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Amyotrophic lateral sclerosis (ALS) is 
 characterized by selective and progres-
sive degeneration of motoneurons (MNs). 
Although the etiology of the disease is 
unknown, glutamate toxicity and reac-
tive oxygen species toxicity have been 
strongly implicated in ALS pathophysiol-
ogy, Training exercise has been proposed 
to provide a beneficial therapy during the 
early or late stages of ALS (Pinto et al., 1999; 
Drory et al., 2001); however, some studies 
showed deleterious effects of exercise on 
survival in ALS (Mahoney et al., 2004). The 
beneficial effects are based on the cellular 
adaptations induced by training exercise in 
the brain, spinal cord, and skeletal muscles 
that could counteract the oxidative stress 
complication in ALS. For instance, training 
exercise increases the capacity of antioxi-
dant enzymes and reduces lipid perox-
ides in brain regions of rats (Somani and 
Husain, 1997; Husain and Somani, 1998). In 
skeletal muscle, training reduces oxidative 
stress following exercise (Miyazaki et al., 
2001), increases the mitochondrial capac-
ity (Holloszy et al., 1970), and increases 
the expression of neurotrophic factors 
(Gomez-Pinilla et al., 2001). The latter 
could be particularly beneficial in ALS 
because neurotrophic factors could prevent 
MN degeneration, preserve muscle inner-
vation, and inhibit muscle atrophy (Acsadi 
et al., 2002; Manabe et al., 2002; Sun et al., 
2002). Therefore, it is conceivable that train-
ing exercise could be beneficial by resisting 
oxidative stress and offsetting energy defi-
cits caused by mitochondrial dysfunction 
in ALS. In a recent study, training exercise 
has been also shown to have neuroprotec-
tive effects in the spinal cord by saving MNs 
from degeneration, in addition to maintain-
ing muscle fiber composition (Deforges 
et al., 2009). The Deforges et al. (2009) 
study is important for understanding the 
effect of training exercise in ALS because 
it compared two training paradigms and 
showed differential neuroprotective effects 
in the spinal cord. Here we discuss the 

methodology and interpretation from the 
Deforges et al. (2009) study on which MN 
type is saved by training exercise, and try to 
reconcile their conclusions with the litera-
ture and more recent work.

Deforges et al. (2009) examined the effect 
of two training exercise paradigms (i.e., 
running and swimming) on MN survival 
and muscle fiber composition in the G93A 
(high expressor line) mouse model of ALS. 
In comparison to other ALS mouse models, 
this model has high level of expression of the 
mutant human SOD1 gene, rapid disease 
onset, and short life span. Training exer-
cise was performed through 30 min daily 
running or swimming sessions that started 
at postnatal day 70 (P70) and lasted until 
P115 or death. Mice survival, MN count, 
and muscle fiber composition were assessed 
at P115 in the fast twitch muscles tibialis 
and plantaris and the slow twitch soleus 
muscle of the G93A mouse groups (i.e., 
running and swimming ALS groups), and 
were compared to normal, non- transgenic 
(control group), and untrained G93A trans-
genic mice (sedentary ALS group). MN 
count was based on soma cross-sectional 
area in which MNs were classified into three 
types: small (soma size <300 μm2), medium 
(soma size 300–700 μm2), and large (soma 
size >700 μm2) soma MN types. Muscle fiber 
composition was examined using immun-
ofluorescence in which muscle fibers were 
incubated with antibodies raised against 
myosin heavy chains (MyHC) for slow (type 
I) and fast (types II, IIa, and IIb) fibers. The 
percentage of fast fiber type IIx was deter-
mined as the difference between the number 
of type II fibers and the sum of type IIa and 
IIb fibers [IIx = II − (IIb + IIa)]. The results 
showed that in the sedentary ALS group the 
disease caused MN loss in the ventral horn 
of 49% relative to control with a reduction 
in the proportion of medium and large 
MN types and increase in the proportion 
of small MN type. In fast twitch muscles, 
the disease caused a significant transition in 
muscle fiber types from fast-to-slow (type II 

to type I) and within the type II fiber type 
(from type IIb/IIx to type IIa). The slow 
twitch soleus muscle, on the other hand, 
experienced an increase in the proportion 
of type IIx muscle fibers. The G93A trans-
genic mice in the running ALS group did 
not have significant difference in symptom 
onset or survival time and had comparable 
loss of MNs (45%) to the sedentary group. 
In contrast, the G93A transgenic mice in the 
swimming ALS group survived longer and 
had delayed symptom onset relative to the 
sedentary ALS group. They also had higher 
MN total number and higher proportion 
of medium-size MNs relative to the sed-
entary ALS group, and maintained muscle 
fiber composition in all muscles similar to 
the control group. The authors concluded 
that swimming preferentially activated large 
MNs, innervating fast muscle fibers of type 
II), and protected them.

On their methodology, Deforges et al. 
(2009) measured the number of surviving 
MNs by counting MN cell bodies in the ven-
tral horn of spinal cord. Although this pro-
vides anatomical evidence, this technique 
does not provide information on the func-
tional state of MNs (i.e., whether surviving 
MNs produce muscle contractions). This 
is exceptionally important in ALS because 
MNs retract from the neuromuscular junc-
tion before the MN cell body dies (Fischer 
et al., 2004). Second, Deforges et al. (2009) 
classified MNs based on their morphologi-
cal properties (e.g., soma size). This method 
could be misleading in ALS because WT 
and mutant MNs exhibit differences in 
morphology and cell size (Amendola and 
Durand, 2008) and, for all mice, the sepa-
ration between MN types based on soma 
size is problematic because there is a con-
tinuum of sizes (McHanwell and Biscoe, 
1981). To avoid these problems, functional 
motor unit electrophysiology, in which the 
number of surviving MNs is estimated from 
isometric whole muscle and single motor 
unit twitch forces (Gordon et al., 2010), 
could be used together with MN cell body 
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motor units, which are innervated by the 
small alpha-MNs. This conversion was 
supported by both  electrophysiological 
recordings and histochemical staining 
techniques.

In Deforges et al. (2009), a fundamental 
concept the authors claimed is that swim-
ming exercise preferentially recruits the 
larger, faster motor units in contrast to the 
running exercise that recruits the smaller, 
slower motor units. Certainly, recruitment 
is orderly from small to large motor units 
although the relative recruitment of large 
motor units may differ with the exercise. In 
other words, swimming exercise must have 
involved activation of both small and large 
MNs, whereas running exercise involved 
mainly activation of small MNs, with maybe 
some activation of large MNs. With that in 
mind, the beneficial effect of swimming, 
but not running, exercise on MN survival 
in ALS could be explained in the context of 
their electrical properties. In the neonatal 
phase, large mutant MNs are vulnerable 
and selectively exhibit 30% reduction in their 
input resistance relative to WT (Bories et al., 
2007), which makes them harder to recruit. 
Therefore, exercise of sufficient intensity to 
activate large MNs, such as swimming exer-
cise as in the Deforges et al. (2009) study or 
functional overload of spared motor units as 
in the Gordon et al. (2010) study, could then 
be essential to both recruit and convert them 
to slow MNs. Also, specific types of synaptic 
inputs to MNs are lost in ALS [e.g., choliner-
gic synapses on MNs are lost in ALS as shown 
by Nagao et al. (1998)] and it is possible that 
training exercise rescues vulnerable MNs in 
part by strengthening remaining inputs to 
MNs. These are open questions that warrant 
further investigations.
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