
ORIGINAL RESEARCH ARTICLE
published: 08 February 2012

doi: 10.3389/fphys.2012.00015

Criticality in large-scale brain fMRI dynamics unveiled by a
novel point process analysis
EnzoTagliazucchi 1,2, Pablo Balenzuela,1,3, Daniel Fraiman3,4 and Dante R. Chialvo3,5,6*

1 Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
2 Department of Neurology and Brain Imaging Center, Goethe-University Frankfurt, Frankfurt am Main, Germany
3 Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
4 Departamento de Matemática y Ciencias, Universidad de San Andrés, Buenos Aires, Argentina
5 Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
6 David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA

Edited by:

Zbigniew R. Struzik, The University of
Tokyo, Japan

Reviewed by:

Riccardo Barbieri, Massachusetts
Institute of Technology, USA
Masanori Shimono, Indiana
University, USA

*Correspondence:

Dante R. Chialvo, Department of
Physiology, Northwestern University,
303 East Chicago Avenue, Chicago, IL
60611, USA.
e-mail: dchialvo@ucla.edu

Functional magnetic resonance imaging (fMRI) techniques have contributed significantly
to our understanding of brain function. Current methods are based on the analysis of
gradual and continuous changes in the brain blood oxygenated level dependent (BOLD)
signal. Departing from that approach, recent work has shown that equivalent results can
be obtained by inspecting only the relatively large amplitude BOLD signal peaks, suggesting
that relevant information can be condensed in discrete events.This idea is further explored
here to demonstrate how brain dynamics at resting state can be captured just by the timing
and location of such events, i.e., in terms of a spatiotemporal point process. The method
allows, for the first time, to define a theoretical framework in terms of an order and control
parameter derived from fMRI data, where the dynamical regime can be interpreted as one
corresponding to a system close to the critical point of a second order phase transition.
The analysis demonstrates that the resting brain spends most of the time near the critical
point of such transition and exhibits avalanches of activity ruled by the same dynamical and
statistical properties described previously for neuronal events at smaller scales. Given the
demonstrated functional relevance of the resting state brain dynamics, its representation
as a discrete process might facilitate large-scale analysis of brain function both in health
and disease.
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1. INTRODUCTION
Important efforts to understand brain function, both in health and
disease, are concentrated in the analysis of large-scale spatiotem-
poral patterns of brain activity available from fMRI techniques
(Greicius et al., 2003; Beckmann and Smith, 2004; Beckmann et al.,
2005; Raichle, 2006; Fox and Raichle, 2007; Smith et al., 2009),
allowing for instance the unraveling of the functional connectivity
between all possible brain regions, as is done under the Connec-
tome project (Sporns et al., 2005; Sporns, 2011)1. At the same time,
similar efforts are dedicated to place brain phenomenology in the
context of statistical physics theory (Chialvo, 2010; Rolls and Deco,
2010; Sporns, 2010; Steyn-Rose and Steyn-Rose, 2010). Novel tech-
niques of analysis are needed because of the increasing difficulty
in managing extremely large data sets, generated by advances in
imaging technology continuously improving temporal and spatial
resolution.

Recent work has shown that important features of brain func-
tional connectivity at rest can be computed from the relatively
large amplitude BOLD fluctuations (Tagliazucchi et al., 2010a,b)
after the signal crosses some amplitude threshold. Here we pursue

1http://www.humanconnectomeproject.org/

further the same general idea of data reduction. In particular we
are interested in a method often used to study the structure and
properties of attractors of dynamical systems, which consists in the
introduction of a Poincaré section. By definition, this approach
decreases the dimension of the phase space and consequently the
size of the data sets, facilitating in this way further numerical inves-
tigations. In general, there exist two possibilities: the first one is to
analyze the set of points which are the coordinates of the successive
intersections of the secant Poincaré plane by the phase space trajec-
tories. The second possibility is to study the series of time intervals
between the consecutive intersections. The resulting time intervals
constitute a so-called point process (Cox and Isham, 1980), a con-
struction useful in many areas of science, including neuroscience.
It has been shown that under certain conditions the most impor-
tant statistical features of the dynamical regime can be condensed
into a point process (Packard et al., 1980; Roux et al., 1980; Takens,
1980; Roux and Swinney, 1981; Grassberger and Procaccia, 1983;
Castro and Sauer, 1997).

The motivation to attempt a similar approach in fMRI data
is strengthened by the observation that, in response to neuronal
activation, the BOLD signal often repeats a stereotypical pat-
tern (Friston et al., 1995, 1998; Aguirre et al., 1998; Tagliazucchi
et al., 2010a,b). This feature suggests that it should be possible to
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compress the data sets using the temporal marks of a Poincaré
section of the BOLD signal. This is the hypothesis explored here,
which implies that, in principle, the entire brain resting state func-
tional connectivity can be reconstructed solely on the basis of the
time and location of the BOLD signal threshold crossings. Besides
its practical importance for fMRI signal processing, this approach
may provide further clues on the dynamical organization of the
resting state brain activity.

The paper is organized as follows: the results section starts
with the definition of the point process, as well as its connection
with deconvolution techniques. This is followed by the replication
of the fMRI brain resting state networks (RSN) maps using the
point process. As further validation, the method’s ability to eval-
uate functional connectivity changes is demonstrated for a motor
task and for a pathological condition. The spatiotemporal statistics
are then considered, revealing novel aspects of the brain dynam-
ics which are scale-invariant, consistent with that shown for other
systems at the critical state (Bak, 1996; Jensen, 1998; Chialvo, 2010;
Expert et al., 2011). The paper closes with a discussion on the new
questions raised by the current analysis. For readers’ convenience,
the methods are described at the end of the paper.

2. RESULTS
The fMRI dataset is reduced to a spatiotemporal point process by
normalizing each BOLD signal by its own SD, and subsequently
selecting the time points at which the signal crosses a given thresh-
old (1 SD in this case) from below, as it is shown in the example of
Figure 1. Notice that, despite the fact that in resting data there are
not explicit inputs, the average BOLD signal around the extracted
points (Figure 1B, termed rBeta function in Tagliazucchi et al.,
2010b) still resembles the hemodynamic response function (HRF)
evoked by an stimulus (Friston et al., 1995, 1998). The relation
between the point process and the underlying HRF is exposed
by the deconvolution of the BOLD signal with either the HRF
(with default parameters) or the rBeta function (Tagliazucchi et al.,

2010b) extracted from the time series in Figure 1. In both cases, as
shown in Figure 1C, the peaks of the de-convolved BOLD signal
coincide, on a great majority, with the timing of the point process
in Figure 1A. At this point a remark is needed concerning the
impulse-like signals in Figure 1C. They result from the decon-
volution of the BOLD signal with a function similar to the HRF,
and from a physiological viewpoint it can be conjectured that they
constitute short-lived events triggering the relatively slow (up to
20 s) BOLD response. Notice, however, that the bulk of the present
results is independent of the precise nature of these impulse-like
signals. They serve to illustrate that a different and already estab-
lished mathematical method (which is also amenable to a clear
physiological interpretation) leads to similar inter-event timings
than those derived from the Poincaré section. Therefore, these
results show that important information is compressed in the tim-
ing and spatial location of the extracted points. For the parameter
used here, from each voxel BOLD time series (240 samples) on
the average only 15 ± 3 points are threshold crossings (about one
point every 40 s) which corresponds to near 94% reduction of the
data (additional details, including the robustness to changes in
threshold, are discussed in the Materials and Methods Section).

2.1. RESTING STATE NETWORKS AND ACTIVATION MAPS CAN BE
DERIVED FROM A FEW POINTS

Despite the very large data reduction, we found that the informa-
tion content of the few remaining points is very high. As a proof
of principle, we first used the point process to calculate the spa-
tial location of six well known RSN maps. These maps describe
the major independent components of brain spontaneous activ-
ity, and as such they can be used as a relevant benchmark. We
used the point process to obtain the RSN maps and compare
them with maps computed from the full BOLD signal using a
well established method (probabilistic independent component
analysis – PICA; Beckmann et al., 2005). This is done by cal-
culating in six RSNs the rate of points co-occurrence (up to 2

FIGURE 1 | (A) Example of a point process (filled circles) extracted from
the normalized BOLD signal. Each point corresponds to a threshold
(dashed line at 1 SD) crossing from below. (B) Average BOLD signal
(from all voxels of one subject) triggered at each threshold crossing.

(C) The peaks of the de-convolved BOLD signal, using either the
hemodynamic response function (HRF) or the rBeta function
(Tagliazucchi et al., 2010b) depicted in (D), coincide on a great majority
with the timing of the points shown in (A).
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FIGURE 2 | RSN maps constructed with the point process compare

very well with standard PICA of the raw continuous data. (A) PICA
spatial maps (left column) and rate of points conditional to activity at a
given seed (rightmost three columns, each one corresponds to a different
seed). (Slice z coordinates are −12, 0, 0, 36, 20, 26 for RSN 1–6; for seed
coordinates seeTable 1). Scales for PICA (ZPICA) and conditional rate (ZCR)
calculations are depicted in the inset. (B) Conditional rate maps
constructed using 3, 6, and 12 events of the point process at the ANGL
seed (averaged for ten subjects. Slice coordinates are x = −4, y = −60,
z = 18). (C) Correlation between RSN5 (the default-mode network, DMN)
PICA-derived map and the point process-derived conditional rate maps, as

a function of the number of points used. Arrows denote the examples of
(B). Z scores (number of points as degrees of freedom) with the line of
95% confidence are plotted in the inset. (D) The point process is able to
track the statistical differences between the functional connectivity maps
of a group of chronic back pain patients and healthy controls already
reported in (Tagliazucchi et al., 2010a). The conditional rate of points (top)
reproduces well the standard seed correlation approach (bottom) derived
from the same data. (E) The functional connectivity maps during a finger
tapping task constructed from the conditional rate of points (top) compare
well with the seed correlation maps derived from the same data
(Tagliazucchi et al., 2010b).

time units later in this case) between representative sites (“seeds”)
and all other brain voxels and presented as maps in Figure 2A–C
(see Materials and Methods for a detailed explanation of the

computation). The seeds locations were selected according with
previous work (see coordinates in Table 1 of Materials and Meth-
ods Section). The similarities between our conditional rate maps
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Table 1 | MNI coordinates for the seeds used in Figure 2.

RSN Seed 1 Seed 2 Seed 3

RSN1 (2, −82, 20)

RSN2 (30, −86, 16) (−30, −86, 16)

RSN3 (2, 6, 48) (−54, 2, −8) (58, 2, −4)

RSN4 (−2, −14, 48) (−38, −14, 52) (50, −14, 52)

RSN5 (2, 54, −8) (50, −66, 28) (−38, −70, 28)

RSN6 (34, 46, 20) (−34, 42, 20) (10, −42, 48)

and the respective PICA maps (rightmost three columns and left
column of Figure 2A respectively) is already obvious to the naked
eye and confirmed by the correlation plotted in Figure 2C. The
calculation shows that despite using less than 6% of the raw fMRI
information, about 5 points (on average) are enough to obtain
RSN maps that are highly correlated (95% confidence) with those
obtained using PICA of the full BOLD signals. Similar good per-
formance can be demonstrated in tracking physio-pathological
changes of brain activation. This is presented in Figure 2D which
shows the statistical differences in functional connectivity between
a group of chronic back pain (CBP) patients and healthy controls
already reported in Tagliazucchi et al., 2010a; comparison with
seed correlation based in the DMN, increased correlation with
bilateral insula in CBP). Finally, the data analysis from a finger
tapping task (Tagliazucchi et al., 2010b) demonstrates also the
merits of the current approach when compared with a seed corre-
lation based in primary motor cortex contralateral to the tapping
hand (Figure 2E).

2.2. A PHASE TRANSITION IN THE DYNAMICS OF THE ACTIVE
CLUSTERS

The results in the previous section show that the point process
can efficiently compress the information needed to reproduce the
underlying brain activity in a way comparable with conventional
methods such as seed correlation and independent component
analysis. Importantly,while the former methods represent averages
over the entire data sets, the point process, by construction, com-
presses, and preserves the temporal information. This potential
advantage, unique of the current approach, may provide addi-
tional clues on brain dynamics. This is explored here by compiling
the statistics and dynamics of clusters of points both in space and
time. Clusters are groups of contiguous voxels with signal above
the threshold at a given time, identified by a scanning algorithm
in each fMRI volume (see Materials and Methods for details).
Figure 3A shows examples of clusters (in this case non-consecutive
in time) depicted with different colors. Typically (Figure 3B top)
the number of clusters at any given time varies only an order of
magnitude around the mean (∼50). In contrast, the size of the
largest active cluster fluctuates widely, spanning more than four
orders of magnitude.

The analysis reveals four novel dynamical aspects of the cluster
variability which hardly could have been uncovered with previous
methods. (1) At any given time, the number of clusters and the total
activity (i.e., the number of active voxels) follows a non-linear rela-
tion resembling that of percolation (Stauffer and Aharony, 1992).

FIGURE 3 |The level of brain activity continuously fluctuates above

and below a phase transition. (A) Examples of co-activated clusters of
neighbor voxels (clusters are 3D structures, thus seemingly disconnected
clusters may have the same color in a 2D slice). (B) Example of the
temporal evolution of the number of clusters and its maximum size (in units
of voxels) in one individual. (C) Instantaneous relation between the number
of clusters vs. the number of active sites (i.e., voxels above the threshold)
showing a positive/negative correlation depending whether activity is
below/above a critical value [∼2500 voxels, indicated by the dashed line
here and in (B)]. (D) The cluster size distribution follows a power law
spanning four orders of magnitude. Individual statistics for each of the ten
subjects are plotted with lines and the average with symbols. (E) The order
parameter, defined here as the (normalized) size of the largest cluster is
plotted as a function of the number of active sites (isolated data points
denoted by dots, averages plotted with circles joined by lines). The
calculation of the residence time density distribution (R. time, filled circles)
indicates that the brain spends relatively more time near the transition point
(which corresponds to about 0.4 of the largest giant cluster observed).
Notice that the peak of the R. Time in this panel coincides with the peak of
the number of clusters in (C). Note also that the variance of the order
parameter (squares) increases as expected for a phase transition. (F) The
computation of the cluster size distribution calculated for three ranges of
activity (low: 0–800; middle: 800–5000; and high >5000) reveals the same
scale invariance plotted in (D) for relatively small clusters, but shows
changes in the cut-off for large clusters.

At a critical level of global activity (∼2500 voxels, dashed horizon-
tal line in Figure 3B, vertical in Figure 3C) the number of clusters
reaches a maximum (∼100–150), together with its variability. (2)
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The correlation between the number of active sites (an index of
total activity) and the number of clusters reverses above a criti-
cal level of activity, a feature already described in other complex
systems in which some increasing density competes with limited
capacity (Stauffer and Aharony, 1992; Bak, 1996). (3) The rate at
which the very large clusters (i.e., those above the dashed line in
3B) occurs (∼ one every 30–50 s) corresponds to the low frequency
range at which RSN are typically detected using PICA (Beckmann
and Smith, 2004; Beckmann et al., 2005). (4) The distribution of
cluster sizes (Figure 3D) reveals a scale-free distribution (whose
cut-off depends on the activity level, see Figure 3F).

These four features remind of other complex systems under-
going an order-disorder phase transition (Bak, 1996; Jensen, 1998;
Tsang and Tsang, 1999; Chialvo, 2010; Tagliazucchi and Chialvo,
2011) thus suggesting further exploration. Following standard
techniques in statistical physics, two parameters were defined and
computed from the same data plotted in Figure 3C. To repre-
sent the degree of order (i.e., the order parameter), the size of the
largest cluster (normalized by the number of active sites) in the
entire brain was computed and plotted as a function of the num-
ber of active points (i.e., the control parameter). This was done for
all time steps and plotted in Figure 3E (small circles). We avoided
the use of the branching ratio (Beggs and Plenz, 2003) as a control
parameter because its estimation from the data is less than straight-
forward. It cannot be computed for each fMRI volume as required
here and only converges to a stable quantity for relatively long time
series. In addition, it requires the ad hoc definition of the number
of bins and a suitable bin-width for its computation (Beggs and
Plenz, 2003), therefore making its use cumbersome for the spa-
tiotemporal resolution of the present study. On the other hand,
the parameter used here (i.e., global level of activity) is computed
in a straightforward manner, converges relatively fast, requires no
fine tuning of parameters and has clear analogies to control para-
meters of well studied models of order-disorder transitions (the
clearest example being percolation; Stauffer and Aharony, 1992).

Several key features are worth to mention, all highly suggestive
of a phase transition: First, there is sharp increase in the average
order parameter (empty circles), accompanied by an increase of its
variability (empty squares). Second, the transition coincides with
the peak in the function discussed in Figure 3C, which accounts
for the number (not the size) of the clusters. Finally, a calculation
of the relative frequency of the number of active sites was per-
formed (i.e., residence times, filled circles) showing that the brain
spends, on the average, more time near the transition than in the
highly ordered or the highly disordered states. This is a remarkable
support for earlier conjectures suggesting that the brain at large-
scale works at criticality (Bak, 1996; Chialvo, 2010; Expert et al.,
2011; Tagliazucchi and Chialvo, 2011).

2.3. ACTIVITY SPREAD IS SCALE-FREE
The identification of a phase transition in the resting brain sug-
gested additional work to characterize its properties, including
a quantification of the dynamical properties of cluster spatial
evolution. As shown in the example of Figure 4A an activated
cluster can appear, grow to achieve a maximum size and then
disappear (or translate or divide into sub-clusters). The present
approach allows the study of two properties of the process. For

FIGURE 4 | Clusters spread throughout the brain as scale-free

avalanches. (A) Two examples of avalanches, one triggered from the visual
cortex (top) and another from insular cortex (bottom). Note that only a
partial 2D slice is depicted here since avalanches evolve in 3D. (B) Average
cluster fractal dimension D ∼ 2.15 ± 0.02 estimated by the slope of the
counts vs. length plot. Inset: derivatives between points in the main plot for
each subject. (C) Avalanche size and lifetime distribution function computed
from about 8000 avalanches in each of 10 subjects (individual subjects with
smaller symbols). While avalanche size follows a power law, their lifetimes
density decreases faster as found previously for neuronal avalanches
(Beggs and Plenz, 2003). The average cluster fractal dimension is plotted as
a function of the number of active sites in (D) and of the number of clusters
in (E).

each cluster we first measured a static space filling property, the
average fractal dimension D. This is shown in Figure 4B which
illustrates that D ∼ 2.15 ± 0.02. While the fractal dimension D
departs from this value for the highly ordered and disordered
regimes (Figures 4D,E), the residence time distribution computed
in Figure 3E indicates that most of the time the level of activ-
ity is around the critical value, thus on average D ∼ 2. Second,
we looked at the dynamics of the cluster propagation, which was
found to happen in bursts. The statistics in Figure 4C shows that
avalanches could last up to 30 s. with sizes up to 103 and have
no preferred scale, a behavior very similar to that of neuronal
avalanches described previously in smaller scales (Beggs and Plenz,
2003; Petermann et al., 2009; Chialvo, 2010).

3. DISCUSSION
As far as we know, this is the first attempt to describe large-scale
brain fMRI dynamics as a point process and the first to uncover a
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phase transition in the dynamics of the active clusters, with scale-
free avalanching events in the whole human cortex. Regarding the
point process analysis, the only previous report we are aware of
(Vedel Jensen and Thorarinsdottir, 2007) dealt with the reverse
situation: how to model the continuous fMRI signal starting from
a spatiotemporal point process.

3.1. WHY FEW POINTS SUFFICE?
At first sight, the continuous nature of the fMRI BOLD signal,
imposed by the nature of the neurovascular coupling itself (Fris-
ton et al., 1995, 1998), might have hindered the introduction of
point process methods for its analysis. The situation is analo-
gous to that of continuous rhythmic activity arising in scalp EEG
due to predominant frequencies in the spiking activity and sub-
threshold oscillations which underlie the generation of discrete
action potentials (Traub et al., 1989; Steriade et al., 1993; Con-
treras and Steriade, 1995). We have shown that the application
of HRF deconvolution gives a way to invert the process and find
the train of impulse-like signals (of whatever origin) which closely
resembles the point process. The fact that the majority of the points
coincide with the peaks of the BOLD HRF-de-convoluted signal
(i.e., Figure 1C) reinforces the view that upward going BOLD sig-
nals are non-linear events where the crossing times preserve the
most relevant information. This is in line with recent findings of
all-or-none“coherence potentials”macroscopically propagating in
the monkey cortex, as observed in local field potential recordings
(Thiagarajan et al., 2010). Therefore it seems reasonable the con-
jecture that, at this level of coarse graining, we are dealing with
all-or-none intermittent avalanching events which involve short
and long range cortical co-activations.

Another remark needs to be made concerning the HRF: while
it is true that extensive work established the fundamental details
of the brain’s BOLD HRF responding to a well defined (single or
repetitive) stimulus, less is known about the BOLD response under
the non-stationary conditions of resting state, in other words, the
nature of the resting state HRF remains unknown. A theoretical
formalism for the neuro-BOLD coupling at rest, as far as we know,
has not been attempted but probably deserves to be considered in
the future. Such studies should clarify up to what extent the HRF
function obtained from stimuli spaced by relatively long intervals
can predict the temporal evolution of the BOLD signal measured
during resting state.

3.2. SCALE-INVARIANT BRAIN DYNAMICS IS MADE UP OF
AVALANCHES

The reduction of the fMRI BOLD signal to discrete events not
only allows for the identification of well-described resting state
networks as shown in Figure 2, but also reveals that large-scale
brain activity organizes in avalanches of activity with power law
size distributions. The point process approach allowed for the first
time to identify explicitly the order and control parameters and to
define the state of the resting brain as a fluctuation around a phase
transition. The analysis shows not only that activity spreads as
scale-free avalanches resembling those seen in smaller scales (Beggs
and Plenz, 2003) but – and importantly – that the brain spends
most of the time at a level of activity which corresponds to the
critical point. These new findings add to the previous observations

that the correlation function of fMRI BOLD signals exhibits frac-
tal properties (Expert et al., 2011) and that the correlation length
of the activity measured with fMRI diverges as predicted by the
theory of phase transitions (Fraiman and Chialvo, 2010), sup-
porting the hypothesis that brain dynamics operates at a critical
point of a second order phase transition (Bak, 1996; Chialvo, 2010;
Tagliazucchi and Chialvo, 2011).

In connection with previous experiments, one must emphasize
that for a non-equilibrium system in a critical state avalanches are
observed at a wide range of temporal and spatial scales. Observa-
tions at smaller scales (Beggs and Plenz, 2003) show a clear cut-off
of the avalanche distribution at the size of the electrode array used
for the recordings (signaling that the experimental technique is
unable to sample larger events) as well as a distortion of the distri-
bution caused by sub-sampling effects (Priesemann et al., 2009).
Due to very good spatial resolution and whole brain coverage
fMRI allows to overcome these issues in the macroscopic domain
(≈1 mm). The observation of identically distributed avalanches at
this level is direct evidence that the brain spatiotemporal dynam-
ics is scale-free, as expected for a critical system. The present work
also suggests the study of intermediate scales accessible by means
of other experimental techniques to give further support for or
against this hypothesis.

The observation that large-scale brain dynamics can be traced
as discrete scale-free avalanches of activity raises the question of
the physiologically relevance encoded in the timing of these large-
scale events, already suggested by observations at smaller scales and
computational models (Kinouchi and Copelli, 2006; Shew et al.,
2009, 2011; de Arcangelis and Herrmann, 2010). For instance,
although relatively rare, avalanches in the tail of the power law
distribution emerge from a local origin and propagate as far as
the length of the entire cortex, suggesting a role in the binding
processes of far apart cortical regions. It would be interesting to
investigate whether total or partial disruption of these large events,
as well as alterations in the balance between activation and segrega-
tion into clusters are correlated with pathological conditions and
with the level of awareness of the subject. Additionally, the non-
linear relation between activated cortical tissue and number of
clusters exhibits an optimal point, in which the level of brain activ-
ity is segregated into the maximum number of spatially isolated
activations. We can hypothesize that this result is relevant to the
solution of the integration/segregation dilemma long advocated
by Tononi et al., 1994; Sporns, 2010) as the fundamental conun-
drum that the healthy cortex needs to be executing at any given
time. If our hypothesis is true, we can predict, together with inte-
gration/segregation theories of consciousness (Tononi et al., 1994;
Tononi, 2004), that a displacement of the optimal point should be
observed for brain states of diminished conscious content such as
deep sleep, anesthesia, or coma (Lee et al., 2009).

3.3. SYNCHRONY DOES NOT ALWAYS IMPLIES ORDER
A special place in the discussion should be dedicated to analyze
the similarities and differences between the definition of the order
parameter and phase transition used here and the concept of syn-
chrony widely used in previous studies. To place this point in
context, it is appropriate to recall the earlier studies a decade ago,
by Varela and colleagues (Rodriguez et al., 1999) investigating the
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brain electrical activity of subjects viewing ambiguous visual stim-
uli (perceived either as faces or as meaningless shapes). They were
able to show for the first time that “only face perception induces
a long-distance pattern of synchronization, corresponding to the
moment of perception itself and to the ensuing motor response. A
period of strong desynchronization marks the transition between
the moment of perception and the motor response” (Rodriguez
et al., 1999). These results lead to the authors to suggest that “this
desynchronization reflects a process of active uncoupling of the
underlying neural ensembles that is necessary to proceed from
one cognitive state to another” (Rodriguez et al., 1999). A number
of papers followed Varela et al. idea (Rodriguez et al., 1999) that
synchrony is physiologically relevant. At the fMRI level the tim-
ing and length of these epochs of synchrony were used recently
to infer the presence of criticality (Kitzbichler et al., 2009). The
present results indicate that while order (as defined here) implies
always synchrony, the reverse is not always true, since space is not
manifest in the definition of synchrony and then one can have a
very synchronic but (spatially) disordered pattern of brain activity.
Since our results indicate that the brain at rest spends most of its
time in a mix of order and disorder, it would be very interesting
in future studies to relate Varela’s synchrony-asynchrony concept
with the current ideas of proximity to a order-disorder transition.

3.4. AD HOC NOISE VS. NON-EQUILIBRIUM DYNAMICS
Attempts to construct biologically realistic equilibrium models
of brain networks require as a main ingredient the introduction
of (sometimes finely tuned) noise (Deco et al., 2009; Rolls and
Deco, 2010). In this type of models, without the external noise
the dynamics are stuck in a stable equilibrium state, thus noise
must be introduced ad hoc to allow sufficient variability in the
dynamical behavior of the system. One should be very careful,
however, not to over-emphasize the biological relevance of a con-
struct needed to overcome the shortcomings of a restricted class
of models. Statistical physics results tell us that dynamical fluc-
tuations around stationary states are small except near critical
points (Prigogine, 1962).On the contrary, a non-equilibrium sys-
tem undergoing criticality does not need the introduction of noise:
variability is self-generated by the collective dynamics which spon-
taneously fluctuate near the critical point (for further discussion,
see (Tagliazucchi and Chialvo, 2011)). Coincidently, the present
results show that the spatiotemporal organization of the resting
brain dynamics achieves maximum variability (i.e., Figures 3C,E)
at a particular level of activation, and the analysis of the order
and control parameters reveals that the origin of such variability
can, in fact, be traced to a phase transition. Furthermore, the level
of activity spends the largest amount of time around such transi-
tion. Then, these results point out that a different class of models
is needed: one that emphasizes non-equilibrium self-generated
variability over ad hoc introduced noise of uncertain origin.

3.5. RELATION WITH OTHER SCALES
The present results gathered in a large-scale domain can be also
analyzed at the light of earlier observations of transient states
at faster time scales, in which the scalp EEG is reduced to a
certain number of stereotypical topographical maps (i.e., EEG
microstates) (Koenig et al., 2002) and non-stationarities which

define discrete segments of electrical activity are observed (Kaplan
et al., 2005). Both descriptions of electrical scalp activity have
also been shown to exhibit properties consistent with critical
dynamics (Allegrini et al., 2010; Van De Ville et al., 2010). Fur-
ther multimodal imaging studies could link these observations
together in the context of discrete avalanches of neural activity
propagating through the cortex and determine their functional
relevance for health and disease (Greicius et al., 2004). Also,
future work on the analysis of large-scale spontaneous fMRI sig-
nals as a train of activations should take advantage of the fact
that the temporal information is not completely discarded (as
in a straightforward correlation analysis) but kept in the tim-
ing of the events. The point process extracted from the BOLD
signal can thus provide valuable information on the transient
co-activations (or co-participation in an avalanche) of different
brain regions. This measure can then be of value if correlated
with the aforementioned EEG measures of instantaneous syn-
chronization, as well with spontaneous index of perception or
task performance.

3.6. LIMITATIONS OF THE APPROACH
The most obvious limitations of the point process approach stem
from the spatiotemporal resolution of the fMRI recordings (i.e.,
TR and voxels dimensions) as well as the time constant of the
BOLD HRF. Because of these limitations it is in principle impos-
sible to distinguish two points in the process which are spaced by
less than a characteristic time, as well as to detect very small clus-
ters or avalanches whose size is smaller than the voxel dimensions.
Therefore, it is impossible to guarantee that all points and clus-
ters are included in the statistical analysis. However, since those
which may be left out have (by definition) the smallest contribu-
tions, results are unlikely to be affected by this limitation. Another
possible drawback of the method is that, while it yields more infor-
mation than other methods such as linear correlation, there is a
free parameter (threshold) to select. Nevertheless, in the Materi-
als and Methods section we show that results are robust against
different threshold choices.

3.7. SUMMING UP
Overall, the results show that the location and timing of the largest
BOLD fluctuations define a spatial point process containing sub-
stantial information of the underlying brain dynamics. Despite
the very large data reduction (>94%), the approach was vali-
dated by the favorable comparison of the conditional rate maps
of avalanching activity with those constructed with the full fMRI
BOLD signals using PICA as well by comparison with two distinct
pathophysiological conditions (resting state in CBP patients and a
finger tapping task). In addition to uncover new dynamical prop-
erties for the activated clusters, the method exposed scale-invariant
features conjectured in the past (Chialvo, 2010) which are identical
to those seen at smaller scales (Beggs and Plenz, 2003; Petermann
et al., 2009; Chialvo, 2010). For the first time, the order and control
parameters have been derived from human fMRI data allowing
the identification of a phase transition and the demonstration
that the resting brain spends most of the time near criticality.
Beyond its potential value for fMRI signal processing, the ability
of the present approach to capture relevant spatiotemporal brain
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dynamics underscoring non-linear aspects of the BOLD signal
deserves further exploration.

4. MATERIALS AND METHODS
4.1. fMRI DATA ACQUISITION AND PREPROCESSING
Data was obtained, after informed consent, from ten right-handed
healthy volunteers (9 female, 1 male; mean age = 49, SD = 12),
during 10 min, requested to keep their eyes closed and to avoid
falling asleep. The study was approved by the Clinical Research
Ethics Committee of the University of the Balearic Islands (Palma
de Mallorca, Spain). fMRI data acquisition was performed with
a GE Medical Systems Signa HDx 3 T scanner using echo-planar
sequences, 240 volumes were acquired with a TR of 2500 ms, TE of
35 ms, and 90˚ flip angle. Thirty-six slices of 64 × 64 dimensions
were obtained with a field of view of 200 mm and slice thickness
of 3 mm. Structural images consisted of a T1-weighted scans of
176 × 512 × 512 voxels, with a TR of 7176 ms, TE of 3150 ms, flip
angle of 12˚, FOV 240 mm and slice thickness of 1 mm. Preprocess-
ing of BOLD signal was performed using FMRIB Expert Analysis
Tool (Jezzard et al., 2001)2, including motion correction using
MCFLIRT, slice-timing correction using Fourier-space time series
phase-shifting, non-brain removal using BET and spatial smooth-
ing using a Gaussian kernel of full-width-half-maximum 5 mm.
Brain images were normalized to standard space with FLIRT using
the MNI 152 template and resampled to 4 mm × 4 mm × 4 mm
resolution. Resting functional data was filtered with a zero lag
finite impulse response band pass filter (0.01–0.1 Hz; Cordes et al.,
2000, 2001). fMRI data used for the Figures 2D,E, as well as the
preprocessing steps, were the same than in (Tagliazucchi et al.,
2010a) and (Tagliazucchi et al., 2010b). Melodic was used for the
PICA calculation of RSN (Beckmann and Smith, 2004) in Figure 2
as well as for denoising motion artifacts.

4.2. DEFINITION OF THE POINT PROCESS
The point process is defined by the sequences of time points at
which the BOLD signal crosses a given threshold from below.
Formally, the problem is defined in an autonomous system as

�̇x = f (�x), (1)

where the dot denotes time derivative and �x ∈ Rd . Let y = h(�x)

be a scalar observable function (such as the BOLD signal, for
instance) and consider the plot of y versus t. The times at which
y(t ) upward (or downward) crosses some predetermined thresh-
old y = yc determine a sequences of time points {tk}k=1,N which
defines the so-called point process (see Figure 5).

The Poincaré section of any given dynamical system reduces
a d-dimensional continuous time description into an associated
(d-1)-dimensional discrete map by finding the intersections of
trajectories in phase space with a surface S transverse to the flow.
If �xk ∈ S denotes the kth intersection of the trajectories with S, a
Poincaré map is defined as

�xk+1 = P(�xk). (2)

2http://www.fmrib.ox.ac.uk/fsl

FIGURE 5 | Example of a Poincaré section defined by successive

intersections of the trajectories in phase space with the plane denoted

as y = yc. The trajectory in phase space intersects the Poincaré section in
space coordinates �xc

k (tk ), which then can be used as a map of the
underlying dynamical process. Alternatively, a map can be defined by the
sequence of crossing times {tk}k=1,N if the conditions mentioned in the text
are fulfilled.

A sequence of crossing times may be taken as a Poincaré section
as representative as the typical phase space coordinates, when cer-
tain conditions are satisfied: Let �γ(�x0, t ) a solution of Eq.(1) in
an open interval I = |t 0, T | and let |�̇γ(�x0, t )| �= 0 for all t ∈ I. In
terms of the underlying dynamical system, this means that the
dynamics is not in a fixed-point or equilibrium of the system
(as one can assume for the BOLD signal and neural dynam-
ics in general). Under this condition, the arc-length, defined as
s(�x0, t ) = ∫ t

t0
|�̇γ(�x0, t ′)|dt ′, is a suitable observable in the sense of

embedding theory (Hegger and Kantz, 1997) and it is possible to
reconstruct the attractor of the system by measuring line segments
s̃(ti+1, ti) = s(�x0, ti+1) − s(�x0, ti).

The derivative of s with respect to t, ds
dt = |�̇γ(�x0, t )| = |�f (�x)|,,

allows us to rewrite equation 1 as a set of differential equations in
s : d�x/ds = �f /|�f | and this gives the possibility to use the time t as
an usual variable, which is no longer the independent parameter
but an usual coordinate as the variable �x . Thus, the embedding
theorems also apply to time or properly defined time sequences
and it is possible to reconstruct the attractor (i.e., the full prop-
erties of the underlying dynamical system) from this sequence of
times (i.e., the point process), as discussed in Hegger and Kantz
(1997).

4.3. DECONVOLUTION PROCESS
The fMRI BOLD signal was de-convoluted using the
deconvlucy.m function from Matlab3. For the Hemodynamic
Response Function (HRF) standard parameters were those pro-
vided in the SPM8 package4. The deconvolution function follows
the Lucy-Richardson algorithm (Richardson, 1972; Lucy, 1974)
which converges to the maximum likelihood estimate of the
de-convoluted process assuming a Poissonian source of noise.
The results of the deconvolution, as in the example presented
in Figure 1C, are impulse-like signals, whose underlying neural

3http://www.mathworks.com
4http://www.fil.ion.ucl.ac.uk/spm/
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mechanisms are beyond the scope of the present work. Note that
the deconvolution of all voxel’s time series is in principle pos-
sible, however its numerical implementation is several orders of
magnitude less efficient than the simple thresholding used here.

4.4. CONDITIONAL RATE MAPS
To construct the conditional rates reported in Figure 2 the point
process is defined at a seed location and at the targets through-
out the entire brain. Figure 6 illustrates the basic procedure. The
BOLD signal is extracted from a seed region (top trace) and
the points (arrows and vertical dashed lines) are defined by the
crossings at 1 SD (horizontal dashed lines). Every time the sig-
nal at a target region crosses the threshold (asterisks) up to 2
time steps later than in the seed, the rate at the target is increased
in one unit. This rate is normalized by the number of points in
the seed. The top panel shows the location of the seed and of
the two example targets, as well as the resulting average condi-
tional rates maps (left) and DMN obtained from PICA (right).

Medium panels show the BOLD signal at the seed and at the
two example target regions. A similar procedure was used in
(Tagliazucchi et al., 2010b) where the resting BOLD event trig-
gered averages (rBeta) were calculated at similar seed and target
regions. Table 1 contains the seed coordinates used to reproduce
the RSNs.

4.5. CLUSTERS AND AVALANCHES
Spatial clusters of activated voxels were identified using an algo-
rithm implemented in MATLAB, based on the detection of
connected components in a co-activated first neighbors graph.
Clusters’ fractal dimension was calculated using a standard box-
counting algorithm. Avalanches were defined (similar as in sand-
pile models, and others (Bak, 1996; Jensen, 1998)) as starting with
the isolated activation (i.e., not by any of its neighbors) of a previ-
ously inactive voxel (or group of voxels), continuing while at least
one contiguous voxel is active in the next time step and otherwise
ends. The avalanche tracking algorithm implemented in this work

FIGURE 6 | Illustration of the basic procedure to calculate the conditional

rate maps presented in Figure 2. The r values on the right side of the traces
correspond to the conditional rates between the 14 events at the seed and
those at the two targets (1/2 and 1/7 in this example).
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uses as a criteria for avalanche membership the non-empty inter-
section with a previously identified cluster of the avalanche at a
previous time. This is able to resolve shrinking and expanding of
clusters, translation, and division, whenever there is spatial overlap
at subsequent times.

4.6. CLUSTER DETECTION ALGORITHM
To detect contiguous clusters of activated voxels (defined as those
crossing the threshold), for each time step, the problem was
reduced to the detection of connected components in a suitably
defined graph or network. More precisely, for each volume, a graph
was constructed having each voxel as a node, and two nodes con-
nected with a link if they were both activated (BOLD signal above
1 SD) and also first neighbors in the spatial sense. The connected
components of this graph correspond to clusters of contiguous
activated voxels isolated from other similarly defined clusters.

4.7. AVALANCHE DETECTION ALGORITHM
In simple terms an avalanche starts with the activation of a pre-
viously inactive voxel, follows while in the next time step at least
one contiguous voxels is active and otherwise ends. The avalanche

detection algorithm is based on the connected cluster decomposi-
tion. Clusters are followed during different volumes, belonging
to the same avalanche if they have spatial intersection during
consecutive times. Formally, the algorithm is as follows: Let Ct

i
be the i-th cluster at time t. We consider a cluster i0 starting
an avalanche at time t 0 if for all j, Ct0−1

j ∩ Ct0
i0

= ∅(i.e., no

clusters were present in that region of the brain at the previ-
ous time step). An id is assigned to this avalanche and the same
id is assigned to all clusters intersecting this cluster at the fol-
lowing time, this is all clusters i such that Ct0

i0
∩ Ct0+1

i �= ∅.
The same procedure is applied recursively to all clusters satisfy-
ing the former condition until no more intersections are found.
When this happens, all clusters labeled with this id constitute the
avalanche.

ROBUSTNESS AGAINST THRESHOLD CHANGES
In this work, the only free parameter used in the definition of the
point process is the threshold. In this sense, it is important to know
how the main spatiotemporal statistical properties of the point
process dynamics, namely cluster size distributions, avalanche size
and duration distributions depend on threshold values. Figure 7

FIGURE 7 |The results are robust to changes in the threshold over a

reasonable range. (A) Shows the dependence of the number of points and
the average inter-event time (expressed in units of samples or scanning
volumes) for a range of threshold values (in units of SD). (B) Illustrates the

dependence of the correlations plotted in Figure 2C (correlations with PICA
DMN) with respect to the threshold values. (C) Shows the distribution of
cluster sizes and (D) the avalanche sizes and avalanche durations (inset) for
three different thresholds values (0, 1, and 2 SD).
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shows that these results are robust against changes in threshold
over a wide range of choices.
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