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the most common illnesses that affects voice production is partial 
weakness of the vocal cord, i.e., vocal fold paresis or paralysis (VFP). 
A weakness in one side of the larynx leads to asymmetry in vibra-
tion of the VFs (Figure 3A). Asymmetrical vibration along with 
incomplete glottal closure at the moment when the VFs should be 
closed causes a “leaky valve” and inefficient coupling of the VF tissue 
with the air stream. Incomplete VF closure during vibration leads 
to hoarseness and glottal closure symptoms. Glottal closure symp-
toms include increased effort with voice production, voice fatigue, 
decreased loudness, and discomfort with prolonged voice use. If VF 
closure is severely limited, these patients may not be able to speak 
more than three words before they need to take another breath to 
continue speaking. VFP can be severely debilitating and impair 
basic communication in the workplace, at home, and in society. 
Other common illnesses that affect VF closure include VF nodules, 
cysts, polyps, papilloma, and carcinoma (Figure 3B). VF closure 
is affected by a mass effect associated with the epithelium and/or 
the subepithelial tissues in these benign and malignant lesions.

Simulation-BaSed aSSeSSment and Surgery Planning tool
Phonation is governed primarily by the principles of aerodynamics, 
structural-dynamics, and aero-structural interaction – that are all 
squarely within the discipline of engineering. As such engineers/
physicists have attempted to uncover the physical mechanisms 
underlying voice since at least the 1940s. With the advances in 
computational hardware and software however, the possibility of 
introducing computational biomechanics models into the clinical 
setting, for assessment of pathologies as well as to aid surgery, is 
becoming a reality. By performing a fundamental analysis of VF 
vibration in the normal and abnormal larynx, we can better discern 

introduction
Voice is a critical component of the unique human attribute known 
as speech. In addition to being the primary mode of communica-
tion, our voice allows us to create music and express our emotions. 
Our voice is produced through the process of phonation in the 
larynx. Phonation is initiated by a series of neural commands to 
the various extrinsic and intrinsic laryngeal muscles. These muscles 
(the thyroarytenoid, posterior cricoarytenoid, cricothyroid, and 
lateral cricoarytenoid) adduct and abduct the vocal folds (VFs), 
which are complex, multi-layered structures, and adjust their ten-
sion during phonation (Figure 1). The adduction of the VFs closes 
the glottis, thereby creating a barrier for the expulsion of air from 
the lungs. As air is forced from the lungs, the adducted VFs are 
pushed apart due to air pressure, and if the conditions are right, the 
VFs are set into sustained flow-induced vibrations (Figure 2A). The 
VF vibrations produce a pulsatile turbulent “glottal jet” (Figure 2B) 
and this jet, along with the time-varying aerodynamic forces on 
the VFs are directly responsible for the generation of sound in 
this larynx. For a normal larynx, most of the acoustic energy is 
contained in the so-called fundamental phonation frequency (F0) 
and its super-harmonics. The spectrum of the sound produced in 
the larynx is subsequently modified by a person’s oral and nasal 
pharynx and finally, shaped into speech by the coordinated move-
ments of the oral cavity, tongue, palate, teeth, and lips.

clinical Significance
While the majority of the population is accustomed to normal voice 
production, at some point in our lives, at least 20% of the human 
population will develop a voice production disorder. Only during 
these times do most of us take note of our sound source. One of 
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subtle differences in the mechanism of glottal incompetence. By 
having a more detailed understanding of the interaction of the VF 
mucosa with the superficial lamina propria and the underlying VF 
musculature, we can develop improved diagnostic techniques for 
patients with glottal incompetence. One candidate for such simula-
tion-assisted therapies is VFP which is often treated with a surgical 

Figure 1 | From left to right, axial, oblique, and anterior views of the laryngeal cartilages and intrinsic laryngeal muscles.

Figure 3 | (A) Abduction and adduction of the larynx in a patient with a vocal 
fold paresis on the left side of the image. (B) Some common illnesses that affect 
vocal fold closure.

Figure 2 | (A) Flow-induced vibrations in vocal folds (B) Glottal jet is 
produced due to vocal folds vibration (Zheng et al., 2010).
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Development of such a computational model requires not 
only the incorporation of realistic VF anatomy (geometry and 
mechanical properties), but also the use of a simulation approach 
which, given an anatomically realistic description of the VFs, can 
then accurately reproduce the complex spatio-temporal dynamics 
associated with glottal airflow and VF vibration. Such a capabil-
ity has become possible by combining modern scanning/imaging 
and geometric reconstruction techniques with recently developed 
continuum mechanics based models of the VFs and state-of-the-
art computational fluid dynamics (CFD) techniques. Due to the 
demand for high-fidelity, these simulations are computationally 
intensive and another key enabling factor is the use of large-scale 
parallel computation.

methodS
We describe the key features of a simulation-based surgery planning 
tool that is designed to predict the optimal placement and shape of 
the VF implant based upon data from the pre-operative laryngeal 
endoscopy and CT scan. By using the normal VF’s motion, we can 
predict the optimal tissue deformation needed to reconstitute glot-
tal closure during voice production. We propose simulating the VF 
vibration of the paretic and normal VF from a subject with VFP. A 
tissue deformation with a simulated implant would be performed 
on the paretic VF such that tissue deformation of the paretic VF 
would reproduce the normal VF. Thus, both VFs vibrate symmetri-
cally in the model. By using this technique, the surgeon will know 
the exact shape and position of the VF implant before the surgery. 
As such, this modeling technique will provide a pre-operative plan-
ning tool. The surgeon will shape the implant according to the 
specification of the model and will be placed through the larynx 
using additional computer-based tools that will guide the surgeon 
on the optimal placement of the implant. The additional computer-
based tools will allow the surgeon to see the internal laryngeal 
anatomy by looking through the cartilage and will fuse images 
obtained from laryngeal endoscopy. By fusing this data with pre-
operative CT images, the surgeon will have an exacting knowledge 
of the ideal location of the surgical implant. The key features of 
the computer model are:

1. Image Based Geometric Reconstruction of Vocal Fold and 
Glottal Anatomy: All simulations of VF vibrations to date 
have employed idealized/simplified VF and airway lumen 
geometries (Berry and Titze, 1996; Kob et al., 1999; Alipour 
and Scherer, 2000; Alipour et al., 2000; Jiang et al., 2001; 
Avanzini and Rocchesso, 2002; deVries et al., 2002; Zhao 
et al., 2002; Gunter, 2003; LaMar et al., 2003; Rosa et al., 
2003). However, given the wide variations found in laryn-
geal and VF anatomy (Bielamowicz, 2004), use of such ide-
alized VF geometries would be incommensurate with the 
high-fidelity continuum mechanics and CFD techniques 
that are to be employed here. Furthermore, for this to be 
a viable surgery planning tool, it is essential to include as 
much patient-specific laryngeal and VF anatomical infor-
mation as possible. In the current approach, thin-slice CT 
scans of the larynx and image reconstruction techniques are 
used to extract three-dimensional geometrical models of the 
VFs and airway lumen.

implant placed within the VF, a procedure called a medialization 
laryngoplasty (Figure 4). The goal of a medialization laryngoplasty 
is to accurately place an implant in the VF at the exact location of 
the membranous VF. The contour of the implant must be such that 
a uniform amount of pressure is placed along the length of the VF 
during voice production. However, subtle changes in implant shape 
could produce profound effects on the dynamical properties of the 
VF. Currently, modifications in the implant size and shape rely upon 
surgical intuition and experience as well as changes in the laryngeal 
configuration and voice production during surgery. While subtle 
changes in the implant provide varying degrees of success with the 
surgical procedure, up to 25% (Bielamowicz, 2004) of patients will 
require additional procedures to enhance glottal closure, including 
modification of the original implant shape and location.

A concerted effort has been made in recent years to develop 
realistic computer models of phonatory VF function and glottal 
flow (Berry and Titze, 1996; Kob et al., 1999; Alipour and Scherer, 
2000; Alipour et al., 2000; Jiang et al., 2001; Avanzini and Rocchesso, 
2002; deVries et al., 2002; Zhao et al., 2002; Gunter, 2003; LaMar 
et al., 2003; Rosa et al., 2003). However, due to a number of reasons 
the goal remains elusive. First, parameterization of VF anatomy and 
physiology is far from complete. Second, in our view, modeling/
computational approaches that have been used to date impose 
constraints on the level of realism that can be injected into these 
computer models. Due to this lack of realism, even though these 
computer models are providing invaluable insight into the bio-
physics of phonation, they have found limited direct use in the 
clinical community.

Figure 4 | Medialization laryngoplasty procedure.
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continuum BaSed modeling of Vocal fold dynamicS
In this section, we describe the continuum based modeling of the 
VFs dynamics using a finite-element solver. An open-source C++ 
finite-element solver Tahoe1 is employed for the solid domain, 
which offers a variety of constitutive models and can handle large 
solid deformations. The equations governing VF vibration and 
deformation are the Navier equations, written as:
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The VFs are modeled as non-linear viscoelastic material (Resse and 
Govindjee, 1998) and geometric as well as material non-linearities 
are included in these models where appropriate.

Normal VF vibration is adequately modeled as a small-strain, 
linear, viscoelastic problem, and later sections will describe results 
associated with this condition. Here we present results for a case 
where large-strain and the associated geometric non-linearity 
cannot be ignored. As depicted in Figure 3A, a patient with VFs 
paralysis/paresis in his/her left VF is not able to medialize (bring 
to center) the VFs, thereby leaving a gap between the two VFs dur-
ing attempted phonation. Note that the left and right columns 
in Figure 5 show the side and top views of the VFs, respectively. 
The implant and the healthy VF are shown in gray while the para-
lyzed VF is represented in color. Incomplete closure does not allow 
robust flow-induced vibrations to occur in the VFs and can lead 
to complete loss of voice or a weak or breathy voice. The common 
treatment for this type of disease is medialization laryngoplasty, 
wherein the surgeon opens a window in the patient’s thyroid car-
tilage and inserts a surgical implant into the paralyzed VF to push 
it to the center (Isshiki et al., 1974). This thyroplasty implant is a 
patient-specific device that must be properly aligned in reference to 
the underlying VF and have a size and shape such that it medializes 
the VF and alters the vibratory characteristics of the VF to a state 
that most closely resembles that of the healthy VF. Usually surgeons 
use trial-and-error to intra-operatively decide the configuration 
and location of the implant. This procedure is highly dependent on 
the experience of the surgeon and high (up to 24%) revision rates 
have been reported for this type of surgery (Bielamowicz, 2004).

The medialization of the paralyzed VF can be modeled using 
FEM and the results of our Tahoe-based FEM modeling are shown 
in Figure 5. During the simulation, the position of healthy VF is held 
fixed. In keeping with typical anatomical values for a human adult, 
the VFs are assumed to be 2 cm long, extend a maximum of 0.4 cm 
toward the glottal midline and the inferior–superior size of the VFs is 
1.2 cm. A 31,143 tetrahedral elements grid is used to represent the entire 
three-dimensional VF. The boundary conditions are as follows: the side 
surfaces (x–y plane) of the VFs are fixed in time; there is no traction force 
on the surface (x–z plane) which is facing the implant and not in contact 
with the implant; and the surface which is in contact with the implant 
moves into the VF with a constant but very slow velocity. The material 

2. Continuum Mechanics Based Model of the Vocal Folds: 
Significant progress has been made in this area since the 
seminal work of Ishizaka and Flanagan (1972) and Titze 
(1973), where limited degree-of-freedom lumped element 
models were proposed. In the current approach, the VF 
model is based on sophisticated continuum models which 
lead to higher accuracy in the spatial as well as temporal 
resolution of the VF dynamics. The model being employed 
includes (1) three-layered VF structure with the cover, liga-
ment, and VF body modeled as transversely isotropic but 
distinct materials based on well established experimental 
data (Hirano et al., 1982; Alipour and Titze, 1985, 1991, 2000; 
Min et al., 1995; Chan and Titze, 1999), (2) a physics-based 
VF collision model (Gunter, 2003; Rosa et al., 2003) which 
minimizes the use of ad hoc contact mechanisms (Alipour 
and Scherer, 2000; Alipour et al., 2000) and (3) modeling 
of implant as a distinct rigid entity with pre-specified shape 
and material properties.

3. High Resolution Modeling of Glottal Aerodynamics: Glottal 
airflow during phonation is highly complex due to the inhe-
rent unsteadiness imposed by the VF vibration as well as tran-
sition to turbulence in the glottal jet. Turbulence in the glottal 
jet plays a major role in sound production and therefore, the 
computer model should have the ability to accurately repre-
sent the turbulence. Many past studies have employed very 
rudimentary models for the glottal flow (Kob et al., 1999; 
Jiang et al., 2001; Avanzini and Rocchesso, 2002; LaMar et al., 
2003). In the current study, we employ direct numerical simu-
lation (DNS) and large-eddy simulation (LES) approaches for 
modeling the fluid dynamics. These approaches can accura-
tely reproduce a wide range of the spatial and temporal scales 
in the flow, thereby improving overall fidelity and producing 
high-quality data, which can yield excellent insight into the 
flow physics. Such approaches have become the gold standard 
in scientific investigations of engineering flows (Moin and 
Mahesh, 1998; Piomelli, 1999) and have only been applied 
to physiological flows (Mittal et al., 2001; Zhao et al., 2002; 
Mittal, 2003) in the last decade.

4. Direct Computation of Voiced Sound: A significant capability 
that has been included in our computational model is direct 
computation of aero-acoustic sound generation and propaga-
tion associated with human phonation. This feature provides 
data that can be directly compared with the measurements 
from laryngeal examinations, and enables us to draw clear 
connections between biomechanics and voice. The ability to 
directly compute the sound also has implications for the clini-
cal usage of the computer-based surgery planning tool, since it 
will allow the surgeon to clearly assess the voice characteristics 
associated with different implant configuration.

reSultS and diScuSSion
In this section we provide an overview of the results obtained from 
our simulations. The focus here is to provide results that are repre-
sentative rather than comprehensive. Toward the end of this section, 
we also describe some of the limitations and challenges associated 
with the current modeling approach.

1Tahoe is an open-source C++ finite element solver, developed at Sandia National 
Labs, CA, USA (http://sourceforge.net/projects/tahoe).

Mittal et al. Simulation tool for vocal fold paralysis

Frontiers in Physiology | Computational Physiology and Medicine  May 2011 | Volume 2 | Article 19 | 4

http://www.frontiersin.org/computational_physiology_and_medicine/
http://www.frontiersin.org/computational_physiology_and_medicine/archive


 

∂
∂

= ∂
∂

+
∂
∂

= − ∂
∂

+ ∂
∂

v

x

v

t

v v

x

p

x

v

x
i

i

i i j

j i

i

j

0
1 2

2
,

ρ
ν  (2)

where i, j = 1, 2, 3, v
i
 are the velocity components, p is the pressure, 

and σ and ν are the fluid density and kinematic viscosity. These 
equations are discretized using a cell-centered, collocated (non-
staggered) arrangement of the primitive variables v

i
, p. In addition, 

the face-center velocities, U
i
, are computed and stored. This separate 

computation of face velocity, which was initially proposed by Zang 
et al. (1994), results in discrete mass-conservation to machine accu-
racy and leads to a more accurate and robust solution procedure. 
The fractional-step method of van Kan (1986) is used to integrate 
the equations in time and this consists of three sub-steps. The first 
sub-step requires the solution of an advection–diffusion equa-
tion. In this sub-step, a second-order Adams–Bashforth scheme 
is employed for the convective terms while the diffusion terms 
are discretized using an implicit Crank–Nicolson scheme which 
eliminates the viscous stability constraint. The second sub-step 
requires the solution of the pressure correction equation which is 

properties of the VF are considered spatially uniform and the following 
tissue properties are used in the simulation (Zheng et al., 2009): density 
(σ) = 1043 kg/mm3, Young’s Modulus (E) = 104 kPa, Poisson ratio 
(ν) = 0.30, and damping coefficient of the viscoelastic tissue (η) = 5 
poise. The shapes of the VFs are shown at different dimensionless times 
in Figure 5 and the dimensionless stresses in the VF are shown via the 
color contours. At τ = 0, the implant starts penetrating the VF and at 
τ = 0.16, the paralyzed VF moves to the midline. At this time, the stresses 
near the side surfaces of the VF are the largest. At τ = 0.32, the paralyzed 
VF starts penetrating the healthy VF (shown in gray) and large stresses 
develop near the side surfaces of the VF (Figure 5). We expect that the 
demonstrated computational tool will enable surgeons to predict the 
position of the VF and implant during the surgery.

immerSed Boundary method for glottal aerodynamicS
Glottal flow during phonation is highly complex due to the inherent 
unsteadiness imposed by the VF vibrations, the complex flow and 
supraglottal structure interaction as well as transition to turbulence 
in the glottal jet. The governing equation for the glottal flow are 
the unsteady Navier–Stokes equations given by

Figure 5 | Simulation of the deformation of paralyzed vocal fold during the implant insertion.
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is incorporated. To ensure local and global second-order accuracy 
in the computations in the procedure, boundary conditions on the 
immersed boundary are prescribed to second-order accuracy and a 
second-order accurate discretization is employed for the fluid cells.

Boundary motion can now be included into this formulation 
with relative ease. The governing equations are written in the 
Eulerian form, and we move the boundary at a given time-step, 
recompute the body-intercepts, image-points, and then advance 
the flow equations in time. The boundary motion is accomplished 
by moving the nodes of the surface triangles as determined by the 
solid deformation. The general framework can therefore be con-
sidered as Eulerian–Lagrangian, wherein the immersed boundaries 
are explicitly tracked as surfaces in a Lagrangian mode, while the 
flow computations are performed on a fixed Eulerian grid. Details 
of the IBM can be found in Reference (Mittal et al., 2008).

To minimize the use of ad hoc assumptions in turbulence mod-
eling, DNS and LES approaches are employed; these are two of the 
most accurate approaches currently available for flow modeling. 
As compared to LES, DNS is more accurate and demands a higher 
temporal and spatial resolution (Moin and Mahesh, 1998; Lin et al., 
2007). As an alternative, LES produces quite accurate results at a 
computational cost which is significantly lower than a correspond-
ing DNS. The application of LES to physiological flows has been 

solved with the constraint that the final velocity be divergence-free. 
Once the pressure is obtained, the velocity field is updated to its 
final value in the final sub-step.

A multi-dimensional ghost-cell methodology is used to incorpo-
rate the effect of the immersed boundary on the flow. This method 
falls in the category of sharp-interface immersed boundary meth-
ods (IBM; Mittal and Iaccarino, 2005). In this method, the body 
surface, such as VF and airway lumen surface, is represented by 
an unstructured grid with triangular elements and this surface is 
immersed into the Cartesian volume grid. The Cartesian cells are 
identified as solid-cells or fluid-cells depending on whether they 
are inside or outside the immersed body. The method proceeds 
by identifying the ghost cells which are solid cells which have at 
least one fluid cell neighbor (Figure 6). A “probe” is then extended 
from one of these ghost cells onto an “image-point” inside the fluid 
such that it intersects normal to the immersed boundary and the 
boundary intercept is midway between the ghost-node and the 
image-point. Next, a bi-linear interpolation (tri-linear in three-
dimensional) is used to express the value of a generic flow variable 
at the image-point in terms of the surrounding nodes. Following 
this, the value of the variable at the ghost-cell is computed by using 
a central-difference approximation along the normal probe such 
that the prescribed boundary condition at the boundary intercept 

Figure 6 | Schematic describing ghost-cell methodology (adapted from Zheng et al., 2010).
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interaction simulation based on a simplified geometric model. This 
simplified simulation mainly serves two purposes: (a) it is used 
to quickly explore difficulties and problems associated with this 
approach and find the proper boundary conditions and parameters 
in the simulation setup; (b) even with simplified geometric models, 
this simulation has much higher fidelity than the existing models, 
and it can be used to gain new insight of biophysics of phonation.

In our simplified model, the air lumen is assumed to be a 
12 cm × 2.0 cm × 1.5 cm straight rectangular duct. There is no longi-
tudinal variation in both VFs and false vocals surfaces and their cross-
sectional profiles are extracted from one coronal view of the CT scan 
(shown in Figure 7A left up figure). As shown in Figure 8, the VFs 
are located from x = 2.16–3.16 cm in the stream-wise direction which 
results in a location of the glottal exit exactly at x = 3 cm. The pressure 
is prescribed at the inlet and exit and the pressure drop is kept at a 
typical value of 1 kPa (Titze, 1994). The Hirano’s (1977) three-layer 
histology is used to model the VF internal anatomical structure. The 
configurations of these layers are adopted from Luo et al. (2008) and 
material properties of these layers are given in Table 1. The Reynolds 
number based on the peak flux averaged velocity, maximum glottal 
gap width, and kinematic viscosity is about 210.

shown to be quite effective by Mittal et al. (2001, 2003) and Choi 
et al. (2009) among others. The subgrid scale (SGS) model used in 
the current LES employs the dynamic global coefficient form of the 
algebraic eddy viscosity model introduced by Vreman (2004). This 
model is implemented within our Cartesian grid based IBM and has 
been validated against canonical flows including turbulent channel 
flow and flow past a circular cylinder (Ramakrishnan et al., 2009).

A high spatial and temporal resolution and long integration times 
are usually required for the patient-specific simulations to provide 
an accurate boundary representation and the meaningful statisti-
cal data from multiple phonatory cycles. Such three-dimensional 
simulations are extremely challenging due to the computational 
expense involved and this has severely limited the deployment of 
three-dimensional laryngeal computational models. To alleviate this 
computational expense and reduce reasonable turn-around time 
for these simulations, two computational techniques – multi-grid 
method and parallelization, are employed. A geometric multi-grid 
method is employed to solve pressure Poisson equation. In this 
method, the sharp-interface immersed boundaries are represented 
only at finest grid level. At the coarse grid levels, the interfaces are 
represented through the volume fraction of coarse cells without 
boundary reconstruction. This multi-grid method has shown a 
performance that scales with N1.17 where N is the number of grid 
points. An additive Schwartz type domain decomposition technique 
is used to parallelize the three-dimensional Cartesian grid immersed 
boundary flow solver. Parallel performance benchmarks indicate 
reasonable (60%) scale up on a variety of platforms for CPU-counts 
up to 128 for typical grids employed in the phonation models.

Phonation in ct BaSed modelS
The accuracy of the prediction with phonatory computer models 
usually relies on the level of realism injected in these models, and 
one of the key requirements for the development of assessment and 
surgical management tool for laryngeal pathologies is the patient-
specific modeling. To conduct a patient-specific study, we require 
a realistic geometric reconstruction of both the airway lumen and 
the VFs, as well as a capability for performing a high-fidelity simu-
lation of flow–tissue interaction. In the current study, a thin-slice 
CT scan of the larynx (0.5 mm plane-to-plane resolution) has been 
performed on a 30-year-old male subject with normal (undiseased) 
VFs at The George Washington University Hospital. To be able to 
assess the VF surfaces, the subject was asked to phonate during the 
scan and the scan covers the subject’s entire larynx. This thin-slice 
CT scan provides sufficient spatial resolution to accurately recon-
struct the anatomical structure, such as VFs, false VF, etc. Both the 
surface of laryngeal airway lumen and VFs are extracted from this 
CT scan using a commercial software, “Mimics.” Figure 7A shows 
three views with airway lumen highlighted and bottom right figure 
is the extracted three-dimensional geometry of the lumen. The 
three-dimensional VF surfaces, shown in Figure 7B, are recon-
structed using the same dataset and software. This results in an 
approximate 1.0 cm (thickness) × 1.0 cm (depth) × 2.0 cm (length) 
dimension of VFs.

Conducting high-fidelity flow–structure interaction simula-
tions on the above complex geometric models are usually compu-
tationally expensive. Thus, as the first step toward patient-specific 
modeling, we have conducted a three-dimensional flow–structure 

Figure 7 | (A) High-resolution CT scan of normal male human larynx. Figure 
shows three views with airway lumen highlighted and bottom right figure 
shows the extracted three-dimensional geometry of the lumen. (B) Computer 
reconstructed vocal folds based on thin-slice CT scan.
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rate and phase-averaged peak glottal flow rate are 121 and 298 ml/s 
respectively, which fall within these typical ranges. More details on 
the modeling and computational methodology used in this section 
are described in Zheng et al. (2010).

Figure 9C shows the VF vibration pattern captured in the supe-
rior views of the VFs at three different time instants within one 
vibration cycle, which matches the vibration pattern captured using 
high-speed video recordings during phonation. The projected 
glottal area can be computed by integrating the smallest distance 
between the two VFs along the longitudinal direction and Figure 9B 
shows the time variation of the projected glottal area. According 
to the modified version of van den Berg’s formula (van den Berg, 
1958; Titze, 1992; Hertegard and Gauffin, 1995), the peak projected 
glottal area can be estimated based on subglottal pressure and peak 
glottal flow rate using following equation.

 
A

U

P
k= 1

2
ρ  (3)

where A is the peak projected glottal area in cm2, U is glottal flow 
rate in ml/s, P is subglottal pressure in cm water, σ is air den-
sity in g/cm3, k is empirical coefficient varied between 0.9 and 1.5 
depending on glottal shape and flow. The estimation of glottal area 
based on the current subglottal pressure and glottal flow rate ranges 
from 0.08 to 0.12 cm2 and the phase-averaged peak glottal area is 
0.108 cm2. The fundamental phonation frequency computed using 
the glottal flow rate is 243 Hz, which leads to a 4.2-ms vibration 
period. It should be noted that this frequency is relatively high, 
but still within the human phonation frequency range from 60 to 
260 Hz (Zemlin, 1998).

One of the primary merits of a computer-aided surgery/assess-
ment tool is that it allows us to examine clinically relevant quanti-
ties and features that cannot be assessed by traditional diagnostic 
tools. For example, excessive and prolonged mechanical stresses are 
usually believed to be responsible for VF fatigue and damage. In 
extreme cases, such stress conditions cause laryngeal pathologies 
such as VF nodules (Figure 3B). Thus, accurate computation of 
the stress inside the VFs can help shed insights into such laryngeal 
pathologies. The contours of mechanical stresses at the longitudinal 
center plane of VF (z = 0.75 cm) at two extreme positions during 
one phonatory cycle are shown in Figure 10. Since the medial in-
plane has been enforced, we only compute two normal stresses 
σ

xx
, σ

yy
, and the shear stress τ

xy
. Figure 10A shows the contours of 

three stress components (σ
xx

, σ
yy

, and τ
xy

) at the beginning of the 
opening phase. During this phase, the subglottal pressure pushes 

This simulation employs a non-uniform 256 × 128 × 64 Cartesian 
grid for the flow solver and a 58,427 tetrahedral element grid for the 
solid solver. The simulation has been carried out for 21 phonatory 
cycles in order to extract meaningful statistics. Figure 9A shows the 
time variation of glottal flow rate. The typical mean glottal flow 
rate measured in the experiments ranges from 110 to 220 ml/s 
(Zemlin, 1998) and the peak glottal flow rate ranges 200–580 ml/s 
(Hertegard et al., 1992). In the current study, the mean glottal flow 

Figure 8 | Computational domain and computed flow structures in a 
three-dimensional model of the larynx.

Table 1 | Material properties for three layers of the vocal fold model 

based on Alipour et al. (2000) and Cook et al. (2008).

 Property
 Value

 Cover Ligament Muscle

Transverse Young’s modulus (kPa) 2.0 3.3 4.0

Longitudinal shear modulus (kPa) 10 40 12

Longitudinal Young’s modulus (kPa) 20140 33060 39900

Transverse Poisson’s ratio 0.9 0.9 0.9
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biomechanical process of phonation. Ongoing extension of the 
current work is focused on simulating phonation in the CT based, 
patient-specific laryngeal models.

direct comPutation of Voiced Sound
The surgeon makes fine adjustments to the implant shape and 
size intra-operatively based on feedback obtained by listening to 
the voiced sound of the patient. Given the important role of this 
feedback mechanism on the success of the surgical procedure, it 
is useful for the computational model to be able to predict the 
sound associated with various laryngeal models. We have in fact 
introduced such a capability into our computational model and the 
key features of this capability are described in this section.

It is known that the dominant source of voiced sound is the flow 
rate fluctuation in the vocal tract caused by the vibration of VFs in 
the larynx (Titze, 1994). The glottal flow rate fluctuation generates 
monopole sound in conjunction with the acoustic response of the 
vocal tract, and this monopole sound is the dominant component 
of voiced sound (Stevens, 1998). The typical human vocal tract 

VFs to gradually open from beneath. Thus, compressive stress is 
observed at the inferior part of VFs, while the maximum compres-
sive stress occurs at the inferior root. Due to the preservation of the 
overall volume of VFs, there is a high level of tensile stress (positive 
σ

xx
 and σ

yy
) at the superior part. The large shear stress observed 

at the superior tip of VFs results from the traveling mucosal wave 
along the VF surface. Later, when the VFs are maximally opened 
(Figure 10B), compressive stress is still found at the inferior part of 
the VFs while tensile stress occurs on the surface of the glottis due to 
a negative intraglottal pressure. The shear stress at this stage is much 
smaller (50%) compared to the beginning of the opening stage.

This is the first time that the high-fidelity three-dimensional 
flow–structure interaction simulation has been carried out to study 
the glottal flow and VF vibration during phonation. The key charac-
teristics of the computed results, such as glottal flow rate, vibration 
pattern, and peak glottal area are found to be within the normal 
physiological range. Mechanical stresses have also been computed 
to gain insights into the laryngeal pathologies. This simulation 
has also proved that current approach is amenable for studying 

Figure 9 | (A) Time variation of glottal flow rate, (B) time variation of projected glottal area, (C) Computed VF deformation (top) which can be directly compared to 
high-speed video recordings (bottom).

Figure 10 | Stress contours (kPa) on the center plane (z = 0.75 cm) of the vocal folds during the opening and closing phase of the vibration cycle (A) 
Beginning of the opening phase (B) Maximal opening.
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so as to pose a serious challenge to any conventional CAA method. 
In order to handle this complex geometry, a high-order IBM (Seo 
and Mittal, 2011) has been applied to the present acoustic solver.

The IBM used for the acoustic solver is the sharp-interface 
method based on the ghost-cell approach (Mittal et al., 2008). The 
ghost cells are determined using the same procedure used for the 
FSI flow solver shown in the above section. The wall boundary 
condition is imposed by specifying an appropriate value at the 
ghost point. In the present high-order IBM (Seo and Mittal, 2011) 
for the acoustic solver, the value at the ghost cell is determined 
by satisfying the boundary condition at the body-intercept point 
using high-order polynomials. The coefficients of the polynomials 
are determined by a weighted least-squares error minimization 
and the details of the procedure can be found in Seo and Mittal 
(2011). This method allows a high level of flexibility with respect 
to the choice of the stencil points. One essentially needs to find a 
sufficient number of fluid points around the body-intercept point 
to accomplish the interpolation.

In the present model problem, the diameter of the trachea in 
the larynx, D = 0.02 m (Figure 11A) is chosen as the character-
istics length scale and the outer domain boundaries are extended 
to 100D. A Cartesian grid with total 1024 × 1024 grid points is 
used with the minimum grid spacing, ∆x = 0.02D. The vocal 
tract is modeled from the end of VFs and a glottal flow rate is 
prescribed as an inflow velocity boundary condition at the lower 
end of the vocal tract which coincides with the glottal outlet. 
The glottal gap size is assumed to be d = 0.1D and velocity inlet 
boundary condition is only applied over this glottal gap in order 
to model the glottal. A parabolic profile is used for the veloc-
ity distribution and the maximum jet velocity is V

max
 = 34 m/s 

(Zheng et al., 2009). Thus, the flow Mach number based on a 
maximum jet velocity is M = V

max
/c = 0.1 (c ≈ 340 m/s for air). 

In the present case, the glottal flow rate input is modeled with 
the Liljencrants–Fant (LF) model (Fant, 1986). Note that the 
glottal flow rate obtained by the FSI simulations presented in the 
above sections can also be used as the input. The fundamental 
frequency, f

0
 = 1/T

0
 is set to 125(Hz) which is a typical value for 

an adult male’s voice.

system is shown in Figure 11A. The acoustic system of the vocal 
tract can be considered as an open-ended duct and acts as a resona-
tor for acoustic waves. In reality, the resonance frequencies of vocal 
tract system are affected by the cross-sectional area variation along 
the vocal tract, the radiation impedance at the mouth (open-end), 
and other coupling effects. The resulting resonance frequencies 
constitute the formant frequencies of voiced sound (Stevens, 1998). 
Therefore, the shape of vocal tract has a significant effect on the 
actual voiced sound generation. There have been several compu-
tational aero-acoustics (CAA) studies of human phonation (Zhao 
et al., 2002; Bae and Moon, 2008; Link et al., 2009). However, all 
of these studies have focused on the VF vibration and laryngeal 
flow, and the vocal tract is assumed to be a simple, infinitely long 
duct. In the present study, we directly compute the voiced sound 
generation with realistic vocal tract geometry for a given glottal 
flow rate input and also consider the propagation of this sound 
into the ambient region outside the subject’s mouth.

      The typical Mach numbers of flow through vocal tract is about 
M = 0.1 and at this low Mach number, solving the full compress-
ible Navier–Stokes equations to simultaneously resolve the flow 
and acoustic field is usually very costly. In the current approach, 
the computation of voiced sound generation is performed using a 
hydrodynamic/acoustic splitting method (Seo and Moon, 2006). 
In this hybrid approach, the flow at low Mach numbers is approxi-
mated as an incompressible flow and the flow field is computed 
efficiently with the incompressible flow solver described in previous 
section. The acoustic field is then modeled by using a perturbed 
compressible equation with the computed flow field data. In this 
study we employ the linearized perturbed compressible equations 
(LPCE) proposed by Seo and Moon (2006). The LPCE resolves 
sound generation and propagation for the base incompressible flow 
field as accurately as the acoustical DNS with the full compressible 
Navier–Stokes equations. This hybrid approach has been validated 
comprehensively for canonical problems (Seo and Moon, 2006, 
2007; Moon et al., 2010) at low Mach numbers. The geometries 
of human head and vocal tract representing the sagittal symmetry 
plane considered in this study are shown in Figure 11A. Although 
the geometry has been simplified significantly, it is complex enough 

Figure 11 | (A) Typical human vocal tract system (B) flow field inside the vocal tract: instantaneous vorticity contours. (C) propagation of generated voiced sound; 
instantaneous fluctuating pressure contours (Seo and Mittal, 2011).
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acoustic energy dissipation can be resolved without assumption or 
modeling. Moreover, the effect of the base flow can also be included 
in order to extract the finer features of the voiced sound. The directly 
computed TF would be quite helpful in the study of glottal source by 
the inverse filtering of voice sound signal (Plumpe et al., 1999). The 
present method would be a reliable prediction tool when used for 
actual three-dimensional geometry obtained with CT and ultrasound 
imaging (Stone, 1991) and also can be dynamically coupled with the 
VF motion and laryngeal flow for the real voiced sound computation. 
The computed sound can be output in an audio format allowing the 
surgeon to actually listen to this sound; this significantly improves 
the usability of this software as a surgical modeling tool.

outStanding iSSueS, limitationS, and uncertaintieS in the 
modeling
In this section, we discuss the key outstanding issues as well as the 
limitations and uncertainties in phonation modeling.

Vocal fold boundary condition
Nearly all the past numerical simulations of VF vibration have uti-
lized rigid boundary conditions at lateral, anterior and posterior sur-
faces, and traction-free boundary condition at remaining surfaces. 
(Berry and Titze, 1996; Alipour et al., 2000; Cook and Mongeau, 
2007; Tao and Jiang, 2007; Cook et al., 2008, 2009). Although they 
are not strictly consistent with the real laryngeal conditions, such 
assumptions reduce the complexity of the model while retaining 
the key features of VF dynamics. Hunter et al. (2004) constructed a 
model with more complicated boundary conditions and constraints 
in an attempt to model the movement of the arytenoid cartilage, 
thyroid cartilage, and cricoarytenoid joint to investigate VF postur-
ing. While their model represented the anatomic structure of the 
larynx more precisely, this may not be necessary in the modeling of 
phonation since the cartilaginous components of the VF processes 
are unlikely to have much movement after posturing is complete.

The flow field is computed with the immersed boundary flow 
solver for about 40 glottal cycles (40T

0
). With the fluctuating inlet 

flow rate, a pulsatile jet flow is developed at the vocal tract inlet 
and the instantaneous vorticity field is shown in Figure 11B. The 
acoustic field computed with LPCE is shown in Figure 11C. One 
can see the generation of monopole sound at the end of mouth and 
its propagation into the surrounding region. The sound pressure 
level (SPL) spectrum at 30D (about 60 cm) from the end of mouth 
is shown in Figure 12A, and its spectral peak is observed at the third 
harmonic of the fundamental frequency. As mentioned above, this 
is due to the resonance effect of the vocal tract system. The length 
of the vocal tract system in the current model is about l = 12.5D. If 
the vocal tract is assumed as a simple one-dimensional duct the first 
resonance frequency is estimated as F

1
 = 2.72f

0
 which is about 340 Hz. 

The estimated F
1
 is therefore reasonably close to the third harmonic 

of the fundamental frequency which confirms our hypothesis.
In the “source-filter mechanism” widely used in the analysis of 

voiced sound studies (Stevens, 1998), the voiced sound signal is 
related to the glottal source (glottal flow rate or its time derivative) 
using a filter or transfer function (TF) which represents the acous-
tic response of the vocal tract. This TF can be computed with the 
present results. In the frequency domain, the TF can be estimated as

 
TF( ) ( )/ ( )f p f E f= ′∆  (4)

where E is the time rate of change of the glottal flow rate. The spec-
trum of time derivative of glottal flow rate, E is plotted along with 
the SPL spectrum of acoustic signal at 30D from the end of mouth 
in Figure 12A. The TF is computed by Eq. 4 at every harmonic of 
the fundamental frequency, f = nf

0
 and plotted in Figure 12B. The 

TF represents the acoustic response of the vocal tract system and one 
can clearly see the formant frequencies (Stevens, 1998) of the current 
vocal tract system. The advantage of this direct  computation of TF is 
that all the effects such as area variation, radiation impedance, and 

Figure 12 | (A) Sound pressure level (SPL) spectrum at 30D from the end of mouth. Dash-dot line: Envelope of the spectrum of the time derivative of glottal flow 
rate. (B) Transfer function computed by Eq. 4. The values are computed at the each harmonics of fundamental frequency and the continuous curve is made by 
parametric splines (Seo and Mittal, 2011).
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properties on VF eigenstructure (Berry and Titze, 1996; Cook et al., 
2009). Cook et al. (2009), in particular, the effect of tissue  material 
property uncertainty on VF dynamics have been investigated thor-
oughly over the full range of documented values.

Vocal fold internal structure
The internal geometry of VFs varies from individual to individual 
depending on factors such as gender, age, and health, and this 
variation could significantly affect the speech production (Hirano 
et al., 1981). However, due to the limitation of current imaging 
techniques, the inner structure of patient’s VFs cannot be identi-
fied. Thus, there is a need to assess the sensitivity of VF dynamics 
to the internal structure in order to quantify the uncertainty this 
produces in the model prediction. Here we summarize an eigen-
mode based assessment of this uncertainty. A three-dimensional, 
three-layer VF model without longitudinal variation is employed 
as the baseline configuration, as shown in Figure 13A. The overall 
geometry and size are based on the widely used M5 profile (Scherer 

Vocal fold material properties
The various layers of human VF have different material  properties. 
The cover layer is soft and pliable, playing an important role in 
mucosal-wave propagation (Titze et al., 1993). The ligament is 
stiffest among three layers, known to be critical in high pitched 
singing (van den Berg, 1958), and the body layer is the bulk of 
VFs, important for fundamental frequency and threshold pressure 
regulation (Zhang et al., 2007; Zhang, 2010). Knowledge of the 
material properties of each layer is essential for accurate numeri-
cal modeling of human phonation. Changes in material proper-
ties can lead to behavior such as chaotic vibration or biphonation 
(Berry et al., 1994; Tao and Jiang, 2006). In the last 30 years, much 
effort has been undertaken to parameterize the material proper-
ties of VF tissue including in vitro measurement of canine larynx 
and in vivo measurement of human larynges (Perlman et al., 1984; 
Perlman, 1985; Perlman and Titze, 1985; Perlman and Durham, 
1987; Goodyer et al., 2006, 2007a,b, 2009). There have been two 
comprehensive studies that have examined the effect of material 

Figure 13 | (A) Three-dimensional vocal fold model and mid-coronal views of 
the first four eigenmodes. (a) Geometry model; (b) Mode-1; (c) Mode-2; 
(d) Mode-3; (e) Mode-4. (B) Schematics of inner structure of variant vocal fold 

models employed in the current study. (a) Hirano’s model; (b) two-layer model; 
(c) medial ligament model. (C) Volume mesh of the vocal fold employed in 
simulations. 
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et al., 2001) and the material of each layer is assumed to be linear 
elastic,  transverse isotropic and nearly incompressible. The  material 
 properties for each layer are taken from (Alipour et al., 2000) and 
listed in Table 1. The thickness of cover and ligament layer is 0.33 
and 1.11 mm respectively. In the current study, the VF is discre-
tized by about 23,000 tetrahedral elements with higher grid density 
around cover and ligament to resolve the subtle variation in layer 
thickness, as shown in Figure 13C. Fixed boundary conditions are 
imposed on the lateral, anterior, and posterior surfaces, while trac-
tion-free boundary conditions are imposed on remaining surfaces. 
Further details of this study are given in Xue et al. under review.

The mid-coronal view of two extreme phases of the first four 
eigenmodes is shown in Figures 13Ab–e. The first eigenmode 
(Mode-1) reveals a strong vertical motion primarily on the supe-
rior and inferior surfaces. Mode-2 presents a lateral motion with a 
slight phase difference between the inferior and superior surfaces. 
Mode-3 is a vertical motion of the whole VF. Mode-4 presents a 
more apparent phase difference between the superior and inferior 
surface, which is believed as the most important mode contributing 
to the formation of the distinct convergent–divergent glottal shape.

   The sensitivity study is first performed on three cases with 
relatively large scale structural variations. One case considers the 
longitudinal variation of the thicknesses of inner layers. The thick-
ness of each layer is based on Hirano’s measurement (Hirano et al., 
1981) on human VF, and we denote this model as the “Hirano’s 
model” (Figures 13Ba). Two other distinct models, as shown in 
Figures 13Bb,c, are the “two-layer model,” in which ligament layer 
is assumed to be absent (Story and Titze, 1995; Cook et al., 2008, 
2009), and the “medial ligament” model where the ligament is 
limited to a small region near the median (Alipour et al., 2000; 
Tao and Jiang, 2007). The first four eigenmodes of each model are 
computed and compared to corresponding baseline modes. The 
result indicates that VF vibratory modes are quite insensitive to the 
longitudinal variation of thickness of inner layers as well as the vari-
ation of ligament length. However, complete removal of ligament 
layer (the two-layer model) generates quite different modal shapes 
from other three models, which suggests that a certain level of vari-
ation in layer thickness tends to significantly change modal shapes.

   In order to further explore the effect of thickness variation, we 
have examined the dependence of eigenmodes on the thicknesses 
of the ligament and cover layers. The thicknesses of ligament and 
cover layers are systematically and individually changed in a range 
of 50–200 and 0–200% respectively about baseline values. For these 
cases, we find noticeable differences in the eigenmodes. Interestingly, 
the comparison of the eigenmodes of each model with all the baseline 
modes indicates that many of these changes are associated with a 
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concluSion
Simulation-assisted therapies and diagnosis are around the prover-
bial corner. In the arena of phonosurgery, current trends in high-
performance computing (Dongarra, 2004) indicate that rapid, even 
real-time modeling of phonation in patient-specific configurations 
will be possible by the end of this decade and this has significant 
implications for the management and diagnosis of voice patholo-
gies. While significant challenges need to be overcome in areas 
of tissue characterization as well as the development of tools for 
automated translation of imaging data into biomechanical models, 
the approach described here takes a significant step in realizing a 
future where computer models will serve as an essential tool in 
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acknowledgmentS
The project described was supported by Grant Number ROlDC007125 
from the National Institute on Deafness and Other Communication 
Disorders (NIDCD). The content is solely the responsibility of the 
authors and does not necessarily represent the official views of the 
NIDCD or the NIH. This research was also supported by the National 
Science Foundation through TeraGrid resources provided by the 
National Institute of Computational Science under grant number 
TG-CTS100002. We would also like to thank Professor Thao D. 
Nguyen for introducing solid dynamics solver “Tahoe” to us and 
for helping us couple this open source code to our CFD code.

Mittal et al. Simulation tool for vocal fold paralysis

www.frontiersin.org May 2011 | Volume 2 | Article 19 | 13

http://www.frontiersin.org/
http://www.frontiersin.org/computational_physiology_and_medicine/archive


fold tissue. J. Speech Hear. Res. 27, 
212–219.

Piomelli, U. (1999). Large-eddy simula-
tion: achievements and challenges. 
Prog. Aerosp. Sci. 35, 335–362.

Plumpe, M. D., Quatieri, T. F., and 
Reynolds, D. A. (1999). Modeling of 
the glottal flow derivative waveform 
with application to speaker identifica-
tion. IEEE Trans. Speech Audio Proc. 
7, 569–586.

Ramakrishnan, S., Zheng, L., Mittal, R., 
Najjar, F., Lauder, G., and Hedrick, 
T. (2009). “Large eddy simulation of 
flows with complex moving bounda-
ries: application to flying and swim-
ming in animals,” in 39th AIAA Fluid 
Dynamics Conference, AIAA, San 
Antonio, TX, 2009-3976.

Resse, S., and Govindjee, S. (1998). A 
theory of finite viscoelasticity and 
numerical aspects. Int. J. Solids Struct. 
35, 3455–3482.

Rosa, M. O., Pereira, J. C., Grellet, M., 
and Alwan, A. (2003). A contribution 
to simulating a three-dimensional 
larynx model using the finite ele-
ment method. J. Acoust. Soc. Am. 114, 
2893–2905.

Scherer, R. C., Shinwari, D., Witt, K. J., 
Zhang, C., Kucinschi, R., and Afjeh, A. 
A. (2001). Intraglottal pressure profiles 
for a symmetric and oblique glottis 
with a divergence angle of 10 degrees. 
J. Acoust. Soc. Am. 109, 1616–1630.

Seo, J. H., and Mittal, R. (2011). A high-
order immersed boundary method 
for acoustic wave scattering and low-
Mach number flow-induced sound in 
complex geometries. J. Comput. Phys. 
230, 1000–1019.

Seo, J. H., and Moon, Y. J. (2006). 
Linearized perturbed compress-
ible equations for low Mach number 
aeroacoustics. J. Comput. Phys. 218, 
702–719.

Seo, J. H., and Moon, Y. J. (2007). 
Aerodynamic noise prediction for 
long-span bodies. J. Sound Vib. 306, 
564–579.

Stevens, K. N. (1998). Acoustic Phonetics. 
Cambridge: The MIT Press.

Stone, M. (1991). Imaging the tongue 
and vocal tract. J. Disord. Commun. 
26, 11–23.

Story, B. H., and Titze, I. R. (1995). Voice 
simulation with a body-cover model 
of the vocal folds. J. Acoust. Soc. Am. 
97, 1249–1259.

Tao, C., and Jiang, J. J. (2006). Anterior–
posterior biphonation in a finite ele-
ment model of vocal fold vibration. J. 
Acoust. Soc. Am. 120, 1570–1577.

Tao, C., and Jiang, J. J. (2007). Mechanical 
stress during phonation in a self-oscil-
lating finite-element vocal fold model. 
J. Biomech. 41, 2191–2198.

Luo, H., Mittal, R., Zheng, X., 
Bielamowicz, S. A., Walsh, R. J., and 
Hahn, J. K. (2008). An immersed-
boundary method for flow–structure 
interaction in biological systems with 
application to phonation. J. Comput. 
Phys. 227, 9303–9332.

Min, Y. B., Titze, I. R., and Alipour, F. 
(1995). Stress–strain response of the 
human vocal ligament. Ann. Otol. 
Rhinol. Laryngol. 104, 563–569.

Mittal, R. (2003). “Computational mod-
eling in bio-hydrodynamics: trends, 
challenges and recent advances,” in 
13th International Symposium on 
Unmanned Untethered Submersible 
Technology (UUST) New England 
Center, Durham, New Hampshire, 
USA.

Mittal, R., Dong, H., Bozkurttas, M., 
Najjar, F. M., Vargas, A., and von 
Loebbecke, A. (2008). A versatile 
sharp interface immersed boundary 
method for incompressible flows with 
complex boundaries. J. Comput. Phys. 
227, 4825–2852.

Mittal, R., and Iaccarino, G. (2005). 
Immersed boundary methods. Annu. 
Rev. Fluid Mech. 37, 239–261.

Mittal, R., Simmons, S. P., and Najjar, F. 
(2003). Numerical study of pulsatile 
flow in a constricted channel. J. Fluid 
Mech. 485, 337–378.

Mittal, R., Simmons. S. P., and Udaykumar, 
H. S. (2001). Application of large-eddy 
simulation to the study of pulsatile 
flow in a modeled arterial stenosis. J. 
Biomech. Eng. 123, 325–332.

Moin, P., and Mahesh, K. (1998). Direct 
numerical simulation: a tool in turbu-
lence research. Annu. Rev. Fluid Mech. 
30, 539–578.

Moon, Y. J., Seo, J. H., Bae, Y. M., Roger, M., 
and Becker, S. (2010). A hybrid predic-
tion for low-subsonic turbulent flow 
noise. Comput. Fluids 39, 1125–1135.

Perlman, A. L. (1985). A Technique for 
Measuring the Elastic Properties of 
Vocal Fold Tissue. Dissertation, The 
University of Iowa, Iowa City, IA.

Perlman, A. L., and Durham, P. L. (1987). 
“In vitro studies of vocal fold mucosa 
during isometric conditions,” in 
Laryngeal Function in Phonation and 
Respiration, eds T. Baer, C. Sasaki, and 
K. Harris (Boston, MA: Little, Brown 
and Co), 291–303.

Perlman, A. L., and Titze, I. R. (1985). 
“Measurement of viscoelastic prop-
erties in live tissue,” in Vocal Fold 
Physiology: Biomechanics, Acoustics 
and Phonatory Control, eds I. R. Titze 
and R. C. Scherer (Denver, CO: Denver 
Center for the Performing Arts), 
273–281.

Perlman, A. L., Titze, I. R., and Cooper, 
D. S. (1984). Elasticity of canine vocal 

and temporal resolution. J. Acoust. Soc. 
Am. 113, 994–1000.

Hertegard, S., and Gauffin, J. (1995). 
Glottal area and vibratory patterns 
studied with simultaneous strobo-
scopy, flow glottography, and elec-
troglottography. J. Speech Hear. Res. 
30, 85–100.

Hertegard, S., Gauffin, J., and Karlsson, 
I. (1992). Physiological correlates of 
the inversed filtered flow waveform. 
J. Voice 6, 224–234.

Hirano, M. (1977). “Structure and vibra-
tory behavior of the vocal folds,” in 
Dynamic Aspect of Speech Production, 
eds M. Sawashima and F. S. Cooper 
(Tokyo: University of Tokyo Press), 
13–30.

Hirano, M., Kikita, Y., Ohmaru, K., 
and Kurita, S. (1982). Structure and 
mechanical properties of vocal fold. 
Speech Lang. 7, 271–297.

Hirano, M., Kurita, S., and Nakashima, 
T. (1981). “The structure of the vocal 
folds,” in Vocal Fold Physiology eds K. 
N. Stevens and M. Hirano (Tokyo: 
University of Tokyo Press), 33–41.

Hunter, E. J., Titze, I. R., and Alipour, F. 
(2004). A three dimensional model 
of vocal fold abduction/adduction. J. 
Acoust. Soc. Am. 115, 1747–1759.

Ishizaka, K., and Flanagan, J. L. (1972). 
Synthesis of voiced sounds from 
a two-mass model of the vocal 
cords. Bell Syst. Technol. J. 51, 
1233–1268.

Isshiki, N., Morita, H., and Okamura, H. 
(1974). Thyroplasty as a new phono-
surgical technique. Acta Otolaryngol. 
78, 451–457.

Jiang, J. J. Zhang, Y., and Stern, J. (2001). 
Modeling of chaotic vibrations in 
symmetric vocal folds. J. Acoust. Soc. 
Am. 110, 2120–2128.

Kob, M., Alhauser, N., and Reiter, U. 
(1999). “Time-Domain Model of 
The Singing Voice,” in Proceedings of 
the 2nd COST G-6 Workshop on Digital 
Audio Effects (DAFx99), NTNU, 
Trondheim.

LaMar, M. D., Qi, Y., and Xin, J. (2003). 
Modeling vocal fold motion with 
a hydrodynamic semicontinuum 
model. J. Acoust. Soc. Am. 114, 
445–464.

Lin, C.-L., Tawhai, M. H., McLennan, 
G., and Hoffman, E. A. (2007). 
Characteristics of the turbulent laryn-
geal jet and its effect on airflow in the 
human intra-thoracic airways. Respir. 
Physiol. Neurobiol. 157, 295–309.

Link, G., Kaltenbacher, M., Breuer, M., and 
Dollinger, M. (2009). A 2D finite-ele-
ment scheme for fluid–solid–acous-
tic interaction and its application to 
human phonation. Comput. Methods 
Appl. Mech. Eng. 198, 3321–3334.

Bielamowicz, S. (2004). Perspectives 
on medialization laryngoplasty. 
Otolaryngol. Clin. North Am. 37, 
139–160.

Chan, R. W., and Titze, I. R. (1999). 
Viscoelastic shear properties of human 
vocal fold mucosa: measurement 
methodology and empirical results. J. 
Acoust. Soc. Am. 106, 2008–2021.

Choi, J., Tawhai, M. H., Hoffman, E. A., 
and Lin, C.-L. (2009). On intra- and 
intersubject variabilities of airflow 
in the human lungs. Phys. Fluids 21, 
101901.

Cook, D. D., and Mongeau, L. (2007). 
Sensitivity of a continuum vocal fold 
model to geometric parameters, con-
straints and boundary conditions. J. 
Acoust. Soc. Am. 121, 2247–2253.

Cook, D. D., Nauman, E., and Mongeau, 
L. (2008). Reducing the number of 
vocal fold mechanical tissue proper-
ties: evaluation of the incompress-
ibility and planar displacement 
assumptions. J. Acoust. Soc. Am. 124, 
3888–3896.

Cook, D. D., Nauman, E., and Mongeau, 
L. (2009). Ranking vocal fold model 
parameters by their influence on 
modal frequencies. J. Acoust. Soc. Am. 
126, 2002–2010.

deVries, M. P. D., Schutte, H. K., Veldman, 
A. E. P., and Verkerke, G. K. (2002). 
Glottal flow through a two-mass 
model: comparison of Navier–Stokes 
solutions with simplified models. J. 
Acoust. Soc. Am. 111, 1847–1853.

Dongarra, J. (2004). Trends in high per-
formance computing. Comput. J. 47, 
399–403.

Fant, G. (1986). Glottal flow: models and 
interaction. J. Phonet. 14, 393–399.

Goodyer, E., Hemmerich, S., Muller, F., 
Kobler, J., and Hess, M. (2007a). The 
shear modulus of the human vocal 
fold, preliminary results from 20 lar-
ynxes. Eur. Arch. Otorhinolaryngol. 
264, 45–50.

Goodyer, E., Muller, F., Licht, A., and Hess, 
M. (2007b). In vivo measurement of 
the shear modulus of the human 
vocal fold – interim results from 8 
patients. Eur. Arch. Otorhinolaryngol. 
264, 631–635.

Goodyer, E., Muller, F., Bramer, B. 
Chauhan, D., and Hess, M. (2006). 
In vivo measurement of the elastic 
properties of the human vocal fold. 
Eur. Arch. Otorhinolaryngol. 263, 
445–462.

Goodyer, E., Selham, N. V., Choi, S. H., 
Yamashita, M., and Dailey, S. H. 
(2009). The shear modulus of the 
human vocal fold in a transverse direc-
tion. J. Voice 23, 151–155.

Gunter, H. (2003). A mechanical model 
of vocal fold collision with high spatial 

Mittal et al. Simulation tool for vocal fold paralysis

Frontiers in Physiology | Computational Physiology and Medicine  May 2011 | Volume 2 | Article 19 | 14

http://www.frontiersin.org/computational_physiology_and_medicine/
http://www.frontiersin.org/computational_physiology_and_medicine/archive


or financial relationships that could be 
construed as a potential conflict of interest.

Received: 02 February 2011; paper pend-
ing published: 12 March 2011; accepted: 13 
April 2011; published online: 02 May 2011.
Citation: Mittal R, Zheng X, Bhardwaj R, 
Seo JH, Xue Q and Bielamowicz S (2011) 
Toward a simulation-based tool for the 
treatment of vocal fold paralysis. Front. 
Physio. 2:19. doi: 10.3389/fphys.2011.00019
This article was submitted to Frontiers in 
Computational Physiology and Medicine, a 
specialty of Frontiers in Physiology.
Copyright © 2011 Mittal, Zheng, Bhardwaj, 
Seo, Xue and Bielamowicz. This is an open-
access article subject to a non-exclusive 
license between the authors and Frontiers 
Media SA, which permits use, distribution 
and reproduction in other forums, provided 
the original authors and source are credited 
and other Frontiers conditions are com-
plied with.

Zhao, W., Zhang, C., Frankel, S. H., and 
Mongeau, L. (2002). Computational 
aeroacoustics of phonation part 1: 
computational methods and sound 
generation mechanisms. J. Acoust. 
Soc. Am. 112, 2134–2146.

Zheng, X., Bielamowicz, S., Luo, H., and 
Mittal, R. (2009). Computational 
study of the effect of false vocal folds 
on glottal flow and vocal fold vibration 
during phonation. Ann. Biomed. Eng. 
37, 625–642.

Zheng, X., Xue, Q., Luo, H., Mittal, 
R., and Bielamowicz, S. (2010). A 
coupled sharp-interface immersed 
boundary-finite-element method 
for flow– structure interaction with 
application to human phonation. J. 
Biomech. Eng. 132, 111003.

Conflict of Interest Statement: The 
authors declare that the research was con-
ducted in the absence of any commercial 

bulent shear flow: algebraic theory 
and applications. Phys. Fluids 16, 
3670–3681.

Zang, Y., Streett, R. L., and Koseff, J. R. 
(1994). A non-staggered fractional 
step method for time-dependent 
incompressible Navier–Stokes equa-
tions in curvilinear coordinates. J. 
Comput. Phys. 114, 18–33.

Zemlin. W. R. (1998). Speech and Hearing 
Science: Anatomy and Physiology, 3rd 
Edn. Englewood Cliffs, NJ: Prentice 
Hall.

Zhang, K., Siegmund, T., and Chan, R. W. 
(2007). A two-layer composite model 
of the vocal fold lamina propria for 
fundamental frequency regulation. J. 
Acoust. Soc. Am. 122, 1090–1101.

Zhang, Z. (2010). Dependence of pho-
nation threshold pressure and fre-
quency on vocal fold geometry and 
biomechanics. J. Acoust. Soc. Am. 127, 
2554–2562.

Titze, I. R. (1973). The human vocal 
cords: a mathematical model part 1. 
Phonetica 28, 129–170.

Titze, I. R. (1992). Phonation threshold 
pressure: a missing link in glottal aerody-
namics. J. Acoust. Soc. Am. 85, 901–906.

Titze, I. R. (1994). Principles of Voice 
Production. Englewood Cliffs, NJ: 
Prentice-Hall Inc.

Titze, I. R., Jiang, J. J., and Hsiao, T. Y. 
(1993). Measurement of mucosal wave 
propagation and vertical phase differ-
ence in vocal fold vibration. Ann. Otol. 
Rhinol. Laryngol. 102, 58–63.

van den Berg, J. (1958). Myoelastic-
aerodynamic theory of voice produc-
tion. J. Speech Hear. Res. 1, 227–244.

van Kan, J. (1986). A second-order accu-
rate pressure-correction scheme for 
viscous incompressible flow. SIAM J. 
Sci. Stat. Comput. 7, 870.

Vreman, A. W. (2004). An eddy-vis-
cosity subgrid-scale model for tur-

Mittal et al. Simulation tool for vocal fold paralysis

www.frontiersin.org May 2011 | Volume 2 | Article 19 | 15

http://www.frontiersin.org/
http://www.frontiersin.org/computational_physiology_and_medicine/archive

	Toward a simulation-based tool for the treatment of vocal 
fold paralysis
	Introduction
	Clinical Significance
	Simulation-Based Assessment and Surgery Planning Tool

	Materials and Methods
	Results and Discussion
	Continuum Based Modeling of Vocal Fold Dynamics
	Immersed Boundary Method for Glottal Aerodynamics
	Phonation in CT Based Models
	Direct Computation of Voiced Sound
	Outstanding issues, limitations, and uncertainties in the modeling
	Vocal fold boundary condition
	Vocal fold material properties
	Vocal fold internal structure


	Conclusion
	Acknowledgments
	References




