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Hydrogen sulfide (H2S) is now recognized as an important signaling molecule and has
been shown to have vasodilator and cardio-protectant effects. More recently it has been
suggested that H2S may also act within the brain to reduce blood pressure (BP). In
the present study we have demonstrated the presence of the H2S-producing enzyme,
cystathionine-β-synthase (CBS) in the rostral ventrolateral medulla (RVLM), and the hypo-
thalamic paraventricular nucleus (PVN), brain regions with key cardiovascular regulatory
functions. The cardiovascular role of H2S was investigated by determining the BP, heart
rate (HR), and lumbar sympathetic nerve activity (LSNA) responses elicited by a H2S donor
sodium hydrogen sulfide (NaHS) or inhibitors of CBS, microinjected into the RVLM and PVN.
In anesthetized Wistar Kyoto rats bilateral microinjections of NaHS (0.2–2000 pmol/side)
into the RVLM did not significantly affect BP, HR, or LSNA, compared to vehicle. Similarly,
when the CBS inhibitors, amino-oxyacetate (AOA; 0.1–1.0 nmol/side) or hydroxylamine (HA;
0.2–2.0 nmol/side), were administered into the RVLM, there were no significant effects on
the cardiovascular variables compared to vehicle. Microinjections into the PVN of NaHS,
HA, and AOA had no consistent significant effects on BP, HR, or LSNA compared to vehicle.
We also investigated the cardiovascular responses to NaHS microinjected into the RVLM
and PVN in spontaneously hypertensive rats. Again, there were no significant effects on
BP, HR, and LSNA. Together, these results suggest that H2S in the RVLM and PVN does
not have a major role in cardiovascular regulation.
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INTRODUCTION
Hydrogen sulfide (H2S) is better known for its pungent odor
and toxic properties than its potential therapeutic actions. It is
becoming increasingly clear, however, that H2S, like other gaseous
transmitters, such as nitric oxide (NO), is an important endoge-
nous signaling molecule in many physiological functions (Abe and
Kimura, 1996; Ufnal et al., 2008; Yang et al., 2008; Calvert et al.,
2009; Hart, 2011). In mammals H2S is produced endogenously
in the body from the catabolism of amino acids, such as cysteine
and homocysteine predominantly by the pyridoxal-5′-phosphate-
dependant enzymes – Cystathionine-γ-lyase (CSE, EC 4.4.1.1),
and Cystathionine-β-synthase (CBS, EC 4.2.1.22; Kabil and Baner-
jee, 2010). CSE is found primarily in the periphery and CBS is a
major enzyme responsible for the production of H2S in the central
nervous system (Lee et al., 2009; Mustafa et al., 2009).

Hydrogen sulfide has a number of effects including neuro-
modulation, anti-oxidant, anti-inflammatory, and cardiovascular
actions (Kimura, 2002; Mustafa et al., 2009; Gadalla and Snyder,
2010). In the cardiovascular system, H2S has been reported to
have positive properties including protective effects against cardiac
ischemia–reperfusion injury (Calvert et al., 2009) and peripheral
vasodilatory effects. H2S donors, such as NaHS, have been shown
to relax blood vessels in vitro (Zhao and Wang, 2002; Cheang et al.,
2010; Al-Magableh and Hart, 2011) and systemic administration

of NaHS reduces blood pressure (BP) in a dose-dependent man-
ner (Zhao et al., 2001). Recent work using CSE knockout mice has
suggested that endogenously produced H2S is necessary for main-
taining normal BP since these animals develop hypertension and
have an attenuated endothelium-dependent vasorelaxation (Yang
et al., 2008).

Hydrogen sulfide is also produced in the central nervous system
(Kimura, 2002; Mustafa et al., 2009; Gadalla and Snyder, 2010), as
is the case for the gaseous transmitter, nitric oxide. Recently, it has
been reported that H2S administered into the lateral brain ven-
tricles of conscious rats resulted in small but significant increases
in BP (Ufnal et al., 2008). That finding suggested that H2S could
influence cardiovascular regulation via actions within the central
nervous system. To gain an insight into the specific nuclei within
the brain in which H2S is acting, a recent study investigated the
role of the posterior hypothalamus in conscious rats (Dawe et al.,
2008). In that study a small reduction in BP was observed, the
opposite to that observed following lateral ventricular adminis-
tration of H2S. Taken together, the evidence to date suggests that
H2S can act in the brain to influence BP, but that the posterior
hypothalamus is not the only nucleus involved.

Regulating the activity of the sympathetic nervous system is
a key mechanism through which the brain can influence the
level of BP. There are several areas in the brain that are known
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to directly influence sympathetic nerve activity (SNA) via direct
projections to the intermediolateral cell column of the spinal
cord, where sympathetic preganglionic motor neurons are located.
These key autonomic regions have important cardiovascular reg-
ulatory functions and include the rostral ventrolateral medulla
(RVLM) and the paraventricular nucleus (PVN) of the hypothal-
amus (Shafton et al., 1998; Guyenet, 2006). The RVLM plays a
pivotal role in the tonic and reflex control of sympathetic vasomo-
tor activity, such that bilateral inhibition or destruction of neurons
in the RVLM results in dramatic decreases in both arterial pres-
sure and sympathetic vasomotor activity (Guyenet, 2006). The
PVN is a major integrative nucleus that can markedly influence
BP, SNA, and the hemodynamic sequelae (Badoer, 2001, 2010).
Activation of the PVN can elicit increases or decreases in SNA and
blood flow (Deering and Coote, 2000; Badoer, 2001), suggesting
both sympatho-inhibitory and sympatho-excitatory outflows may
emanate from the PVN.

Very recently, a report appeared in which the effects of microin-
jecting NaHS into the RVLM on renal SNA was investigated.
Whether NaHS microinjected into the RVLM can influence SNA to
other vascular organs and whether it can act in the PVN to influ-
ence SNA is unclear. Additionally, there is no data available on
whether H2S acting in those brain regions has different effects in
normotensive and hypertensive conditions. Therefore, the aim of
the present study was to determine whether H2S could alter lum-
bar sympathetic nerve activity (LSNA), BP, and heart rate (HR)
by acting within the RVLM or PVN in normotensive as well as
hypertensive rats.

MATERIALS AND METHODS
ANIMALS
Male wistar kyoto (WKY) and spontaneously hypertensive
(SHR) rats, weighing 300–350 g, were obtained from the Animal
Resources Centre (ARC, Canning Vale, WA, Australia). The ani-
mals were housed in a temperature-controlled room on a 12:12 h
light/dark cycle (lights on at 7:00 a.m.), in the RMIT Animal Facil-
ity (RMIT University, Bundoora West campus, VIC, Australia).
The animals were housed for a minimum period of 1 week before
undergoing any experimental procedure. All procedures were per-
formed to conform to the guidelines set out by the National Health
and Medical Research Council of Australia and were approved by
the RMIT University Animal Ethics committee.

SURGICAL PROCEDURES
Rats were anesthetized initially with inhaled isoflurane (1–3% in
air), by placing the animal into a sealed container which was subse-
quently filled with the gas. Once anesthesia was induced, isoflurane
was continually administered via a mask while the femoral vein and
artery were cannulated as described previously (Chen et al., 2008).
Briefly, the right femoral vein and artery were exposed by blunt dis-
section and vein and artery were cannulated separately using two
polyethylene catheters consisting of PE 10 tubing connected to
PE 50 tubing, filled with heparinized saline (50 U/ml). Anesthesia
was then maintained using urethane (1–1.5 g/kg iv) with supple-
mental doses as required (0.1–0.3 g/kg iv), administered through
the cannulated vein. The depth of anesthesia was maintained to
ensure the absence of corneal and pedal reflexes. The distal end

of the arterial cannula was attached to a BP transducer for direct
monitoring of BP.

Following a midline abdominal incision, the left lumbar post-
ganglionic sympathetic nerve trunk was identified and dissected
free of surrounding tissue. With the aid of an operating microscope
the nerve was placed onto the bared tips of two Teflon-coated silver
wire electrodes and the nerve–electrode junction insulated electri-
cally from surrounding tissue with a sealant (Kwik-Cast Sealant,
WPI, USA). The nerve activity was amplified using a low-noise
differential amplifier (ENG Models 187B and 133, Baker Insti-
tute, VIC, Australia), filtered (bandpass 100–1000 Hz), rectified,
and integrated at 0.5 s intervals. The signal was recorded using
a MacLab data acquisition system (ADInstruments, NSW, Aus-
tralia). The signal recorded at the end of the experiment after the
injection of phenylephrine (5 μg/kg, iv) was deemed background
noise. The LSNA was calculated by subtraction of background
noise from the recorded nerve activity. The average integrated
LSNA was calculated over a period of 1–2 min and expressed
as a percentage of the resting period prior to the intracerebral
administration of drugs.

Microinjections into the RVLM and Hypothalamus
For microinjections into the RVLM, each animal was placed prone
and the head was mounted in a Stoelting stereotaxic frame such
that both bregma and lambda were positioned on the same hori-
zontal plane. Burr holes were drilled bilaterally into the occipital
bone of the skull approximately 2 mm lateral of the mid-sagittal
suture and 3.8 mm caudal of the lambdoid suture. The pressor
region of the RVLM was identified functionally by microinjection
of 50 nl of l-glutamate (0.1 M) which elicited a pressor response
of at least 20 mmHg in arterial pressure (Kantzides et al., 2005).
RVLM microinjections were made using the following coordi-
nates; 3.7–4.0 mm caudal to lambdoid suture, 2 mm lateral to the
midline, and 8.0 mm ventral to the surface of the dura.

For microinjections into the hypothalamic PVN, a midline
reference point was marked 2 mm rostral to bregma. This was nec-
essary because bregma was removed in some instances during the
subsequent bone drilling procedure. Holes (approximately 4 mm
in diameter) were drilled bilaterally into the skull centered 4.0 mm
caudal from the reference point to allow microinjections of drugs
into the PVN (stereotaxic coordinates: 3.8–4.1 mm caudal to the
reference point, 0.5 mm lateral to midline, and 8.0 mm ventral to
the surface of the dura).

All microinjections were made bilaterally using a fine glass
micropipette (with a tip diameter of 50–70 μm). Microinjec-
tion volumes were 100 nl/side and after each microinjection, the
micropipette was left in place for approximately 1 min. To mark the
injection sites, a small amount of rhodamine-tagged fluorescent
microspheres was included in the microinjected solution (Luma-
Fluor, NC, USA). The precise location of the microinjections was
verified histologically at the end of each experiment.

EXPERIMENTAL PROTOCOL
In WKY rats bilateral microinjections were made into the
RVLM (n = 16), PVN (n = 18), and into the area adjacent to
the PVN (n = 8). Animals receiving microinjections into the
RVLM were given vehicle (artificial CSF containing NaCl 124 mM,

Frontiers in Physiology | Integrative Physiology September 2011 | Volume 2 | Article 55 | 2

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Integrative_Physiology
http://www.frontiersin.org/Integrative_Physiology/archive


Streeter et al. H2S in the RVLM and PVN

KCl 3.0 mM, NaH2PO4·2H2O 1.3 mM, MgCl2·6H2O 2.0 mM,
NaHCO3 26 mM, glucose 10 mM, CaCl2 2.0 mM in Milli-Q water,
buffered with carbogen), followed by either (i) five sequential doses
of NaHS (0.2,2,20,200,and 2000 pmol/side) or (ii) hydroxylamine
(HA; 0.2, and 2 nmol/side, sequentially), and amino-oxyacetate
(AOA; 0.1 and 1 nmol/side, sequentially) the order of HA and
AOA was randomized. For microinjections into or out of the PVN
the same protocol was followed except only three sequential doses
of NaHS were administered (20, 200, and 2000 pmol/side). In three
additional anesthetized rats, a bolus dose of NaHS (20 nmol) was
administered into the lateral cerebral ventricle to determine the
effects on the cardiovascular variables. In SHR rats, vehicle and
NaHS (20–2000 pmol/side) were microinjected into the RVLM
(n = 3) and PVN (n = 4) following a similar protocol. For all
experiments, 10–15 min were allowed between each microinjec-
tion of drug. Mean arterial pressure (MAP), HR, and LSNA were
monitored continuously. Resting levels prior to drug administra-
tion were recorded at 20 min before and immediately prior to the
first intracerebral microinjection. At 1, 5, and 10 min after the
administration of each dose of drug, MAP, HR, and LSNA were
recorded for a duration of 1–2 min.

HISTOLOGY
At the end of each experiment, rats were killed using an overdose of
pentobarbital sodium (325 mg/kg; Lethabarb, Virbac, NSW, Aus-
tralia). The brain of each rat was then carefully removed and
placed in a solution of 4% paraformaldehyde and 20% sucrose
for 1 week. The medulla (for brains which had been microin-
jected into the RVLM) or the hypothalamus (for brains which
had been microinjected into the PVN) were cut on a cryostat into
40 μm-thick sections and mounted onto gelatine subbed slides.
The sections were then viewed wet under fluorescent microscopy
to determine the position of the rhodamine beads which indi-
cated the microinjection site. For the medulla, the caudal end of
the facial nucleus, the nucleus ambiguous and the inferior olivary
nuclei were identified in the wet sections, and the microinjection
sites were mapped in relation to those structures. For the hypo-
thalamus, after the center of the microinjections site was identified,
the sections were dried before being stained with cresyl violet and
cover-slipped with Depex mounting medium (BDH Lab Supplies,
Poole, UK). Light microscopy was then used to re-examine the
stained hypothalamic sections to determine the extent of the PVN
and adjacent anatomical structures. The microinjection sites were
subsequently mapped in relation to the PVN and the anatomical
structures.

DETECTION OF H2S-PRODUCING ENZYMES VIA SDS-PAGE AND
WESTERN BLOTTING
Wistar kyoto rat brains were used for western blot analysis of
CSE and CBS. The RVLM (n = 3) or hypothalamic PVN (n = 3)
were punched out from frozen sections encompassing the entire
rostral–caudal extent of each nucleus, using a blunted 20G needle.
For the PVN the tissues from three animals were combined, as
were those from the RVLM. The tissues were homogenized and
suspended in sample buffer (sample buffer composition: 5% v/v
Glycerine,2.5% v/v mercaptoethanol,1.5% SDS,0.05 M TRIS/HCl
pH 8, 0.05 mg/ml bromophenol blue). Samples were then heated

to 65˚C for 10 min. Protein concentration was determined from
each sample and the samples were loaded onto 10% gels and sep-
arated by SDS-PAGE. After transfer to polyvinylidene difluoride
membranes the blots were incubated with primary antibodies sus-
pended in blocking buffer overnight [rabbit anti-CSE antibody
(Proteintech Group Inc., USA) and mouse anti-CBS antibody
(Abnova Corporation, Taiwan)]. The blots were then incubated
with the appropriate secondary antibody (goat anti-rabbit, goat
anti-mouse) conjugated to horseradish peroxidase for 1 h then
developed by enhanced chemiluminescence (Millipore Kit). Dual
color marker (Bio-Rad) was used for molecular weight deter-
mination. Recombinant protein of CSE and CBS (GST-tagged)
were loaded on the gel to identify the band of interest (Abnova,
Taiwan).

STATISTICS
The data from the in vivo studies were expressed as the change
between the level immediately prior to each microinjection and
the average of the level observed at 1 and 5 min after drug/vehicle
administration. These time points corresponded to those used by
others (Dawe et al., 2008) and to the times at which an effect was
most likely to be observed, as exemplified by the time course of
effects following NaHS (data not shown). Since the vehicle was
similar in each experiment, the vehicle responses were combined
into a single control group for each brain region.

The average value of the changes was calculated and was sub-
sequently compared between groups using one-way-ANOVA, fol-
lowed by comparisons between the individual doses of drugs and
control using Dunnett’s post hoc test for multiple comparisons.
P < 0.05 (two-tailed) was considered statistically significant.

RESULTS
WKY RATS
CBS and CSE in RVLM and PVN
Figure 1A shows examples of the western blots used to determine
the presence of CSE and CBS in the RVLM and PVN in the rat
brain. The results show that the PVN and RVLM contain CBS. By
contrast, in neither region was CSE detectable. As positive controls,
we have previously shown that CSE is found in peripheral tissues
such as the aorta and kidney (Al-Magableh and Hart, 2011).

Effect of NaHS microinjected into the RVLM
Sodium hydrogen sulfide (0.2–2000 pmol/side) microinjected into
the RVLM resulted in small increases in MAP and HR but
these were not significantly different from vehicle (Figure 1B).
The LSNA responses were small and variable; LSNA decreased
slightly following NaHS (0.2–20 pmol) and slightly increased or
did not change following the higher doses, but was not significantly
different from the vehicle response (Figure 1B).

Effect of HA and AOA microinjected into the rostral RVLM
The CBS inhibitors, AOA (0.1–1.0 nmol/side), and HA (0.2–
2.0 nmol/side) microinjected into the RVLM did not significantly
change any of the cardiovascular variables measured compared to
vehicle (Figure 2). Following the highest dose of AOA, MAP, and
HR tended to decrease but this was not seen with HA. Neither
AOA nor HA significantly affected LSNA.
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FIGURE 1 | (A) Western blot showing expression of
cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) in punched
out homogenates of the rostral ventrolateral medulla (RVLM) and
hypothalamic paraventricular nucleus (PVN). The 63 kDa band corresponding
to CBS protein was labeled in both PVN and RVLM samples. No CSE was
observed in the PVN or RVLM. The GST-tagged CBS (86 kDa) and
GST-tagged CSE (70 kDa) are shown. The native CSE protein is 44 kDa. (B)

Changes in mean arterial pressure (MAP), heart rate (HR), and lumbar
sympathetic nerve activity (LSNA) following vehicle (n = 13 for MAP and HR
and n = 6 for LSNA) and the H2S donor (NaHS, 0.2–2000 pmol/side; n = 8
for MAP and HR; and n = 5 for LSNA) microinjected into the rostral
ventrolateral medulla of WKY rats. Different shaded bars represent a
different dose of NaHS as indicated.

Effect of NaHS microinjected into the PVN
Microinjection of NaHS (20–2000 pmol/side) into the PVN
slightly increased MAP but this was not significantly differ-
ent from the vehicle response (Figure 3). Similarly, the average

FIGURE 2 | Changes in mean arterial pressure (MAP), heart rate (HR),

and lumbar sympathetic nerve activity (LSNA) following vehicle

(n = 13 for MAP and HR and n = 6 for LSNA) and amino-oxyacetate

(AOA; 0.1–1.0 nmol/side) and hydroxylamine (HA; 0.2–2.0 nmol/side;

n = 8 for MAP and HR; and n = 5 for LSNA) microinjected into the

rostral ventrolateral medulla in WKY rats. AOA and HA are inhibitors of
the enzyme cystathionine-β-synthase. Different shaded bars represent a
different dose of drug as indicated.

changes in HR following NaHS were not significantly different
from the vehicle response (Figure 3). LSNA was not markedly
affected by microinjection of NaHS into the PVN (Figure 3).
NaHS microinjected into the area surrounding the PVN also
had no significant effect on MAP, HR, or LSNA (n = 4; data not
shown).

Effect of HA and AOA microinjected into the PVN
Microinjection of AOA (0.1–1.0 nmol/side) into the PVN pro-
duced no significant change in MAP, HR, or LSNA compared to
vehicle (Figure 4). Microinjection of HA (0.2 nmol/side) into the
PVN resulted in a small but significant decrease in MAP and HR
compared to vehicle (Figure 4). Microinjection of the higher dose
of HA (2.0 nmol/side) into the PVN, however, did not elicit any
significant effect on MAP and HR compared to vehicle (Figure 4).
Neither dose of HA had any significant effect on LSNA compared
to vehicle. Additionally, AOA and HA microinjected into the area
surrounding the PVN also had no significant effect on MAP, HR,
or LSNA (n = 4; data not shown).

Intracerebroventricular administration of NaHS
When NaHS (20 nmol) was administered into the lateral
cerebral ventricle there were no significant effects on MAP
(average change = 0.1 ± 1.6 mmHg), HR (−5 ± 3 b/min), or
LSNA (0.2 ± 8.4%).
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FIGURE 3 | Changes in mean arterial pressure (MAP), heart rate (HR),

and lumbar sympathetic nerve activity (LSNA) following vehicle

(n = 14 for MAP and HR and n = 7 for LSNA) and the H2S donor, NaHS

(20–2000 pmol/side; n = 6 for MAP and HR and n = 5 for LSNA)

microinjected into the hypothalamic paraventricular nucleus in WKY

rats. Different shaded bars represent a different dose of NaHS as indicated.

SHR Rats
The average resting MAP prior to the microinjections into the
brain in the SHR rats was 96.4 ± 3.9 mmHg (n = 7) which was
significantly greater than in the WKY rats (81.3 ± 2.0, n = 34;
P < 0.001). HR, however, was not significantly different between
SHR and WKY rats (343 ± 9 vs 332 ± 6, P < 0.001).

Microinjection into the RVLM
When NaHS (20–200 pmol/side) was microinjected into the
RVLM of SHR rats, there was no significant effect on MAP, and a
slight increase following the 2000 pmol dose. In no instance was
there any statistically significant difference from vehicle (n = 3;
Figure 5A). On average, a small tachycardia was observed fol-
lowing each dose of NaHS but this was not significantly different
from the vehicle response. LSNA tended to increase with the lower
doses and decreased with the highest dose of NaHS but there was
no significant difference compared to vehicle (Figure 5A).

Microinjection into the PVN
Microinjections of NaHS into the PVN of SHR rats did not
significantly affect MAP, HR, or LSNA (n = 5; Figure 5B).

Microinjection sites in the RVLM
The sites of microinjection into the RVLM (defined as within 0.0–
0.6 mm caudal of the facial nucleus) are shown in Figure 6A. All
microinjection sites were mainly located toward the rostral end of
the pressor region of the RVLM predominantly within 0.0–0.2 mm

FIGURE 4 | Changes in mean arterial pressure (MAP), heart rate (HR),

and lumbar sympathetic nerve activity (LSNA) following vehicle

(n = 14 for MAP and HR and n = 6 for LSNA) and amino-oxyacetate

(AOA; 0.1–1.0 nmol/side) and hydroxylamine (HA; 0.2–2.0 nmol/side;

n = 13 for MAP and HR; and n = 6 for LSNA) microinjected into the

hypothalamic paraventricular nucleus in WKY rats. AOA and HA are
inhibitors of the enzyme cystathionine-β-synthase. *P < 0.05 compared to
vehicle. Different shaded bars represent a different dose of drug as
indicated.

caudal to the caudal pole of the facial nucleus. The distribution of
the microinjection sites for NaHS, AOA, and HA were similar.

Microinjection sites in the PVN
The sites of microinjection into the PVN are shown in Figure 6B.
The center of the injection sites were found to be within
1.4–2.1 mm caudal to the bregma and covered the rostral–caudal
extent of the PVN. The distribution of the microinjection sites
with NaHS and that of the inhibitors of the enzyme that pro-
duces H2S, were similar. Microinjections made adjacent to the
PVN were centered dorsal to the PVN, in the ventral portion of
the nucleus reuniens, at levels 1–2.1 mm caudal to bregma (data
not shown).

DISCUSSION
In the present study we found that the enzyme CBS but not CSE
was present in the pressor region of the RVLM and in the PVN,
suggesting H2S may be endogenously produced in these brain
regions. Microinjection of the H2S donor, NaHS, directly into
these regions, however, did not significantly alter MAP, HR, or
LSNA in WKY and SHR rats. In WKY rats, inhibition of the pro-
duction of H2S, using inhibitors of CBS, in those brain regions
also had no marked or consistent effects on the cardiovascular
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FIGURE 5 | (A) Changes in mean arterial pressure (MAP), heart rate (HR),
and lumbar sympathetic nerve activity (LSNA) following vehicle and the H2S
donor (NaHS, 20–2000 pmol/side; n = 3) microinjected into the rostral
ventrolateral medulla (RVLM) of SHR rats. Different shaded bars represent a
different dose of NaHS as indicated. (B) Changes in mean arterial pressure
(MAP), heart rate (HR), and lumbar sympathetic nerve activity (LSNA)
following vehicle and the H2S donor, NaHS (20–2000 pmol/side; n = 5)
microinjected into the hypothalamic paraventricular nucleus (PVN) in SHR
rats. Different shaded bars represent a different dose of NaHS as indicated.

variables. The results suggest that hydrogen sulfide in the RVLM
and PVN does not have a significant role in cardiovascular
regulation.

The present work, using western blot analysis, is the first to
report that CBS is present specifically in the RVLM and PVN, two
important autonomic brain regions involved in the regulation of
SNA and the cardiovascular system. Previous studies have found
that the activity of CBS varies with the brain area examined,
and that the hypothalamus had the highest activity (Kohl and
Quay, 1979). Changes in CBS expression have also been observed
in mice during development; the levels of CBS increased post-
natally, particularly in the hippocampus and cerebellum (Robert
et al., 2003). There have been reports demonstrating weak expres-
sion of CSE in whole brain homogenates (Abe and Kimura, 1996;
Ishii et al., 2004), however, our results indicate that CSE is absent
in the RVLM and PVN. Taken together, the evidence indicates
CBS is the most abundant of the two enzymes in the brain,
and that CSE may be present in very limited amounts in brain
but not in the specific autonomic regions of the RVLM and the
hypothalamic PVN.

The hypothalamic PVN can influence the cardiovascular sys-
tem via hormonal and neural mechanisms. In the present study,
however, NaHS microinjected into the PVN of WKY rats did
not significantly influence MAP, HR, or LSNA compared to the
microinjection of vehicle. Similarly, neither HA nor AOA into
the PVN elicited consistent significant responses. Thus, we con-
clude that exogenous administration of the H2S donor, NaHS, and

endogenous H2S within the PVN does not play a major role in the
regulation of BP, HR, or LSNA in the normotensive state. In SHR
rats, as in the WKY rats, we could not find any evidence suggesting
H2S in the PVN contributed to the regulation of the MAP, HR,
and LSNA in the hypertensive state. Given the negative findings in
the WKY rats, we did not pursue further investigations with HA
and AOA in the PVN of SHR rats.

The RVLM is a key brain region involved in generating tonic
sympathetic outflow (Guyenet, 2006). In the RVLM, microinjec-
tion of NaHS did not cause significant changes in MAP, HR, or
LSNA compared to control. This was observed in WKY as well
as SHR rats. The present results suggest that H2S in the RVLM
is not a key player in cardiovascular regulation in normoten-
sive or hypertensive conditions. In order to observe the effects of
endogenous H2S, two inhibitors of CBS were employed, HA and
AOA (Johnston and Balcar, 1974; Vidrio and Medina, 2007). Since
both inhibitors affect the association of CBS with its co-factor,
pyridoxal-5′-phosphate (PLP), the effects could be attributable to
inhibition of PLP-dependent enzymes other than CBS. However,
neither inhibitor microinjected into the RVLM of WKY rats sig-
nificantly affected MAP, HR, or LSNA. These results indicate that,
although CBS is present in the RVLM, H2S produced locally in
the RVLM does not have a major influence on BP, HR, or LSNA.
Since we did not see any evidence to suggest a role for endogenous
H2S in WKY rats nor for exogenous H2S in WKY and SHR rats,
we did not further investigate the effects of HA or AOA in the
SHR rats.

In contrast to the present work, a study appearing immediately
prior to submission of the present manuscript, reported that NaHS
microinjected into the RVLM of anesthetized rats induced dose-
dependent, and relatively large, reductions in MAP, HR, and renal
SNA (Guo et al., 2011). HA elicited the opposite cardiovascular
effects (Guo et al., 2011). The reasons for the different responses
compared to the present study are not known. In the present study
the rats breathed spontaneously and a dorsal approach was used to
functionally identify the pressor region of the RVLM. In the work
by Guo et al., 2011, a ventral approach and visual identification
of the RVLM was used, and the rats were ventilated. Stretching
the chest wall during ventilation is known to enhance the excita-
tory drive arising from the RVLM and this can alter the responses
to drugs administered into the RVLM (Cox and Brody, 1988).
Functional identification of the pressor region of the RVLM was
important in the present study to indicate (i) the correct placement
of the microinjection and (ii) the RVLM was functional under
the present experimental conditions and cardiovascular responses
were clearly obtainable. It is noteworthy that similar doses were
used in the present work and in the study by (Guo et al., 2011).
It has also been reported that tachyphylaxis to repeated doses of
NaHS may occur, at least in urogenital preparations (Patacchini
et al., 2004). We do not believe this can account for the lack of
responses in the present study since we have administered a single
large dose of NaHS intracebroventricularly (20 nmol) and found
no significant effect on the cardiovascular variables. Additionally,
NaHS is well known to induce vasorelaxation after sequential doses
are administered (Al-Magableh and Hart, 2011; Hart, 2011). In two
previous studies in which NaHS administration elicited signifi-
cant changes in MAP and HR, the experiments were conducted
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FIGURE 6 | (A) Schematic illustration showing the center of the
microinjection sites within the rostral ventrolateral medulla (RVLM).
Microinjections were made bilaterally but only unilateral sites are shown.
Filled circles represent microinjection sites of NaHS and unfilled circles
represent microinjection sites of amino-oxyacetate and hydroxylamine in
WKY rats, unfilled triangles represent microinjection sites of NaHS in SHR
rats. Approximate level caudal to bregma is indicated. Abbreviations: ROb,
raphe obscurus; ION, inferior olivary nucleus; Sp5, spinal trigeminal tract;
NAmb, nucleus ambiguous; Sol, solitary nucleus. (B) Schematic illustration

showing the center of the microinjection sites within the hypothalamic
paraventricular nucleus (PVN). Microinjections were made bilaterally but
only unilateral sites are shown. Filled circles represent microinjection sites
of NaHS and unfilled circles represent microinjection sites of
amino-oxyacetate and hydroxylamine in WKY rats, unfilled triangles
represent microinjection sites of NaHS in SHR rats. Approximate levels
caudal to bregma are indicated. Abbreviations: Fx, fornix; AHA, anterior
hypothalamic area; 3V, third ventricle; OT, optic tract; VMH, ventromedial
hypothalamus.

in conscious rats. The changes in BP and HR reported were
small (Dawe et al., 2008; Ufnal et al., 2008). The present work
was conducted in the presence of anesthesia which may dampen
BP and heart rate responses. Given the small magnitude of the
responses to NaHS in the conscious rats, however, it is reasonable
to question the physiological significance of H2S in cardiovascular
regulation.

Opening of KATP channels is believed to contribute to the effects
of H2S, including vasodilation and cardioprotection (Zhao et al.,
2001; Bian et al., 2006). Opening KATP channels could decrease cell
firing as a result of hyperpolarization. Indeed, a reduced discharge
rate in spontaneously firing units in the RVLM after administra-
tion of a KATP channel opener, adenosine, has been reported but
there was no effect on BP or HR (Chen and He, 1998). In the PVN,
a recent in vitro study using hypothalamic slices showed that the
spontaneous firing of PVN neurons with projections to the spinal
cord was reduced by adenosine; an effect mediated by opening of
KATP channels (Li et al., 2010). The present findings suggest that
if H2S opens KATP channels in the RVLM or in the PVN, then
KATP channels in those brain regions have little influence in the
regulation of MAP, HR, or LSNA.

Relatively high mRNA levels of the Kir6.2 subtype of the
KATP channel have been demonstrated in the PVN (Dunn-

Meynell et al., 1998). These channels may couple metabolic
activity with neuronal excitability (Ashford et al., 1990), and are
involved in sensing glucose and in regulating glucose metab-
olism (Zhang et al., 2004). Thus, although our studies sug-
gest H2S in the PVN has no major role in regulating BP, HR,
and LSNA, H2S in the PVN may perform other functions,
which may involve metabolic regulation and these require further
investigation.

CONCLUSION
We have demonstrated for the first time the presence of the
enzyme CBS in two important cardiovascular regulatory regions,
the RVLM and PVN. By contrast CSE was not observed in those
brain regions. This is consistent with the current view that of those
two enzymes, CBS is the main enzyme in the brain involved in the
production of H2S. Our work also demonstrated there was no
significant effect on BP, HR, and LSNA upon administration of
the H2S donor, NaHS, into the RVLM and PVN of WKY and SHR
rats, or following inhibition of CBS in the RVLM and PVN in WKY
rats. Thus, we suspect that H2S in those regions is not playing a
critical role in the regulation of BP, HR, and LSNA, at least, in the
short term.

www.frontiersin.org September 2011 | Volume 2 | Article 55 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Physiology/archive


Streeter et al. H2S in the RVLM and PVN

REFERENCES
Abe, K., and Kimura, H. (1996). The

possible role of hydrogen sulfide as
an endogenous neuromodulator. J.
Neurosci. 16, 1066–1071.

Al-Magableh, M. R., and Hart, J. L.
(2011). Mechanism of vasorelax-
ation and role of endogenous hydro-
gen sulfide production in mouse
aorta. Naunyn Schmiedebergs Arch.
Pharmacol. 383, 403–413.

Ashford, M. L., Boden, P. R., and
Treherne, J. M. (1990). Glucose-
induced excitation of hypothala-
mic neurones is mediated by ATP-
sensitive K+ channels. Pflugers Arch.
415, 479–483.

Badoer, E. (2001). Hypothalamic par-
aventricular nucleus and cardiovas-
cular regulation. Clin. Exp. Pharma-
col. Physiol. 28, 95–99.

Badoer, E. (2010). Role of the hypo-
thalamic PVN in the regulation of
renal sympathetic nerve activity and
blood flow during hyperthermia and
in heart failure. Am. J. Physiol. Renal
Physiol. 298, F839–F846.

Bian, J. S.,Yong, Q. C., Pan, T. T., Feng, Z.
N., Ali, M. Y., Zhou, S., and Moore,
P. K. (2006). Role of hydrogen sul-
fide in the cardioprotection caused
by ischemic preconditioning in the
rat heart and cardiac myocytes. J.
Pharmacol. Exp. Ther. 316, 670–678.

Calvert, J. W., Jha, S., Gundewar, S.,
Elrod, J. W., Ramachandran, A., Pat-
tillo, C. B., Kevil, C. G., and Lefer,
D. J. (2009). Hydrogen sulfide medi-
ates cardioprotection through Nrf2
signaling. Circ. Res. 105, 365–374.

Cheang, W. S., Wong, W. T., Shen,
B., Lau, C. W., Tian, X. Y., Tsang,
S. Y., Yao, X., Chen, Z. Y., and
Huang,Y. (2010). 4-Aminopyridine-
sensitive K(+) channels contributes
to NaHS-induced membrane hyper-
polarization and relaxation in the rat
coronary artery. Vascul. Pharmacol.
53, 94–98.

Chen, F., Dworak, M., Wang, Y., Cham,
J. L., and Badoer, E. (2008). Role
of the hypothalamic PVN in the
reflex reduction in mesenteric blood
flow elicited by hyperthermia. Am. J.
Physiol. Regul. Integr. Comp. Physiol.
295, R1874–R1881.

Chen, S., and He, R. R. (1998). Effect of
intracarotid injection of adenosine
on the activity of RVLM neurons in

barodenervated rats. Sheng Li Xue
Bao 50, 629–635.

Cox, B. F., and Brody, M. J. (1988).
Tidal volume affects the response
to inactivation of the rostral ven-
trolateral medulla. Hypertension 11,
I186–I189.

Dawe, G. S., Han, S. P., Bian, J. S.,
and Moore, P. K. (2008). Hydro-
gen sulphide in the hypothalamus
causes an ATP-sensitive K+ channel-
dependent decrease in blood pres-
sure in freely moving rats. Neuro-
science 152, 169–177.

Deering, J., and Coote, J. H. (2000).
Paraventricular neurones elicit a vol-
ume expansion-like change of activ-
ity in sympathetic nerves to the
heart and kidney in the rabbit. Exp.
Physiol. 85, 177–186.

Dunn-Meynell, A. A., Rawson, N. E.,
and Levin, B. E. (1998). Distribution
and phenotype of neurons contain-
ing the ATP-sensitive K+ channel in
rat brain. Brain Res. 814, 41–54.

Gadalla, M. M., and Snyder, S. H.
(2010). Hydrogen sulfide as a
gasotransmitter. J. Neurochem. 113,
14–26.

Guo, Q., Jin, S., Wang, X. L., Wang,
R., Xiao, L., He, R. R., and
Wu, Y. M. (2011). Hydrogen sul-
fide in the rostral ventrolateral
medulla inhibits sympathetic vaso-
motor tone through ATP-sensitive
K+ channels. J. Pharmacol. Exp.
Ther. 338, 458–465.

Guyenet, P. G. (2006). The sympathetic
control of blood pressure. Nat. Rev.
Neurosci. 7, 335–346.

Hart, J. L. (2011). Role of sulfur-
containing gaseous substances in the
cardiovascular system. Front. Biosci.
(Elite Ed) 3, 736–749.

Ishii, I., Akahoshi, N., Yu, X. N.,
Kobayashi, Y., Namekata, K.,
Komaki, G., and Kimura, H. (2004).
Murine cystathionine gamma-lyase:
complete cDNA and genomic
sequences, promoter activity, tissue
distribution and developmen-
tal expression. Biochem. J. 381,
113–123.

Johnston, G. A., and Balcar, V. J. (1974).
Amino-oxyacetic acid: a relatively
non-specific inhibitor of uptake of
amino acids and amines by brain
and spinal cord. J. Neurochem. 22,
609–610.

Kabil, O., and Banerjee, R. (2010).
The redox biochemistry of hydro-
gen sulfide. J. Biol. Chem. 285,
21903–21907.

Kantzides, A., Owens, N. C., De Mat-
teo, R., and Badoer, E. (2005).
Right atrial stretch activates neu-
rons in autonomic brain regions that
project to the rostral ventrolateral
medulla in the rat. Neuroscience 133,
775–786.

Kimura, H. (2002). Hydrogen sulfide as
a neuromodulator. Mol. Neurobiol.
26, 13–19.

Kohl, R. L., and Quay, W. B. (1979).
Cystathionine synthase in rat brain:
regional and time-of-day differences
and their metabolic implications. J.
Neurosci. Res. 4, 189–196.

Lee, M., Schwab, C., Yu, S., Mcgeer,
E., and Mcgeer, P. L. (2009). Astro-
cytes produce the antiinflammatory
and neuroprotective agent hydro-
gen sulfide. Neurobiol. Aging 30,
1523–1534.

Li, D. P., Chen, S. R., and Pan, H.
L. (2010). Adenosine inhibits par-
aventricular pre-sympathetic neu-
rons through ATP-dependent potas-
sium channels. J. Neurochem. 113,
530–542.

Mustafa, A. K., Gadalla, M. M., and
Snyder, S. H. (2009). Signaling by
gasotransmitters. Sci. Signal. 2, re2.

Patacchini, R., Santicioli, P., Giuliani, S.,
and Maggi, C. A. (2004). Hydrogen
sulfide (H2S) stimulates capsaicin-
sensitive primary afferent neurons
in the rat urinary bladder. Br. J.
Pharmacol. 142, 31–34.

Robert, K., Vialard, F., Thiery, E.,
Toyama, K., Sinet, P. M., Janel, N.,
and London, J. (2003). Expression
of the cystathionine beta synthase
(CBS) gene during mouse devel-
opment and immunolocalization in
adult brain. J. Histochem. Cytochem.
51, 363–371.

Shafton, A. D., Ryan, A., and Badoer,
E. (1998). Neurons in the hypothal-
amic paraventricular nucleus send
collaterals to the spinal cord and to
the rostral ventrolateral medulla in
the rat. Brain Res. 801, 239–243.

Ufnal, M., Sikora, M., and Dudek,
M. (2008). Exogenous hydrogen
sulfide produces hemodynamic
effects by triggering central
neuroregulatory mechanisms.

Acta Neurobiol. Exp. (Wars) 68,
382–388.

Vidrio, H., and Medina, M. (2007).
Hypotensive effect of hydroxy-
lamine, an endogenous nitric oxide
donor and SSAO inhibitor. J. Neural
Transm. 114, 863–865.

Yang, G., Wu, L., Jiang, B., Yang, W., Qi,
J., Cao, K., Meng, Q., Mustafa, A. K.,
Mu, W., Zhang, S., Snyder, S. H., and
Wang, R. (2008). H2S as a physio-
logic vasorelaxant: hypertension in
mice with deletion of cystathionine
gamma-lyase. Science 322, 587–590.

Zhang, Y., Zhou, J., Corll, C., Porter, J.
R., Martin, R. J., and Roane, D. S.
(2004). Evidence for hypothalamic
K+(ATP) channels in the modula-
tion of glucose homeostasis. Eur. J.
Pharmacol. 492, 71–79.

Zhao, W., and Wang, R. (2002). H(2)S-
induced vasorelaxation and under-
lying cellular and molecular mech-
anisms. Am. J. Physiol. Heart Circ.
Physiol. 283, H474–H480.

Zhao, W., Zhang, J., Lu, Y., and Wang,
R. (2001). The vasorelaxant effect
of H(2)S as a novel endogenous
gaseous K(ATP) channel opener.
EMBO J. 20, 6008–6016.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 17 June 2011; accepted: 15
August 2011; published online: 01 Sep-
tember 2011.
Citation: Streeter E, Al-Magableh
M, Hart JL and Badoer E (2011)
Hydrogen sulfide in the RVLM and
PVN has no effect on cardiovascular
regulation. Front. Physio. 2:55. doi:
10.3389/fphys.2011.00055
This article was submitted to Frontiers
in Integrative Physiology, a specialty of
Frontiers in Physiology.
Copyright © 2011 Streeter , Al-Magableh,
Hart and Badoer. This is an open-access
article subject to a non-exclusive license
between the authors and Frontiers Media
SA, which permits use, distribution and
reproduction in other forums, provided
the original authors and source are cred-
ited and other Frontiers conditions are
complied with.

Frontiers in Physiology | Integrative Physiology September 2011 | Volume 2 | Article 55 | 8

http://dx.doi.org/10.3389/fphys.2011.00055
http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Integrative_Physiology
http://www.frontiersin.org/Integrative_Physiology/archive

	Hydrogen sulfide in the RVLM and PVN has no effect on cardiovascular regulation
	Introduction
	Materials and Methods
	Animals
	Surgical Procedures
	Microinjections into the RVLM and Hypothalamus

	Experimental Protocol
	Histology
	Detection of H2S-producing enzymes via SDS-PAGE and western blotting
	Statistics

	Results
	WKY Rats
	CBS and CSE in RVLM and PVN
	Effect of NaHS microinjected into the RVLM
	Effect of HA and AOA microinjected into the rostral RVLM
	Effect of NaHS microinjected into the PVN
	Effect of HA and AOA microinjected into the PVN
	Intracerebroventricular administration of NaHS
	SHR Rats
	Microinjection into the RVLM
	Microinjection into the PVN
	Microinjection sites in the RVLM
	Microinjection sites in the PVN


	Discussion
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


