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Mesenteric ischemia/reperfusion (I/R) is associated with high rates of morbidity and mor-
tality. We studied the effect of mesenteric I/R on structural and mechanical properties of
rat mesenteric resistance artery (MRA) that, once disrupted, might impact the outcome of
this devastating clinical condition. Superior mesenteric artery from Wistar–Kyoto rats was
occluded (90 min) and reperfused (24 h). The effect of tezosentan, a dual endothelin (ET)-
receptor antagonist, was studied in ischemic (IO) and sham-operated (SO) animals. MRA
structure and mechanics were assessed by pressure myography. Nuclei distribution, elastin
content and organization, collagen I/III and ET-1 expression, ET-1 plasma levels, superoxide
anion (O.

2
−) production, and mRNA levels of NAD(P)H-oxidase subunits were measured.

To assess ET-1 effects on O.
2
− production, MRA from non-operated rats were incubated

in culture medium with ET-1. Mesenteric I/R increased MRA wall thickness (P < 0.05) and
cross-sectional area (P < 0.05) but decreased wall stiffness (P < 0.05). Arterial remodeling
was paralleled by enhancement of: (i) collagen I/III expression (P < 0.01), ET-1 expression
(P < 0.05), and O.

2
− formation (P < 0.01) in the vessel wall; (ii) number of internal elas-

tic lamina (IEL) fenestrae (P < 0.05); and (iii) plasma levels of ET-1 (P < 0.05). Moreover,
ET-1 increased O.

2
− (P < 0.05) production in cultured MRA. Tezosentan prevented hyper-

trophic remodeling and collagen I/III deposition, and enhanced O.
2
− production, but it did

not affect the decreased wall stiffness after mesenteric I/R. These results indicate that
90 min occlusion/24 h reperfusion induces hypertrophic remodeling of MRA linked to ET-
1-mediated increase of collagen and O.

2
−. Decreased stiffness may be associated with

increased number of IEL fenestrae.The resulting MRA remodeling, initially adaptive, might
become maladaptive contributing to the pathology and poor outcome of mesenteric I/R,
and might be a valuable treatment target for mesenteric I/R.
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INTRODUCTION
Interruption of blood flow to intestinal tissue caused by thrombi,
embolisms, or secondary to other non-occlusive processes (Mass-
berg and Messmer, 1998; Stefanutti et al., 2004) results in ischemic
injury to the small intestine. While reperfusion of ischemic intes-
tine is essential, it leads to a sequence of events known as mesen-
teric ischemia/reperfusion (I/R) injury, which is a life-threatening
clinical complication.

The status of arterial flow in the mesenteric vasculature is a
successful diagnostic tool for identifying the presence and the
causes of mesenteric I/R (Ridley and Green, 2001). However,
little has changed in the last four decades with regard to over-
all mortality, which remains approximately 40%, and medical
management (i.e., anticoagulation or antiplatelet therapy) is essen-
tial for all survivors (Sise, 2010). Decreased intestinal contractile
activity (Ballabeni et al., 2002), increased microvascular perme-
ability and dysfunction of mucosal barrier (Carden and Granger,
2000) have been reported after mesenteric I/R. Furthermore,

distant pathophysiological effects have also been observed, includ-
ing remote organ injury (Carden and Granger, 2000) and rise in
blood pressure (Khanna et al., 2001). However, mean arterial pres-
sure returns to control values toward the end of ischemia and
decreases during reperfusion (Hayward and Lefer, 1998; Khanna
et al., 2001). These results illustrate the complexity of the cardio-
vascular response during mesenteric I/R and highlights the need
for further studies.

Alterations of resistance arteries reactivity (i.e., endothelial
dysfunction, altered contractility) play an important role in the
pathogenesis and progression of cardiovascular diseases (Vila and
Salaices, 2005). Abnormal vascular remodeling is also a well rec-
ognized predictor and has a primary role in vascular patholo-
gies (Intengan and Schiffrin, 2001; Briones et al., 2010). Vascular
remodeling leading to structural changes is known to occur in
response to diverse physiological and pathological stimuli, includ-
ing mechanical forces, neurohumoral factors, and paracrine agents
(Martinez-Lemus et al., 2009). For example, vasoactive substances
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like nitric oxide and endothelin-1 (ET-1) have been involved in
vascular remodeling (Martens et al., 2002; Harris et al., 2005). In
addition, reperfusion of blood to the tissues leads to the genera-
tion of oxygen free radicals (Gourdin et al., 2009) and the release
of pro-inflammatory cytokines (Cuzzocrea et al., 2002), which
have been largely associated with disturbance of vascular struc-
ture (Stenmark et al., 2006; Jiménez-Altayó et al., 2009). Structural
and mechanical characteristics of resistance arteries are critically
involved in the regulation of blood pressure and the regional dis-
tribution of blood flow (Martinez-Lemus et al., 2009; Van den
Akker et al., 2010). Therefore, remodeling of resistance arteries can
contribute to hemodynamic dysfunction (Martinez-Lemus et al.,
2009).

Numerous studies have attempted to find an ideal therapy for
mesenteric I/R, although, the mechanisms of ischemia and pos-
terior reperfusion injury have not been completely clarified. In
the present study we aimed to evaluate whether transient supe-
rior mesenteric artery occlusion and reperfusion could influence
the structural and mechanical properties of mesenteric resistance
arteries (MRA) that, once disrupted, might make an important
contribution to the development of cardiovascular complications.

MATERIALS AND METHODS
The investigation conforms to the Guide for the Care and Use of
Laboratory Animals published by the US National Institutes of
Health (NIH Publication No. 85-23, revised 1996). Approval for
the work was granted by the Ethics Committee at the “Universitat
Autònoma de Barcelona.” Thirteen- to fourteen- week-old male
Wistar–Kyoto (WKY) rats (n = 74) obtained from Janvier (France)
were housed under a 12-h day/night cycle and had free access to
food and water before and after surgery.

EXPERIMENTAL MESENTERIC ISCHEMIA
Rats were anesthetized with sodium pentobarbitone (40 mg/Kg;
i.p.) and the ventral abdomen was shaved and washed with
10% povidone iodine. To produce analgesia, buprenorphine
(0.01 mg/Kg) was administered subcutaneously 30 min prior to
anesthesia and 12 h after surgery. Adequacy of anesthesia was con-
firmed by total absence of reflex responses (pinching the tail, pedal
withdrawal, and pupillary reflex). Abdominal cavity was accessed
by a midline incision and the superior mesenteric artery was visu-
alized and clamped. Pulselessness of mesenteric arterial branches
was achieved immediately after occlusion of the superior mesen-
teric artery. After a 90-min ischemia, the clamp was removed and
the midline incision was closed. Rats were allowed to recover from
anesthesia and placed back into their cages with free access to
food and water. Sham-operated (SO) animals underwent the same
surgical procedure with the exception of the clamping.

Following 24 h (reperfusion time), rats were anesthetized with
sodium pentobarbitone (40 mg/Kg; i.p.), decapitated, and the
mesenteric arcade placed in cold physiological salt solution (PSS)
of the following composition (in mM): NaCl 112.0; KCl 4.7; CaCl2
2.5; KH2PO4 1.1; MgSO4 1.2; NaHCO3 25.0; and glucose 11.1. In
some anesthetized rats, blood samples (2 ml) were collected by
cardiac puncture and plasma was separated by centrifugation at
12000 × g, 5 min, 4˚C, aliquoted, and stored at −70˚C.

The duration of I/R used was based on previous studies where
we observed middle cerebral artery structural, mechanical, and
myogenic changes (Cipolla et al., 1997; Jiménez-Altayó et al.,
2007, 2009) as well as mesenteric functional alterations (Martínez-
Revelles et al., 2011) after 90 min occlusion followed by 24 h
reperfusion.

TREATMENT WITH A DUAL ET RECEPTOR ANTAGONIST
The effect of i.p. injection of tezosentan (TZS, 10 mg/Kg dissolved
in saline) on some of the parameters studied was studied in both
IO and SO rats. The ET receptor antagonist was administered 1 h
before starting the surgical procedure described above,using a dose
that has been described as having positive effects on mesenteric I/R
(Lugowska-Umer et al., 2008).

TISSUE PREPARATION
Segments of third-order branches (pressure myography, super-
oxide anion (O.−

2 ) production, immunofluorescence and vessel
culture studies) and second- and third-order branches (qRT-PCR)
of the mesenteric tree were dissected free of fat and connective
tissue and maintained in PSS at 4˚C, continuously gassed with
95% O2 and 5% CO2. Vessels to be used for O.−

2 production
were placed in PSS containing 30% sucrose overnight. Next, the
vessels were transferred to a cryomold (Bayer Química Farma-
céutica, Barcelona, Spain) containing Tissue-Tek OCT embedding
medium (Sakura Finetek Europe, Zoeterwoude, The Netherlands)
for 20 min, and then immediately frozen in liquid nitrogen. For
immunofluorescence studies, vessels were fixed with 4% phos-
phate buffered paraformaldehyde (PFA, pH = 7.4) for 1 h and
washed in three changes of phosphate buffered saline solution
(PBS, pH = 7.4). After clearing, arterial segments were placed in
PBS containing 30% sucrose overnight, transferred to a cryomold
containing Tissue-Tek OCT embedding medium and frozen in liq-
uid nitrogen. Second- and third-order branches that will be used
for qRT-PCR were frozen in liquid nitrogen immediately after dis-
section. All samples frozen in liquid nitrogen were kept at −70˚C
until the day of the experiments. Finally, segments of third-order
branches from a group of non-operated rats were incubated in
culture medium.

DETERMINATION OF ET-1 PLASMA LEVELS
ET-1 was analyzed by commercial ELISA kit (Biomedica Medizin-
produkte GmbH, Wien, Austria) according to the manufacturer’s
instruction. Results are expressed as pg/ml.

PRESSURE MYOGRAPHY
Structural and mechanical properties of MRA were studied with
a pressure myograph (Danish Myo Tech Model P100; J. P. Trad-
ing I/S, Aarhus, Denmark), as described previously (Briones et al.,
2003; Jiménez-Altayó et al., 2007, 2009). Briefly, the third-order
vessel was placed between two glass microcannulas and secured
with surgical nylon suture. After the small branches were tied
off, vessel length was adjusted so that the vessel walls were par-
allel without stretch. Intraluminal pressure was then raised to
140 mmHg, and the artery was unbuckled by adjusting the can-
nula. Afterward, the artery was left to equilibrate (1 h) at 70 mmHg
in gassed calcium-free PSS (0 Ca2+: omitting calcium and adding
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10 mM EGTA; Sigma-Aldrich, St Louis, MO, USA) at 37˚C. Intra-
luminal pressure was reduced to 3 mmHg, and a pressure-diameter
curve (3–120 mmHg) was obtained. Internal and external diame-
ters (Di0Ca, De0Ca) were measured for 3 min at each intraluminal
pressure. The resolution of the measurements is 1 μm. Finally, the
artery was set to 70 mmHg in 0 Ca2+-PSS, pressure-fixed with 4%
PFA for 45 min, and stored in PFA (4%) at 4˚C until analysis of
nuclei distribution and elastin content and organization by confo-
cal microscopy were performed. All the experiments were carried
out in MRA from SO and ischemic (IO) rats.

CALCULATION OF STRUCTURAL AND MECHANICAL PARAMETERS
Wall thickness (WT), cross-sectional area (CSA), and wall/lumen
(W/L) ratio were calculated as follows: WT = (De0Ca − Di0Ca)/2;
CSA = (π/4) × [(De0Ca)2 − (Di0Ca)2]; and W/L = (De0Ca −
Di0Ca)/2Di0Ca, where De0Ca and Di0Ca are the external and inter-
nal diameter observed for a given intravascular pressure in passive
conditions (0 Ca2+), respectively. Mechanical parameters were
calculated as described by Baumbach and Heistad (1989). Circum-
ferential wall strain (ε) was calculated as (Di0Ca − Do0Ca)/Do0Ca,
where Do0Ca is the internal diameter at 3 mmHg, measured under
relaxed conditions. Circumferential wall stress (σ) was calcu-
lated as (P × Di0Ca)/2WT, where P is the intraluminal pressure
(1 mmHg = 133.4 Nm−2) and WT is thickness of the vessel wall
at each intraluminal pressure in 0 Ca2+ medium. Elastic modulus
was calculated by fitting stress–strain data to σ = σorig exp (βε),
where σorig is the stress at the original diameter (3 mmHg). The β

value was used as an index of wall stiffness (Mulvany and Aalkjaer,
1990).

NUCLEI DISTRIBUTION BY CONFOCAL MICROSCOPY
Pressured-fixed intact arteries were stained with the nuclear dye
Hoechst 33342 (10 μg/ml; Sigma-Aldrich) for 30 min. After wash-
ing was completed, arteries were mounted on slides with a well
made of silicon spacers to avoid artery deformation. They were
visualized with a Leica TCS SP2 (Heidelberg, Germany) confocal
system fitted with an inverted microscope and argon and helium–
neon laser sources with an oil-immersion lens [×63; excitation
(Ex) 351–364 nm and emission (Em) 400–500 nm]. Stacks of ser-
ial optical slices (0.5 μm thick) were captured from the adventitia
to the lumen of each artery. Two stacks of images of several regions
were captured in each arterial segment. Individual images of the
endothelial layer were also captured. MetaMorph Image Analysis
software (Molecular Devices, Sunnyvale, CA, USA) was used for
quantification. The nuclei number was measured in the Z -axis,
as previously described (Jiménez-Altayó et al., 2007). To allow
comparison of SO and IO rats, the following calculations were
performed: WT (μm), measured as adventitial thickness + media
thickness; number of adventitial, smooth muscle, and endothelial
cell nuclei was calculated per area (mm2) per stack.

ELASTIN CONTENT AND ORGANIZATION BY CONFOCAL MICROSCOPY
The content and organization of elastic fibers in the internal elastic
lamina (IEL) were studied in intact pressure-fixed MRA using a
Leica TCS SP2 confocal microscope on the basis of the autoflu-
orescent properties of elastin (Ex 488 nm and Em 500–560 nm;
46). Stacks of serial optical sections (0.3 μm thick) were captured

from each artery with an ×63 oil-immersion objective using the
488-nm line of the confocal microscope. Two stacks of images
of several regions were captured in each arterial segment. All the
images were taken under identical conditions of zoom (×1), laser
intensity, brightness, and contrast.

Quantitative analysis was performed with MetaMorph Image
Analysis software as reported previously (Jiménez-Altayó et al.,
2007). From each stack of serial images, individual projections of
the IEL were reconstructed, and total number and area of fen-
estrae were measured. Fluorescence intensity values were used as
estimate of elastin concentration, as previously described, follow-
ing the assumption that the concentration of elastin has a linear
relationship with fluorescence intensity (Blomfield and Farrar,
1969).

IMMUNOFLUORESCENCE
Frozen sections (14 μm) were incubated with a rabbit polyclonal
antibody against collagen I/III (1:30; Calbiochem, Pacific Center
Court, San Diego, CA, USA) or a mouse monoclonal antibody
against ET-1 (1:100; Thermo Scientific, Rockford, IL, USA). After
washing, rings were incubated with the secondary antibody, don-
key anti-rabbit (1:200), or donkey anti-mouse (1:200) IgG con-
jugated to Cy™3 (Jackson ImmunoResearch Laboratories Inc.,
West Grove, PA, USA). After washing, immunofluorescent signals
were viewed using an inverted Leica TCS SP2 confocal laser scan-
ning microscope with oil-immersion lens (×63). Cy™3 labeled
antibody was visualized by excitation at 568 nm and detection at
600–700 nm.

The specificity of the immunostaining was evaluated by omis-
sion of the primary antibody and processed as above. Under these
conditions, no staining was observed in the vessel wall in any
experimental situation.

Quantitative analysis of fluorescence was performed with Meta-
Morph Image Analysis software. The region of interest (ROI), as
marked in Figure 3 with a dotted white line, was carefully drawn
around the inner and outer edges of the vessel wall. The intensity of
fluorescence per area within each ROI was measured in two rings
of each animal and the results were expressed as arbitrary units.
All measurements were conducted blind. Images of the natural
autofluorescence of elastin were also taken. Autofluorescence was
visualized by excitation at 488 nm and detection at 490–535 nm.

REAL-TIME QUANTITATIVE RT-PCR
Total RNA (tRNA) was isolated using Trizol (TRI Reagent) from
frozen MRA according to the manufacturer’s protocol. tRNA qual-
ity was evaluated by electrophoresis on a denaturing agarose
gel (1%); tRNA concentration and purity were determined by
measuring absorbance at 260 and 280 nm by spectrophotometry
(Nanodrop ND 1000, Thermo Scientific). The samples with intact
ribosomal RNA bands and with A260/A280 ratio between 1.8 and
2.0 were used for complementary DNA (cDNA) synthesis.

Using a commercial kit (High-Capacity cDNA Reverse Tran-
scription Kit,Applied Biosystems, Foster City, CA, USA), following
the manufacturer’s instructions, 1 μg of tRNA was inversely tran-
scribed to cDNA in 25 μl reaction volume, containing reaction
buffer, deoxynucleoside triphosphate (dNTPs), aleatory probes,
Reverse Transcriptase (MultiScribe reverse Transcriptase), and
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DEPC-treated water. The reaction takes place in a thermocycler
(Peltier Thermal Cycler PTC-200, Bio-Rad, Hercules, CA, USA)
for 10 min at 25˚C (Anneal step), following of an extension
step at 37˚C for 2 h and a final step at 85˚C for 5 min (Heat-
inactivation). Gene expression for the subunits of NAD(P)H-
oxidase, Nox-1, p22phox, and p47phox, were quantified by quan-
titative real-time PCR based on Sybr-Green fluorescence using
the 18S ribosomal subunit of RNA as internal control with a
GeneAmp 7500 PCR system (Applied Biosystems) following the
manufacturer’s instructions: first step of polymerase activation
at 95˚C for 10 min and 40 cycles composed of 2 steps, dena-
turing at 95˚C for 15 s and anneal/extension at 60˚C for 1 min.
The specific primer sequences for rodent were: 18S (Hs99999901
s1); Nox-1 (forward 5′-CCTTCCATAAGCTGGTGGCAT-3′ and
reverse 5′-GCCATGGATCCCTAAGCAGAT-3′), p22phox (for-
ward: 5′-GGCCATTGCCAGTGTGATCTA-3′ and reverse 5′-
TGCTTGATGGTGCCTCCAA-3′) and p47phox (forward 5′-
AGGAGATGTTCCCCATTGAGG-3′ and reverse 5′-CAGTCCCATG
AGGCTGTTGAA-3′). Primers were designed from conserved
regions of the studied genes. qRT-PCR reactions were set follow-
ing the manufacture’s conditions. Ct values obtained for each gene
were referenced to r18S (ΔCt) and converted to the linear form
using the term 2−ΔCt as a value directly proportional to the copy
number of cDNA and initial quantity of mRNA (Novensa et al.,
2010).

VESSEL ORGAN CULTURE
All MRA were washed three times in PBS supplemented with
penicillin (1000 U/ml) and streptomycin (1 mg/ml; Pen-Strep).
Afterward, vessels were equilibrated for 30 min in Dulbecco’s mod-
ified Eagle’s medium supplemented with Pen-Strep (200 mM)
and 0.001% fetal calf serum at 37˚C in an atmosphere of 5%
CO2 in a culture incubator. The medium was then replaced by
a fresh medium with or without 1 ng/ml ET-1 (Alexis biochemi-
cals, Farmingdale, NY, USA) and incubated for 3 or 6 h. Afterward,
arteries were prepared for evaluation of O.−

2 production, as indi-
cated above. This organ culture model was chosen to avoid phe-
notypic alterations of smooth muscle cells, which can occur in cell
culture, and to preserve the in vivo cell-to-cell and cell-to-matrix
interactions. Vessels were incubated in culture medium in ster-
ile conditions to assess a direct effect of ET-1 in O.−

2 production
without the interference of endotoxin contaminants.

MEASUREMENT OF O.−
2 PRODUCTION

The oxidative fluorescent dye dihydroethidium (DHE), which in
the presence of superoxide anion is oxidized to ethidium bromide,
was used to evaluate production of O.−

2 in situ, as described previ-
ously (Jiménez-Altayó et al., 2006; Martinez-Revelles et al., 2008).
Briefly, frozen tissue segments were cut into 14 μm thick sections
and placed on a glass slide. Serial sections were equilibrated under
identical conditions for 30 min at 37˚C in Krebs-HEPES buffer (in
mM: NaCl 130, KCl 5.6, CaCl2 2, MgCl2 0.24, HEPES 8.3, glucose
11, pH 7.4). Fresh buffer containing DHE (2 μM) was applied
topically onto each tissue section, cover-slipped, and incubated
for 30 min in a light-protected humidified chamber at 37˚C, and
then ethidium bromide fluorescence (Ex 488 nm and Em 610 nm)
was viewed by confocal laser scanning microscopy (×63), using

the same imaging settings in each case. Quantitative analyses of
O.−

2 production was performed with MetaMorph Image Analysis
software. The ROI, as marked in Figure 5 with a dotted white line,
was carefully drawn around the inner and outer edges of the ves-
sel wall. The intensity of fluorescence per area within each ROI
was measured in two rings of each animal and the results were
expressed as arbitrary units. All measurements were conducted
blind.

STATISTICAL ANALYSIS
Results are expressed as mean ± SEM of the number of rats.
Treatment dependence of structural or mechanical properties was
assessed using two-way (pressure, treatment) analysis of variance
(ANOVA), with repeated measures on the pressure factor. In the
case of a single factor, unpaired Student’s t -test was used. Data
analysis was carried out using GraphPad Prism v4. A value of
P < 0.05 was considered significant.

RESULTS
Body weight was measured before (0 h) and after (24 h) surgery.
Similar body weights were observed in SO (0 h: 338 ± 8.40 g;
24 h: 323.39 ± 8.22 g, n = 31), IO (0 h: 352.77 ± 9.90 g; 24 h:
335.69 ± 9.30 g, n = 26), and IO + TEZ (0 h: 360.86 ± 10,70 g;
24 h: 350.14 ± 10.79 g, n = 7) rats. Plasma levels of ET-1 were
enhanced at 24 h after onset of reperfusion (SO: 5.30 ± 0.69 pg/ml;
IO: 13.29 ± 2.41 pg/ml, n = 5–7; P < 0.05).

EFFECT OF MESENTERIC I/R ON VASCULAR STRUCTURE AND
MECHANICS
Increase of intraluminal pressure markedly augments lumen and
vessel diameters in MRA. Changes in vessel diameter (Figure 1A)
were slightly greater in IO compared to SO rats, while no differ-
ences were observed in changes in lumen diameter (Figure 1B). As

FIGURE 1 | Effect of mesenteric I/R on structural parameters from fully

relaxed rat mesenteric resistance arteries. (A) Vessel
diameter-intraluminal pressure. (B) Lumen diameter-intraluminal pressure.
(C) Wall thickness-intraluminal pressure. (D) Cross-sectional area
(CSA)-intraluminal pressure. Values are the mean ± SEM of n = 9–10.
*P < 0.05 by two-way ANOVA.
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FIGURE 2 | Effect of mesenteric I/R on mechanical properties from fully relaxed rat mesenteric resistance arteries. (A) Stress–strain (Di/Do). (B) Wall
stress-intraluminal pressure. Do, internal diameter at 3 mmHg; Di, observed internal diameter from a given intravascular pressure. Values are the mean ± SEM
of n = 9–10.

Table 1 | Comparison of morphological parameters in pressurized

segments of mesenteric resistance artery from SO and IO rats.

SO IO

Wall thickness (μm) 24.45 ± 0.62 32.11 ± 2.84*

Adventitial thickness (μm) 10.17 ± 0.35 14.62 ± 2.64

Media thickness (μm) 14.29 ± 0.69 17.5 ± 1.30*

Number of AC/mm2 2251.09 ± 171.64 3014.71 ± 464.85

Number of SMC/mm2 6071 ± 170 6300 ± 240

Number of EC/mm2 1870 ± 60 1999 ± 76

Pressured (70 mmHg)-fixed intact arteries were incubated with 0.01 mg/ml

Hoechst 33342 to stain cell nuclei. The images were taken from slide-mounted

vessels with a ×63 oil-immersion objective, zoom ×1, with a laser scanning con-

focal microscope. Values are means ± SEM of n = 7. AC, adventitial cells; SMC,

smooth muscle cells; EC, endothelial cells. *P < 0.05 SO vs. IO by unpaired

Student’s t-test.

a consequence, changes of WT (Figure 1C) and CSA (Figure 1D)
with increasing pressure were higher (P < 0.05) in MRA from IO
compared with SO rats. Nevertheless, W/L was not modified after
mesenteric I/R (not shown).

To determine the effect of mesenteric I/R in passive mechan-
ical properties of the vascular wall, stiffness, and wall stress were
analyzed. MRA from IO rats showed decreased stiffness (increased
distensibility), as evidenced by the smaller value of β (SO: 6.8 ± 0.5,
n = 10; IO: 5.6 ± 0.2, n = 9; P < 0.05) and the rightward shift
of the stress–strain relationship (Figure 2A). In contrast, wall
stress (Figure 2B) was similar in arteries from both groups of
rats.

CHANGES INDUCED BY MESENTERIC I/R ON VASCULAR MORPHOLOGY
The morphological measurements from intact vessels by confo-
cal microscopy are reported in Table 1. After I/R, wall and media
thickness were increased (P < 0.05), but adventitia thickness and
the number of adventitial, smooth muscle, and endothelial cells

was not significantly modified (Table 1). Furthermore, the length
and width of smooth muscle cell nuclei were similar in vessels
from SO and IO animals (not shown).

EFFECT OF MESENTERIC I/R IN COLLAGEN EXPRESSION AND ELASTIN
CONTENT AND ORGANIZATION
In MRA from SO animals, collagen type I and III, the major colla-
gen types found in arteries,were mainly expressed in the outer layer
coinciding with the adventitia (Figure 3A). After I/R, a marked
increase of collagen I/III immunofluorescence was seen in all three
layers of the vascular wall (Figure 3A). Quantification of the fluo-
rescent signal (Figure 3B) showed an increase (P < 0.01) in vessels
from IO rats reflecting that collagen I/III production was enhanced
after I/R.

The IEL maximal intensity projections from SO and IO rats
can be seen in Figure 3C. Quantification of the IEL charac-
teristics showed that the total fenestrae number was increased
(P < 0.05) after I/R (Figure 3D). Nevertheless, IEL thickness (SO:
6.3 ± 0.3 μm; IO: 6.4 ± 0.3 μm, n = 5–6), average fluorescence
intensity per pixel (SO: 61.2 ± 6.6; IO: 70.9 ± 6.9, n = 5–6) and
fenestrae area (SO: 20.2 ± 1.8 μm2; IO: 17.7 ± 0.9 μm2, n = 5–6)
were not modified by I/R.

EFFECT OF MESENTERIC I/R ON ET-1 EXPRESSION
Fluorescent signal for protein expression of ET-1 was slightly
detected in the endothelial and adventitial layer of rings from SO
animals but increased (P < 0.05) after I/R (Figure 4).

INFLUENCE OF MESENTERIC I/R OR ET-1 IN O.−
2 PRODUCTION

Low ethidium bromide fluorescence was observed in MRA wall
from SO rats (Figure 5A). After I/R, the level of fluorescence was
increased (P < 0.01) along the vessel wall (Figure 5B), suggesting
an increase of O.−

2 production by I/R.
After a 3- or 6-h incubation period with culture medium, weak

ethidium bromide fluorescence was observed along the MRA wall
(Figure 5C). However, the fluorescent signal was increased all over
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FIGURE 3 | (A) Representative photomicrographs and (B) quantification of
collagen I/III immunofluorescence of confocal microscopic sections of
mesenteric resistance arteries from SO and IO rats. ADV, adventitial layer;
END, endothelial layer; MED, media layer; IEL, internal elastic lamina; ROI,
region of interest (marked with a dotted white line). (C) Confocal projections
of the IEL and (D) quantitative analysis of total number of fenestrae in the IEL

of mesenteric resistance arteries from SO and IO rats. In (C,D) vessels were
pressure-fixed at 70 mmHg and mounted intact on a slide. Projections were
obtained from serial optical sections captured with a fluorescence confocal
microscope (×63 oil-immersion objective, zoom ×1). Image size,
238 μm × 238 μm. Values are the mean ± SEM of n = 5–6. *P < 0.05 by
unpaired Student’s t -test.

the vessel wall after either 3 (P < 0.05) or 6 h (P < 0.01) incubation
with ET-1 (Figure 5D), reflecting an increase in O.−

2 production.
Analysis of mRNA levels of NAD(P)H-oxidase subunits (major

source of vascular O.−
2 ) shows that Nox-1, p22phox, and p47phox

were present in MRA and marked enhanced (P < 0.05) after I/R
(Figure 6).

PROTECTIVE EFFECTS OF TEZOSENTAN AGAINST I/R INDUCED
CHANGES
In SO animals, pre-treatment with tezosentan had no effect on any
of the parameters studied (results not shown, n = 4).

Tezosentan administration prevented the increase in vessel
diameter (Figure 7A), WT (Figure 7C), and CSA (Figure 7D)
observed in MRA after I/R. The endothelin receptor antagonist
not only prevented the increase in WT and CSA in IO rats, but
also significantly decreased those parameters compared to SO rats
(Figure 7).

The effect of the dual endothelin antagonist on the mechanical
properties of the vascular wall was also determined. The decrease
of MRA stiffness observed after I/R was not modified by tezosen-
tan (TZS) treatment, as evidenced by the β value (SO: 4.9 ± 0.01,
n = 8; IO: 4.4 ± 0.18, n = 6; IO + TZS: 4.3 ± 0.09, n = 5; P < 0.01
SO vs. IO; P < 0.001 SO vs. IO + TZS) and the rightward shift
of the stress–strain relationship (Figure 7E). However, tezosentan
increased wall stress (P < 0.01) in IO (Figure 7F) but not in SO
rats (results not shown).

Treatment with tezosentan also prevented the increase in col-
lagen I/III expression observed in the vascular wall after I/R
(Figures 8A,B). Furthermore, in vessels from IO rats tezosen-
tan diminished the increase in the level of ethidium bromide
fluorescence (Figure 8C) and the enhanced mRNA levels of

FIGURE 4 | (A) Representative photomicrographs and (B) quantification of
ET-1 immunofluorescence of confocal microscopic sections of mesenteric
resistance arteries from SO and IO rats. ADV, adventitial layer; END,
endothelial layer; MED, media layer; IEL, internal elastic lamina. Image size,
238 μm × 238 μm. Values are the mean ± SEM of n = 6. *P < 0.05 by
unpaired Student’s t -test.

NAD(P)H-oxidase subunits Nox-1 and p22phox but not p47phox

(Figure 8D).
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FIGURE 5 | (A,C) Representative photomicrographs and (B,D)

quantification of ethidium bromide fluorescence by confocal
microscope in sections of mesenteric resistance arteries from
SO and IO rats (upper panel); or in cultured mesenteric resistance
arteries from non-operated rats incubated with or without ET-1

(lower panel). ADV, adventitial layer; END, endothelial layer; MED, media layer;
IEL, internal elastic lamina; ROI, region of interest (marked with a dotted
white line). Image size, 238 μm × 238 μm. Values are the mean ± SEM of
n = 7–10. *P < 0.05; **P < 0.01 SO vs. IO or control vs. ET-1 by unpaired
Student’s t -test.

DISCUSSION
Alterations in resistance arteries critically impact regulation of
blood pressure and the regional distribution of blood flow (Inten-
gan and Schiffrin, 2001; Martinez-Lemus et al., 2009; Van den
Akker et al., 2010). The pathophysiology of mesenteric ischemia is
based upon insufficient blood flow to meet the metabolic demand
of the bowel and often involves cardiovascular complications (Sise,
2010). The ability of altered structural and mechanical proper-
ties of resistance arteries to contribute to cardiovascular disease
(Intengan and Schiffrin, 2001; Martinez-Lemus et al., 2009) raises
the theory that the integrity of MRA properties is disrupted after
mesenteric I/R. In the present study, we demonstrated that after
90 min superior mesenteric occlusion followed by 24 h reperfu-
sion, MRA structural and mechanical properties are modified, and
we studied the mechanisms underlying those changes.

Our results show that mesenteric I/R increased WT and CSA
of the MRA indicating hypertrophic remodeling. Nevertheless,

arterial remodeling did not result in reduced luminal diameter.
Recently, it has become evident that development of hypertro-
phy accompanied by unchanged lumen diameter could contribute
to target organ damage (Sonoyama et al., 2007; Khavandi et al.,
2009). Changes in arterial wall morphology may be influenced
by extracellular matrix (ECM) deposition and/or changes in the
number or size of the different cell types. In the present study, we
have observed that I/R induce an increase in the WT paralleled by
enlargement of the media layer that could not be explained by cell
proliferation and growth. Collagen is an important component of
the ECM and among different types, collagen type I and III are
the most abundant in the vascular wall (Murata et al., 1986). The
fact that collagen I/III expression was augmented after I/R seems
to explain, at least in part, the observed hypertrophic remodeling.
Furthermore, there is a large body of evidence suggesting a key
role for oxidative stress in hypertrophic remodeling of blood ves-
sels (Baumbach et al., 2006; Jiménez-Altayó et al., 2009) and heart
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FIGURE 6 | Comparative analysis of mRNA levels of the

NAD(P)H-oxidase subunit Nox-1 (A), p22phox (B), and p47phox (C) from

SO and IO rats. mRNA levels are expressed as 2−Δct using 18S as internal
control. Data are the mean ± SEM of n = 6–7. *P < 0.05 by unpaired
Student’s t -test.

(Takimoto and Kass, 2007). Thus, the increase in O.−
2 production

and Nox-1, p22phox, and p47phox mRNA levels observed in MRA
after I/R lead us to hypothesize that oxidant mechanisms may also
be involved in the hypertrophic response.

Vascular mechanical properties like arterial stiffness have an
independent predictive value for cardiovascular complications
(Laurent et al., 2001; Duprez and Cohn, 2007). In the present study
wall stiffness was seen to be reduced after mesenteric I/R. In agree-
ment, decreased stiffness (increased distensibility) was previously
reported in middle cerebral artery of WKY rats after cerebral I/R
(Jiménez-Altayó et al., 2007). Decreased stiffness may help to avoid
lumen narrowing that could occur secondary to hypertrophic
remodeling (Intengan and Schiffrin, 2001). Vascular mechanical
properties are also influenced by ECM proteins. Generally, colla-
gen contributes to the enhanced stiffness in hypertension (Sharifi
et al., 1998; Intengan et al., 1999; Briones et al., 2010). As described
above, MRA from ischemic rats showed increased collagen I/III
expression yet decreased stiffness. Similar to these findings, other
groups have also reported this paradoxical enhancement in com-
pliance despite an increase in collagen, either in subcutaneous
arteries from hypertensive individuals (Intengan et al., 1999) or
MRA from Type-2 diabetic rats (Sachidanandam et al., 2009). A
possible explanation might be that deposition of new collagen
could not affect vascular compliance at the time point that was
analyzed. In this regard, studies have described an increased depo-
sition of collagen in the early stages of hypertension, even though
an increased stiffness only occurs in advanced stages of hyper-
tension (Intengan and Schiffrin, 2001). Therefore, in addition to
altered collagen content, its organization may be essential to defin-
ing the stiffness of the arterial wall (Intengan and Schiffrin, 2001;
Briones et al., 2010).

Another factor that could also be important in determining
vascular compliance is the content and organization of elastin
(Intengan and Schiffrin, 2001). The present results showed that

mesenteric I/R altered the organization but not the content of IEL
elastin. Changes in vascular stiffness have also been associated with
alterations in IEL fenestrae area (Boumaza et al., 2001; Briones
et al., 2003; Jiménez-Altayó et al., 2007). However, our results did
not show a significant change in fenestrae area but rather point to
new fenestrae formation, since the total number of IEL fenestrae
was significantly increased after I/R. Interestingly, increase of dis-
tending pressure has been associated to an augmented fenestrae
number in carotid arteries from WKY rats, probably by fragmenta-
tion of large fenestrations (Boumaza et al., 2001). A similar process
might be occurring in mesenteric I/R, most likely in early stages
following reperfusion, where increases in perfusion pressure have
been reported (Van der Hoven et al., 2001). We have hypothesized
that the observed increase in the total number of IEL fenestrae,
without significant changes in their area, might also be associ-
ated to increased distensibility. Thus, stress in the vicinity of the
fenestrations, especially in large holes, may be many times higher
than mean stress of the IEL (Wong and Langille, 1996). It is there-
fore possible that newly formed fenestrae, smaller in nature, could
buffer an excessive stress concentration in the IEL, probably repre-
senting an adaptive mechanism, as has been previously suggested
in hypertension (Boumaza et al., 2001; Briones et al., 2003).

Plasma levels of ET-1 were elevated after mesenteric I/R, as
previously reported (Zhang et al., 2008). ET-1 usually acts as
autocrine or paracrine hormone, and therefore tissue levels of ET-
1 are normally higher than those found in the peripheral blood
(Masaki, 2004). Interestingly, our findings demonstrated that the
increment in plasma ET-1 levels was paralleled by enhancement
of ET-1 expression and O.−

2 production along MRA wall. More-
over, incubation of cultured MRA with ET-1 induced an increase
in O.−

2 production suggesting a direct association of increased
ET-1 and O.−

2 generation after I/R. Supporting this hypothesis,
the treatment with tezosentan, a dual ET receptor antagonist,
prevented the observed increase in O.−

2 production and mRNA
levels of NAD(P)H-oxidase subunits Nox-1 and p22phox in MRA
from IO rats. These findings agree with previous studies indicat-
ing that ET-1 increases reactive oxygen species (ROS) production
in the vasculature (Li et al., 2003; Romero et al., 2009). Thus,
while increased plasma ET-1 levels might contribute to the remote
organ injury described after mesenteric I/R (Mitsuoka et al., 1999),
it is feasible that ET-1 released locally could participate in the
O.−

2 formation in MRA. In addition, previous studies showed
that antagonism of the ETA receptor partially prevented ECM
deposition and matrix metalloproteinase activation in middle
cerebral arteries in a Type-2 diabetes model (Harris et al., 2005).
Hence, these evidences could lead us to speculate that the induc-
tion of O.−

2 production by ET-1 in MRA might be involved in
the hypertrophic response observed after mesenteric I/R. This
hypothesis is also supported by studies illustrating that ET-1-
mediated generation of ROS is associated to cardiac hypertrophy
(Xu et al., 2004) and is involved in the hypertrophic pathways
in vascular smooth muscle cells (Daou and Srivastava, 2004). In
transgenic mice that selectively overexpress ET-1 in the endothe-
lium, ET-1 has been described to induce hypertrophy of MRA
in part by a mechanism that involves the activation of vascu-
lar NAD(P)H-oxidase (Amiri et al., 2004). Corroborating these
observations, treatment with tezosentan prevented the increase of
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FIGURE 7 | Influence of tezosentan (TZS) treatment on

structural and mechanical parameters induced by I/R from fully

relaxed mesenteric resistance arteries. (A) Vessel
diameter-intraluminal pressure. (B) Lumen diameter-intraluminal
pressure. (C) Wall thickness-intraluminal pressure. (D) Cross-sectional area

(CSA)-intraluminal pressure. (E) Stress–strain (Di/Do). (F) Wall
stress-intraluminal pressure. Do, internal diameter at 3 mmHg; Di, observed
internal diameter from a given intravascular pressure. Values are the
mean ± SEM of n = 6–8. *P < 0.05; **P < 0.01; ***P < 0.001 by
two-way ANOVA.

collagen I/III expression and the hypertrophic remodeling after
I/R. Nevertheless, it should be noted that tezosentan treatment
not only prevented the hypertrophic remodeling but induced a
wall hypotrophy and increase of stress after I/R. Although we do
not have a clear explanation for those observations, the effect of
tezosentan seems to be linked to I/R, since the ET receptor antago-
nist was without effect in vessels from SO rats. More experiments
are needed to further clarify these unexpected effects of tezosentan
after I/R.

In summary, we demonstrate for the first time that 90 min of
superior mesenteric artery occlusion followed by 24 h reperfusion
induce MRA structural and mechanical alterations. We show that
structural alterations are linked to collagen deposition leading to
wall hypertrophy. We demonstrate that the observed increase in
ET-1 is associated to O.−

2 formation contributing to MRA remodel-
ing. We also suggest a relationship between increased IEL fenestrae
number and decrease of stiffness, which could represent a mech-
anism for increasing blood flow. However, decreased stiffness to

avoid lumen narrowing may initially be adaptive but become mal-
adaptive associated with wall hypertrophy, thus contributing to
target organ damage (Sonoyama et al., 2007; Khavandi et al.,
2009). Furthermore, treatment with a dual ET receptor antagonist
1 h before vessel occlusion might exert beneficial hemodynamic
effects after mesenteric I/R through prevention of hypertrophy
and preservation of distensibility in MRA. Our study opens up a
potential new avenue for reducing the harmful consequences of
I/R, implicates ET-1 and oxidative stress in vascular remodeling
observed after mesenteric I/R, and contributes to understand-
ing the mechanism by which ET receptor antagonists exert their
beneficial effects on mesenteric I/R (Lugowska-Umer et al., 2008).
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immunofluorescence; (C) ethidium bromide fluorescence and (D) mRNA
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mesenteric resistance arteries from IO rats. ADV, adventitial layer; END,

endothelial layer; MED, media layer; IEL, internal elastic lamina. Image size,
238 μm × 238 μm. Data are the mean ± SEM of n = 6–8. **P < 0.01;
***P < 0.001 SO vs. IO and ++P < 0.01; +++P < 0.001 IO vs. IO +TZS by
one-way ANOVA followed by Tuckey test.
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