and Dawson’s 
laboratories have extensively demonstrated that PARP activation-
induced necrosis is dependent on mitochondrial release of AIF 
(Yu et al., 2002, 2006; Moubarak et al., 2007; Artus et al., 2010). 
However, they diverge on the mechanism(s) by which PARP induces 
AIF release. Susin’s group (Moubarak et al., 2007) demonstrated 
that the sequential activation of calpains and Bax were required 
for AIF liberation. In contrast, Dawson’s group failed to find a 
role for calpain in PARP-induced AIF release (Wang et al., 2009), 
and has suggested that it is the PAR polymer itself that induces 
mitochondrial discharge of AIF (Yu et al., 2006). The reasons for 
this discrepancy are still not clear. How either (or both) of these 
mechanisms relate to necrosis induced by other stimuli remains to 
be tested, although one study has suggested that cell death induced 
by the hexokinase-2 inhibitor, 3-bromopyruvate, is dependent on 
PARP activation and AIF release (Kim et al., 2008).

The mechanisms by which AIF contributes to necrotic death 
are beginning to be delineated (Baritaud et al., 2010). In particu-
lar, a recent study by Artus et al. (2010) demonstrated that AIF, 
complexed with cyclophilin-A, interacts with the histone H2AX 
in the nucleus and that this interaction is essential for AIF’s abil-
ity to induce DNA fragmentation and cell death. Supporting this 
paradigm was their finding that H2AX-deficient MEFs are resistant 
to necrotic death induced by PARP activators.

Future DireCtions
Many studies over the past decade have amassed a considerable list 
of “pro-necrotic” mediators. While this has been an important and 
essential first step in our understanding of programmed necrosis, it 
is still only just that: a first step. What needs to be done now is to try 
and put all of these pieces of the jigsaw puzzle together. Do they form 
one common necrotic pathway? Are there separate, parallel pathways, 
perhaps resembling the extrinsic and intrinsic pathways of apopto-
sis? Moreover, the vast majority of studies have only looked at pro-
grammed necrosis in the context of death receptor activation and/or 
caspase inhibition. We need to move beyond these settings and ask 
whether programmed necrosis is involved in the pathogenesis of dis-
eases such as ischemia/reperfusion injury, neurodegenerative diseases, 
diabetes, and muscular dystrophy; i.e., is programmed necrosis truly 
clinically relevant? I firmly believe it is, but we need hard evidence.
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Ben-Ari et al., 2007). Bax-deficient mice were also protected against 
 acetaminophen-induced liver necrosis (Bajt et al., 2008). The fact 
that in each case the observed protection was considerably greater 
than expected from purely inhibiting apoptotic signaling, strongly 
suggests that Bax may also be contributing to the necrotic cell death. 
Indeed, PARP1-mediated programmed necrosis has been reported 
to be dependent on mitochondrial translocation of Bax, but not 
Bak (Moubarak et al., 2007). Bax in turn induced necrosis by releas-
ing apoptosis-inducing factor (AIF) from the mitochondria (see 
Section Apoptosis-Inducing Factor).

Members of the BH3 family of Bcl2 proteins have also been impli-
cated in programmed necrosis. Unlike Bax, Bmf is one of the least 
studied Bcl2 proteins, although it is known to be essential for proper 
lymphocyte homeostasis (Labi et al., 2008; Frenzel et al., 2010). 
Regarding programmed necrosis, Bmf was one of the surprising 
candidates discovered as a mediator of TNFα-induced necrosis by 
Hitomi et al. (2008). Specifically, they found that knockdown of Bmf 
could prevent TNF and zVAD-induced necrotic death in L929 cells. 
Whether Bmf is also responsible for programmed necrosis in other 
contexts, and how it couples to other necrotic signaling molecules 
such as RIP1 and RIP3 remains to be seen. Moreover, the mecha-
nisms by which Bmf induces necrosis remain unknown.

A BH3-related protein, BNIP3, can also induce necrosis. Under 
normal conditions BNIP3 is expressed at low levels, but is rapidly 
upregulated in response to cell stress (Burton and Gibson, 2009). 
Greenberg’s group, who discovered BNIP3, demonstrated that direct 
overexpression of BNIP3 could induce MPT and subsequent necrosis in 
293T cells (Vande Velde et al., 2000). Similar results were subsequently 
reported in MEFs and cardiac myocytes (Kubasiak et al., 2002; Kubli 
et al., 2007). Moreover, in all these studies the BNIP3-induced necrosis 
could be blocked by inhibition of the MPT pore with cyclosporine-A. 
In the whole organ, treatment with a BNIP3 inhibitory peptide could 
reduce infarct size in isolated hearts (Hamacher-Brady et al., 2007). 
However, it should be pointed out that ischemia/reperfusion-induced 
myocardial necrosis was no different in BNIP3 knockout mice com-
pared to wildtype controls (Diwan et al., 2007a).

Last, but not least, is the BNIP3-related protein Nix. Nix is con-
stitutively expressed and, like Bmf, appears to play a role in hemato-
poesis (Diwan et al., 2007b). Elegant work from Dorn’s laboratory 
has demonstrated that Nix can induce both apoptosis and necrosis, 
and the nature of the death modality is dependent on the subcellular 
localization of the Nix protein (Diwan et al., 2009; Chen et al. 2010). 
Nix that is targeted to the mitochondria induces apoptosis through 
activation of the canonical intrinsic pathway. In contrast, ER-targeted 
Nix induces necrosis through calcium-dependent activation of the 
MPT pore. Again, how BNIP3 and Nix relate to more proximal 
necrotic signals such as RIP and PARP (or if they are activated more 
directly in response to stress) has yet to be ascertained.

aPoPtosis-inDuCing FaCtor
In addition to Bcl2 proteins moonlighting as necrotic mediators, 
other canonical apoptotic molecules may also be involved in pro-
grammed necrosis. During apoptosis, the mitochondrial flavopro-
tein AIF is released from the intermembrane space and translocates 
the nucleus where it cooperates with its fellow apoptogen endo-
nucleus G to mediate DNA fragmentation (Boujrad et al., 2007). 
However, there is now considerable evidence that AIF plays a role 
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