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A broad array of evidence indicates that T lymphocytes make significant contributions to
vascular inflammation in the setting of atherosclerotic disease, hypertension, autoimmune
vasculitis, and other disorders. Experimental data show that costimulatory and coinhibitory
pathways involving molecules of the B7-CD28 and TNF–TNFR families regulate T cell
responses that promote vascular disease. Antigen presenting cells (APCs) display both
peptide–major histocompatibility complex antigen and costimulators or coinhibitors to T
cells. Two major types of APCs, dendritic cells (DCs) and macrophages, are present in sig-
nificant numbers in the walls of arteries affected by atherosclerosis and arteritis, and some
DCs are present in normal arteries. Costimulatory and coinhibitory molecules expressed by
these vascular APCs can contribute to the activation or inhibition of effector T cells within
the arterial wall. Vascular DCs may also be involved in transport of antigens to secondary
lymphoid organs, where they activate or tolerize naïveT cells, depending on the balance of
costimulators and coinhibitors they express. Costimulatory blockade is already an approved
therapeutic approach to treat autoimmune disease and prevent transplant rejection. Preclin-
ical models suggest that costimulatory blockade may also be effective in treating vascular
disease. Experiential data in mice show that DCs pulsed with the appropriate antigens
and treated in a way that reduces costimulatory capacity can reduce atherosclerotic dis-
ease, presumably by inducing T cell tolerance. Progress in treating vascular disease by
immune modulation will require a more complete understanding of the functions of differ-
ent costimulatory and coinhibitory pathways and the different subsets of vascular APCs
involved.
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INTRODUCTION
This review will discuss the current knowledge on costimula-
tory and coinhibitory interactions between DC or macrophage
antigen presenting cells (APCs) and T cells in the context of
vascular disease. There is great interest in costimulatory and coin-
hibitory pathways because they have profound influences on T cell
mediated immunity, and there are drugs targeting these pathways
already approved or in trials for the purpose of therapeutically
inhibiting or enhancing immune responses. The review will begin
with a primer on costimulatory and coinhibitory molecules and
how they contribute to DC and macrophage interactions with
T cells. Next, evidence for the importance of these pathways in
diseases of blood vessels will be reviewed, emphasizing atheroscle-
rosis, but also considering other disorders. Finally, the potential for
treating vascular disease by blocking or stimulating these pathways
will be addressed.

ANTIGEN PRESENTING CELL FUNCTION OF DENDRITIC
CELLS AND MACROPHAGES AND THE ROLE OF
COSTIMULATION AND COINHIBITION
The antigen receptors of T lymphocytes (TCR) recognize molec-
ular complexes displayed on the surface of other cells called APCs.
The molecular complex that most T cells recognize is comprised of

a peptide fragment of a protein non-covalently bound to a major
histocompatibility complex (MHC) protein (Abbas et al., 2011).
A numerically minor subset of T cells called NKT cells, recog-
nize lipids bound to a class I MHC like protein called CD1. Both
dendritic cells (DCs) and macrophages, which are found in arte-
rial walls in various disease conditions, perform APC functions,
including the sampling of foreign and self proteins, the proteolytic
processing of these proteins into peptide fragments that can bind
to MHC proteins, and the display of the peptide–MHC complexes
on the cell surface for possible recognition by T lymphocytes.
CD4+ T cells recognize peptide–class II MHC complexes, and
CD8+ T cells recognize peptide–class I MHC complexes. A related
process for display of lipid/CD1 complexes is also performed by
DCs. DCs and macrophages are important APCs in protective
T cell responses to infectious pathogens (Heath and Carbone,
2009; Murray and Wynn, 2011), and in pathogenic T cell responses
against self or altered self proteins in immune/inflammatory dis-
eases. DCs likely also play a role inducing T cell tolerance to self
by presenting peptides from normal self proteins to T cells under
non-inflammatory conditions (Figure 1A) (Maldonado and von
Andrian, 2010).

In addition to displaying peptide–MHC antigens to T cells,
APCs also express cell surface molecules called costimulators,
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FIGURE 1 | Possible roles of costimulators and coinhibitors on vascular

dendritic cells and macrophages in health and disease. (A) Dendritic
cells are present in low numbers in normal arterial walls, in the adventitia,
and in the intima. Based on what is known about other tissues, these
resting or immature DCs may have some migratory activity to secondary
lymphoid organs (e.g., lymph node), where they could induce T cell
tolerance to normal vascular antigens. Mechanisms of peripheral T cell
tolerance induction include anergy or apoptosis of the self-antigen specific
naïve T cells, and the induction of regulatory T cells. The lack of
costimulators (e.g., CD80, CD86), and the presence coinhibitors
(e.g., CD274, CD273) on these DC are likely to be important characteristic of
their tolerogenic DC phenotype. (B) In atherosclerosis, both macrophages
and DCs accumulate in the arterial adventitia and in intimal lesions, along
with T cells. Innate immune stimuli related to the early retention and
oxidation of LDL in the arterial intima may induce vascular DC maturation,
expression of costimulatory molecules and uptake, and/or intracellular

generation of protein antigens. These DCs could carry the antigens from the
early atheromas to lymph nodes, and present them, in the form of
peptide–MHC complexes, to naïve T cells specific for those antigens. The
costimulators expressed on these mature DCs are required for productive
naïve T cell activation and differentiation into effector T cells. The effector T
cells then migrate out of the lymphoid tissues, and some will home to the
atherosclerotic lesion. Both macrophages and DCs in the lesion may
process and present the same atheroma-antigens (e.g., ApoB100 derived
peptides) to the effector T cells and activate the T cells to perform
inflammatory effector functions that promote arterial disease. Costimulators
present on the DCs and macrophages may enhance the effector T cell
responses. Note that CD4+ T cell responses are depicted in the figure, but
the same principals apply for CD8+ T cell responses. A similar pattern of
lymphoid tissue-based, costimulator-dependent priming and arterial wall
based effector T cell responses is likely to be relevant to other vascular
inflammatory diseases, as discussed in the text.

which engage costimulatory receptors on T cells concurrently with
TCR recognition of peptide–MHC complexes (Gotsman et al.,
2008; Sharpe, 2009; Bour-Jordan et al., 2011). Both the TCR with
its associated signaling molecules (CD3 and ζ proteins) and the
costimulatory receptors are recruited into specialized lipid rafts
that comprise the T cell side of an immune synapse with the
APCs. When costimulators on APCs bind to their receptors on the
T cell, signals are generated in the T cell that work synergistically
with the signals generated by TCR binding of antigen to activate
functional responses of the T cell. There are many molecules that
have been characterized as costimulators or T cell costimulatory
receptors; some of the best characterized examples are shown in
Table 1. The type of APC that activates a T cell, the particular
costimulatory molecules and receptors that are engaged, and the
nature of the functional responses of the T cells all vary with the

history of antigen exposure of the T cell, and the particular sub-
set the T cell belongs to. Naïve T cells (both CD4+ and CD8+),
which have no prior antigen experience after emerging from the
thymus, are efficiently activated only by DCs within secondary
lymphoid organs (e.g., lymph nodes, spleen). DCs express both
class I MHC, needed to display antigen to CD8+ T cells, and class
II MHC needed to display antigen to CD4+ T cells. In addition,
DCs express a variety of costimulatory molecules, especially when
they are exposed to innate immune stimuli such as Toll-like recep-
tor (TLR) ligands. Naïve T cells have stringent requirements for
costimulation by members of the B7 family of proteins (CD80,
CD86), which bind to CD28 on the T cell. Costimulation by CD275
(ICOS ligand) on APCs binding to CD278 (ICOS) on T cells, or
TNF superfamily costimulators (CD137 ligand, CD252, CD70)
on APCs binding to TNF receptor superfamily proteins (CD137,
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Table 1 | Selected majorT cell costimulatory and coinhibitory pathways.

Family Costimulator on APCsa Receptor onT cells Evidence for role in vascular inflammationb

COSTIMULATORY PATHWAYS

B7–CD28 CD80 (B7-1)/CD86 (B7-2) CD28 Atherosclerosis: ↑ in Cd80−/−, Cd86−/− or Cd28−/− bone marrow chimeric Ldlr−/−

mice (Ait-Oufella et al., 2006); ↓ in Cd80−/−Cd86−/− Ldlr−/− mice (Buono et al.,

2004)

Hypertension: ↓ in CTLA-4-Ig treated or Cd80−/−Cd86−/− mice using DOCA salt

or angiotensin II models (Vinh et al., 2010)

CD275 (ICOS ligand) CD278 (ICOS) Atherosclerosis: ↑ in ICOS-Ig immunized mice (Afek et al., 2005) or in Icos−/− bone

marrow chimeric Ldlr−/− mice (Gotsman et al., 2006)

LFA3–CD2 CD58 (LFA3) CD2

TNFSF–

TNFRSF

CD252 (OX40 ligand,TNFSF4) CD134 (OX40,

TNFRSF4)

Atherosclerosis: ↑ early lesions in Cd252 transgenic C57BL/6 mice; ↓ early lesions

in Cd252−/− C57BL/6 mice (Wang et al., 2005); ↓ in Cd252−/ −Apoe−/ − mice

(Nakano et al., 2010); ↓ in blocking anti-CD252 treated Ldlr−/ − (van Wanrooij et al.,

2007); or Apoe−/ − mice (Wang et al., 2005)

CD137 ligand (TNFSF9) CD137 (TNFRSF9) Atherosclerosis: ↑ in agonist ab treated Apoe−/− mice (Olofsson et al., 2008); ↓ in

Cd137−/−Apoe−/− and Cd137−/−Ldlr−/− mice (Jeon et al., 2010)

CD70 (TNFSF7) CD27 (TNFRSF7) Atherosclerosis: ↓ in Cd70− Apoe-Leiden transgenic mice (van Olffen et al., 2010)

GITRL (TNFSF18) GITR (TNFRSF18)

CD40 (TNFRSF5)b CD154b (CD40

ligand, TNFSF5)

Atherosclerosis: ↓ in blocking anti-CD154 treated Ldlr−/− mice (Mach et al., 1998;

Schonbeck et al., 2000); ↓ in Cd154−/−Apoe−/− mice (Lutgens et al., 1999)

COINHIBITORY PATHWAYS

B7–CD28 CD80 (B7-1)/CD86 (B7-2) CD CD152 (CTLA-4)

CD274 (PD-L1), CD273(PD-L2) CD279 (PD-1) Atherosclerosis: ↑ in Pdl1−/−Pdl2−/− bone marrow chimeric Ldlr−/− mice (Gotsman

et al., 2007); ↑ in Pd1−/−Ldlr−/− mice and in blocking anti-PD-1 treated Ldlr−/− mice

(Bu et al., 2011)

Graft arterial disease: ↓ in Cd80−/−Cd86−/− mouse recipients of class II MHC-

mismatch cardiac allografts (Furukawa et al., 2000); ↓ in CTLA-4-Ig or anti-CD80 ab

treatment of F344 rat cardiac transplants into LEW rats (Kim et al., 2001)

aExpression on cells other than DC and macrophages varies.
b↑ and ↓ relative to appropriate controls. See text and original references for more detailed description of changes in disease phenotypes associated with manipulations

of costimulatory or coinhibitory pathways.

CD134, CD27) on T cells, likely occur mainly after the initiation
of T cell responses (Ishii et al., 2010; Gerdes and Zirlik, 2011).
This is because the expression of CD278, CD137, CD134, and
CD27 on T cells is usually induced or upregulated in response to
TCR and CD28 signaling, and their expression on naïve or rest-
ing memory T cells is very low. The response of naïve T cells to
antigen recognition plus costimulation includes clonal expansion,
i.e., multiple rounds of mitosis, and differentiation into effector
T cells and memory T cells. Effector cells include CD4+ helper
T cells and CD8+ cytotoxic T lymphocytes (CTL), which sur-
vive for a short time (days–weeks), while memory T cells may
survive for many years. Compared to naïve T cells, antigen expe-
rienced T cells (effector and memory T cells) can be activated
by a wider variety of APCs, as demonstrated by the many cell
types that can present antigen to and thereby become targets
of CTL. Although it is commonly assumed that antigen experi-
enced T cells have less stringent requirements for costimulation,
TNF family costimulators appear to be particularly important
for CD4+ and CD8+ effector/memory T cell responses (Sharpe,
2009), and there is evidence that CD28-dependent costimulation is
required for optimal memory CD8+ T cell responses to some viral
infections in vivo (Boesteanu and Katsikis, 2009). CD4+ effector

and memory T cells respond to peptide–class II MHC antigen pre-
sented by B cells within secondary lymphoid tissues, or presented
by macrophages and DCs in non-lymphoid and lymphoid tissues.
Some evidence indicates that human microvascular endothelial
cells, which express class II MHC, may also present antigen to
effector and memory T cells. Almost any class I MHC expressing
cell can serve as an activating APC for CD8+ cytotoxic T cells.
Thus antigen experienced T cells are relatively promiscuous in
responding to various APC types in various locations. Nonetheless,
there is ample evidence that the responses of antigen experienced
human and mouse T cells in vitro and in vivo are enhanced by
costimulatory molecules (Gotsman et al., 2008; Sharpe, 2009). In
particular, costimulatory pathways that are most important for
antigen experienced T cells involve receptors that are only induced
after activation of a naïve T cell, such as CD278. The types of
responses that are dependent on induced costimulators are the
specialized effector functions of the T cells, such as germinal cen-
ter formation and B cell help in the case of ICOS, rather than
generic clonal expansion seen in all naïve T cell response.

The ability of APCs to costimulate T cells is enhanced by
the CD154:CD40 pathway. CD154 (CD40 ligand) is a membrane
bound TNF superfamily protein that is inducibly expressed on
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effector T cells after activation by antigen presentation. CD40L
binds to the TNF receptor superfamily protein CD40 expressed
constitutively by DCs, macrophages, B cells, and other cell types.
Ligated CD40 generates signals that activate many functional
responses of each of these cell types. One of the responses is
upregulation of costimulatory molecules, such as CD80 and CD86,
thereby enhancing the ability of these APCs to activate naïve
T cells (Grewal and Flavell, 1998; Miga et al., 2000). Therefore,
CD40L:CD40 interactions may not directly provide costimula-
tion, but rather enhance the ability of APCs to costimulate T
cells. Nonetheless, there is some evidence suggesting that CD40
expressed on CD8+ T cells functions as a costimulatory signaling
receptor (Munroe, 2009).

Coinhibitory pathways are mediated by proteins expressed
on APC membranes that engage receptors on T cells concur-
rently with antigen recognition, like costimulatory pathways (see
Table 1). However, the functional consequence of coinhibitory
receptor engagement is to inhibit T cell activation. These path-
ways are best designated by the receptors on T cells. The only well
defined coinhibitory receptors are CTLA-4 (CD152) and PD-1
(CD279), both members of the CD28 family of proteins, and both
expressed on T cell surfaces only after activation by antigen. CTLA-
4 binds to either CD80 or CD86 (the same proteins that costimu-
late T cells by binding to CD28). PD-1 binds both PD-L2 (CD273)
and PD-L1 (CD274), which are closely related members of the B7
family. PD-L2 is expressed by DCs, macrophages, and B cells. PD-
L1 is more broadly expressed on APCs and non-hematopoietically
derived tissue cells, especially after stimulation by TLR ligand or
type 1 or type II interferons (Francisco et al., 2010). Of particu-
lar relevance to this review, PD-L1 can be expressed by vascular
endothelial cells in vitro and in vivo (Rodig et al., 2003; Grabie
et al., 2007), and PD-L1 is reported to be expressed on vascular
smooth muscle cells in vitro (Koga et al., 2004). The importance
of these pathways in regulating T cell responses was first demon-
strated in gene knockout mouse models, which showed an absolute
requirement for CTLA-4 to prevent lethal systemic lymphoprolif-
erative/autoimmune disease (Tivol et al., 1995; Waterhouse et al.,
1995), and a more subtle requirement of PD-1 or its ligands
to prevent autoimmunity or dysregulated immune response to
infections (Francisco et al., 2010). The presumed physiological
function of these coinhibitory pathways is to down-regulate or
limit appropriate immune responses to pathogens, and to prevent
autoimmune responses. Blockade of CTLA-4 or PD-1 with mAbs
in order to boost T cell responses holds promise as a way to pro-
mote anti-tumor immunity in patients with metastatic cancers
(Topalian et al., 2011).

So what is the relevance of costimulatory pathways to vascular
inflammation? Ample evidence exists to show that different T cell
subsets contribute to the regulation or progression of atheroscle-
rosis, and compelling emerging evidence indicates that T lympho-
cytes contribute to vascular pathology in essential hypertension,
as discussed in other reviews in this volume. Vascular damage in
the context of a subset of vasculitidies (such a giant cell arteritis) is
primarily caused by T lymphocytes, and other antibody mediated
vasculitidies are dependent on T cell-dependent helper functions
for the production of pathogenic antibodies. In all these examples,
it is clear that effector T cells with specificity for antigens expressed

in blood vessel walls are being activated and causing damage to
the vessels. Given our understanding of the progression of T cell
mediated immune responses, an early step in the pathogenesis
of these vascular diseases is likely to be DC antigen presentation
to, and costimulation of, naïve T cells specific for vascular anti-
gens (Figure 1B). Furthermore, macrophages and DCs are present
within the inflammatory infiltrates in the affected vessel walls in
these diseases, often adjacent to infiltrating T cells. Therefore, DC
and macrophage costimulatory signals could enhance the patho-
logic functions of the effector T cells in the blood vessel wall.
Based on these assumptions, is it likely that costimulatory and
coinhibitory molecules expressed on DCs will influence activa-
tion of naïve T cells that have the potential to become pathogenic
effectors in vascular disease, while the same molecules expressed
on macrophages are likely to influence only antigen experienced
T cells in the vessel walls. Otherwise, there is neither useful data
nor adequate in vivo methods available that resolve different func-
tional consequences to a T cell after engagement of a particular
costimulatory molecule on a DC vs. a macrophage.

COSTIMULATION BY DCs AND MACROPHAGES IN
ATHEROSCLEROSIS
Indirect evidence consistent with a role for T cell costimulators
in atherosclerosis includes the demonstration of their expres-
sion in human and mouse lesions. For example, CD80 and CD86
were detected on lesional macrophages of human arterial plaques
detected by double color immunohistochemistry (de Boer et al.,
1997), and in lesions of Ldlr−/− mice by single color immunohisto-
chemistry (Buono et al., 2004). The B7 family costimulator CD275
(ICOS ligand) and its CD28 family receptor CD278 (ICOS) were
readily detected by immunohistochemistry in the aortic lesions of
Apoe−/− mice (Afek et al., 2005). The TNFSF T cell costimula-
tor CD252 (OX40 ligand) was detected on human carotid plaque
macrophages (CD68+ cells) by double-label immunofluorescence
staining (Olofsson et al., 2009) and in Apoe−/− mouse aortic
lesions by single color immunohistochemistry (Wang et al., 2005).
In each of these cases, the receptors for these costimulators were
detected on lesional T cells. Additionally, GITR ligand (another
TNF family molecule with putative costimulatory activity) colo-
calized with macrophages (CD68+ cells) in human atheroma using
two color immunohistochemistry (Kim et al., 2006). Definitive
data that demonstrates the expression of costimulatory molecules
on DCs within atherosclerotic lesion is still lacking.

More direct evidence that supports the hypothesis that T cell
costimulation promotes atherosclerotic vascular disease comes
largely from experiments testing if costimulatory blockade by
gene deletion or pharmacologic agents alters lesion development
in mouse models of atherosclerosis. Global genetic deletion of
both CD80 and CD86 resulted in decreased development of
lesions in the Ldlr−/− mouse model of atherosclerosis, as well
as a reduction in the hypercholesterolemia-dependent priming
of CD4+ T cells specific for the atherosclerosis-associated anti-
gen HSP60 (Buono et al., 2004). Targeted deletion or transgenic
over-expression of CD252 in B6 mice (without Apoe or Ldlr
mutations) resulted in reduced or enhanced aortic root early
lesion development, respectively (Wang et al., 2005), and tar-
geted deletion of CD252 in Apoe−/− mice resulted in reduced
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lesion development and decreased adventitial neovascularization
(Nakano et al., 2010). Likewise, antibody blockade of CD252
in Ldlr−/− mice (van Wanrooij et al., 2007) or Apoe−/− mice
(Wang et al., 2005) significantly reduced aortic lesion develop-
ment. Mouse studies also indicate that CD137 (TNFRSF9), a
costimulatory receptor expressed on T lymphocytes, contributes
to pro-atherosclerotic T cell responses. Agonist anti-CD137 anti-
body treatment of Apoe−/− mice increased atherosclerosis lesion
development and lesion inflammation (Olofsson et al., 2008), and
targeted deletion of CD137 in both Apoe−/− and Ldlr−/− mice
reduced lesion development and inflammation (Jeon et al., 2010).
One study addressed the impact of constitutive CD27 signaling on
atherosclerosis, by transgenic over-expression of CD70 on B cells
in hypercholesterolemic ApoE∗-Leiden mice (van Olffen et al.,
2010). Paradoxically, these mice were resistant to atherosclerosis
lesion development, although the mechanisms remain unclear.

Although most of the mouse studies discussed above convinc-
ingly show that costimulators in the B7 and TNF protein families
can have pro-atherogenic effects, they neither implicate nor rule
out the importance of vascular DCs or macrophages. The pres-
ence DCs in the normal and atherosclerotic arterial walls has been
reported by several laboratories, as discussed in other reviews in
this volume,but proof that these DCs present antigen and costimu-
late T cells within lesions is still quite limited. Live cell two-photon
microscopic imaging studies show that endogenous DCs in ath-
erosclerotic aortas of Apoe−/− mice are able to present antigen
to and activate previously stimulated CD4+ T cells (Klaus Ley,
La Jolla Institute of Immunology, personal communication). The
interrogation of costimulatory pathways using this approach will
be of great interest.

Emerging evidence for heterogeneity of DC subtypes within
arterial walls suggests that the effects of antigen presentation and
costimulation on vascular pathology are complex. One study mak-
ing use of CCL17 and CD11c fluorescent reporter mice, showed
that CCL17 expressing CD11c+ DCs accumulate in intimal lesions
of ApoE−/− mice, and these DCs form close contacts with lesional
CD4+ T cells (Weber et al., 2011). Although costimulator expres-
sion on these DCs was not shown in situ, reporter gene detectable
CCL17 producing CD11c cells from lymph nodes did express
CD80 and CD86. The DC-derived CCL17 repressed Treg responses
and enhanced pro-atherogenic CD4+ T effector cell responses in
Apoe−/− mice, but whether or not the effect of the DCs was local-
ized to lesions or lymphoid tissues was not resolved. In another
study, intimal DCs were detected in normal mouse aortas, and
they belonged to two developmental subsets, classical Flt3–Flt3L
signaling-dependent, CD103+CD11b- DCs, and macrophage-
colony stimulating factor-dependent CD14+CD11b+DCSIGN+
monocyte-derived DCs (Choi et al., 2011). No analyses of costim-
ulatory molecule expression on the aortic DCs of either subset
were reported. Both subsets increased in numbers in atheroscle-
rotic lesions of Ldlr−/− mice. The loss of the classical subset
in Flt3−/− × Ldlr−/− mice resulted in enhanced atherosclerosis
with reduced aortic Treg (in contrast to the effect of the loss of
CCL17+ DC described above). However, lymph node and splenic
Treg were also reduced in the FLt3-null mice, and therefore the
relative importance of Flt3–Flt3L signaling-dependent DC reg-
ulation of pro-atherogenic T cell responses in the blood vessel

wall vs. in lymphoid tissues cannot be distinguished by this study
either.

Vascular DCs could promote pro-atherogenic T cells responses
by picking up atheroma-associated antigens, migrating to lym-
phoid tissues, and presenting the antigens to recirculating naïve T
cells (Figure 1B). However, it is likely that some of the antigens
that are recognized by pathogenic effector T cells within vessel
walls are also present systemically. Therefore, the primary activa-
tion of naïve T cells specific for these antigens within lymphoid
tissues may not require that the antigen be carried to lymph by
DCs originating in the arterial walls. For example, modified or
native lipoproteins that are recognized by pro-atherogenic effec-
tor T cells are present systemically in dyslipidemic individuals.
The costimulatory molecules interrogated in the atherosclerosis
studies discussed above are expressed on DCs and macrophages in
lymphoid organs where naïve T cells are activated, and the targeted
costimulatory receptors are expressed by naïve T cells (e.g., CD28)
or induced early after activation (e.g., CD278, CD134).

The highly abnormal extracellular and intracellular lipid envi-
ronments in atherosclerotic lesions have direct impacts on DCs
and macrophages, the most obvious of which is the formation
of foam cells loaded with cholesterol and cholesteryl esters after
uptake of oxidatively modified LDL particles that have been
trapped by intimal matrix molecules (Tabas et al., 2007; Moore and
Tabas, 2011). Although monocyte derive macrophages have long
been known to comprise a significant fraction of lesional foam
cells, more recent work has shown that DCs within arterial intima
can also take up lipid and appear as foam cells (Packard et al.,
2008; Cybulsky and Jongstra-Bilen, 2010; Paulson et al., 2010). The
overall functional impact of lipid accumulation on macrophage
and DC antigen presentation function remain unresolved. The
expression of costimulators on APCs is induced by innate inflam-
matory stimuli, via pattern recognition receptors including TLRs.
Oxidatively modified LDL (ox-LDL), which is the major source of
cholesterol taken up by macrophages and DCs during foam cell
formation in arterial lesions, can act as an innate immune stim-
ulus (Bae et al., 2009; Choi et al., 2009; Chavez-Sanchez et al.,
2010; Miller et al., 2011). The abnormal accumulation of lipids
in the skin of hypercholesterolemic Apoe−/− mice was shown to
inhibit DC migration to draining lymph nodes (Angeli et al., 2004),
leading to the speculation that a similar impairment of DC and
macrophage migration out of the vascular wall would enhance
local lesion formation and inflammation (Randolph, 2008). The
current knowledge about the retention and migration of DCs and
macrophages out of atherosclerotic lesions is discussed in more
detail in other reviews in this volume. Suffice it to say here that
one cannot exclude the possibility of vascular DCs transporting T
cell antigens to secondary lymphoid organs based on the limited
data available, and impairment of migration may not be signifi-
cant early in lesion development,when priming of pro-atherogenic
T cells is perhaps most relevant. There is also data indicating
that ox-LDL blocks DC activation and antigen presenting func-
tions. Myeloid DCs from the spleens of high fat diet fed Apoe−/−
mice had impaired activation responses to TLR-ligands, including
impaired upregulation of CD80 and CD86 (Shamshiev et al.,
2007). Systemic T cell defense against an intracellular pathogen
was also shown to be impaired in the dyslipidemic mice. In that
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study, ox-LDL was identified as the component responsible for
uncoupling TLR-mediated signaling in the DCs. In another study,
impaired antigen processing functions, but not impaired costim-
ulator expression, was seen in triglyceride loaded DCs in tumor
bearing mice (Herber et al., 2010). In contrast, splenic DC anti-
gen presenting functions and CD80 and CD86 expression were
not affected by hypercholesterolemia in either Ldlr−/− or Apoe−/−
mice (Packard et al., 2008). In vitro experiments have also shown
that ox-LDL can induce human monocyte and DC upregulation
of B7 family costimulators (Fortun et al., 2001; Nickel et al., 2009).
Overall, given the robust evidence of T cell activation in ather-
osclerotic plaques, and evidence of systemic T cell responses to
atherosclerosis-associated antigens in hypercholesterolemic mice
and humans (Ketelhuth and Hansson, 2011), it is seems unlikely
that vascular APCs nor APCs in secondary lymphoid organs have
significant defects in costimulatory function in individuals with
atherosclerotic disease. Furthermore, there is little evidence for
immune surveillance defects in dyslipidemic humans, which is
consistent with normal costimulatory functions of APCs.

Ample experimental evidence indicates that the CD40–CD40
ligand pathway of cellular activation promotes atherosclerotic
lesion development and the inflammatory phenotype of lesions.
This was originally shown by antibody blockade or targeted
mutation of CD154 in atherosclerosis prone mice (Mach et al.,
1998; Lutgens et al., 1999; Schonbeck et al., 2000). However
the expression of CD154 on platelets, mast cells, B cells, and
non-hematopoietic cells including vascular smooth muscle cells
endothelial cells, and the expression of CD40 on endothelial
cells, macrophages, and DCs makes it difficult to determine the
mechanisms of the in vivo effects of CD40 ligand blockade on
atherosclerosis (Lievens et al., 2009). In fact, despite the large num-
ber of studies examining the relationship of CD154 and CD40 in
atherosclerotic disease in humans and mice, there is virtually no
data addressing if enhancement of T cell costimulation is a key
mechanism. Experiments that examine CD154 blockade in the
absence of T cell costimulation or T lineage selective ablation of
CD154 expression in atherosclerosis prone mice, could provide
some insights into this question.

COINHIBITION BY DCs AND MACROPHAGES IN
ATHEROSCLEROSIS
Mouse models have also established a role for T cell coinhibition
in regulating pro-atherogenic T cell responses, and implicate but
do not prove that vascular DCs and/or macrophages are involved
in this mode of regulation. CD11c+ and Mac3+ cells within aortic
lesions of Ldlr−/− mice express PD-L1 and hypercholesterolemia
enhances PD-L1 expression on splenic macrophages and DCs from
these mice (Gotsman et al., 2007). Targeted deletion of both PD-L1
and PD-L2 or of PD-1 in Ldlr−/− mice lead to increased athero-
sclerotic lesion development, and marked increases in CD4+ and
CD8+ T cells within lesions (Gotsman et al., 2007; Bu et al., 2011).
Furthermore, T cells isolated from hypercholesterolemic PD-L1/2
or PD-1 deficient Ldlr−/− mice are more activated than T cells from
Ldlr−/− control mice. Treatment of Ldlr−/− mice with a block-
ing anti-PD-1 antibody also causes increased lesion development
and T cell infiltration (Bu et al., 2011). The robust lesional CD8+
T cell responses seen in Ldlr−/− mice lacking the PD-1:PD-L1/2

pathway and the enhanced ability of PD-1 deficient CD8+ T cells
to kill vascular cells are both consistent with an important role for
coinhibition in suppressing effector CD8+ T cells in the vascular
wall. There is little published data addressing the contribution of
the PD-1/PD-L1/2 pathway in human atherosclerotic disease. PD-
1 and PD-L1 expression is reported to be significantly reduced on
blood T cells and myeloid DCs in coronary artery disease patients
compared to in healthy controls (Lee et al., 2009).

The impact of CTLA-4 on atherosclerosis has not been stud-
ied in mice, mainly because of the lethal lymphoproliferative and
autoimmune phenotype of CTLA-4 knockout mice (Tivol et al.,
1995; Waterhouse et al., 1995). Blocking anti-CTLA-4 antibody
treatment is approved for treatment of some cancers, and block-
ing anti-PD-1 antibodies are being used in clinical trials also for
cancers treatment (Topalian et al., 2011). If this type of therapy
becomes more established, there will be an opportunity to study
the impact of coinhibitory blockade on atherosclerotic disease in
humans,albeit those with metastatic cancer. To date, there has been
limited success in developing agonist reagents that can be used to
test the possible therapeutic impact of pharmacologically induced
PD-1 or CTLA-4 signaling on atherosclerosis in animal models.

In addition to coinhibitory pathways, regulatory T cells (Treg)
are essential to prevent autoimmunity and to regulate effector
T cell responses to microbes (Josefowicz et al., 2012). The rela-
tionship between Treg and costimulatory or coinhibitory path-
ways is complex and not fully understood. Most Treg are CD4+
CD3+TCRαβ+ CD25+ CD127loGITR+ CTLA-4+ FoxP3+ cells.
FoxP3 is a transcription factor required for Treg development and
function. The critical importance of Treg to immunoregulation
is evident from the lethal autoimmune phenotype of patients
with FoxP3 mutations (immunodysregulation polyendocrinopa-
thy enteropathy X-linked syndrome), and of mice with similar
mutations (SCURFY mice) or targeted FoxP3 gene deletion. Nat-
ural Treg develop in the thymus and populate secondary lymphoid
tissues. Induced or adaptive Treg differentiate from naïve CD4+ T
cells in secondary lymphoid organs in response to antigen stimula-
tion in the presence of certain soluble stimuli including TGFβ and
retinoic acid. Tregs suppress naïve and effector T cell activation,
likely by several different mechanisms including the secretion of
immunosuppressive cytokines (IL-10, TGFβ, IL-35) and by direct
contact with T cells or APCs via CTLA-4 and PD-L1 (Shevach,
2009). One currently favored mechanisms of Treg suppression is
by the binding of CTLA-4 on the surface of Treg to CD80 and CD86
on the surface of DCs and the downregulation of removal of CD80
and CD86 from the DC membrane (Onishi et al., 2008; Wing et al.,
2011). Thus, Treg may block the ability of the CD80/CD806 pro-
teins on DCs to bind to CD28 on naïve T cells, thereby impairing
initiation of T cell immune responses. A similar mode of action
of Treg in peripheral tissues including vessels walls may regulate
effector T cell activation by APCs. Treg development in the thymus
is at least partially dependent on CD80, CD86, CD28, and CD278.
Under certain conditions, such as after bone marrow transplanta-
tion in mice, or in autoimmune prone mice (e.g., NOD mice) the
lack CD80 and CD86 or CD28 results in profound Treg deficiency
and autoimmunity (Bour-Jordan et al., 2004; Ait-Oufella et al.,
2006). In mouse models of atherosclerosis, hematopoietic cell defi-
ciency of the CD80/86:CD28 or CD275:CD278 pathways, created
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by bone marrow transplantation of gene knockout marrow into
recipients wild type for those genes, results in reduced Treg num-
bers and function and enhanced atherosclerotic lesion develop-
ment and inflammation (Ait-Oufella et al., 2006; Gotsman et al.,
2006). Immunization of ApoE−/− with an ICOS-Ig fusion pro-
tein with the intent of inducing a blocking anti-ICOS antibody
responses also increased atherosclerosis and increased T cell IFNγ

expression (Afek et al., 2005). Whether or not Treg responses were
impaired in the ICOS-immunized mice was not determined. Coin-
hibition appears to influence induced Treg responses as well. For
example, PD-L1deficeiny markedly impaired differentiation and
maintenance of induced Treg (Francisco et al., 2009). Thus both
costimulatory and coinhibitory pathways are required for both
effector and regulatory T cell responses, and the net effects of
blocking or enhancing these coregulatory pathways for therapeutic
benefit is likely to vary with timing, tissue, and disease process.

COSTIMULATION AND COINHIBITION BY DCs AND
MACROPHAGES IN OTHER VASCULAR DISEASES
The possibility that inflammation and immune responses con-
tribute to hypertensive disease has been addressed in various stud-
ies over many years, and recent work using modern immunological
models has established an important role for T cell responses in
this disease (Harrison et al., 2010), as discussed in detail in another
review in this volume. One of the compelling recent studies link-
ing T cell responses with hypertension focused on costimulation,
and showed that pharmacologic blockade or genetic deficiency
of CD80 and CD86 in mice rendered them resistant to devel-
opment of hypertension using two different models (Vinh et al.,
2010). Furthermore, perivascular T cell infiltrates that accumulate
in the hypertensive mice were significantly reduced when costim-
ulation was impaired. As in the atherosclerosis studies discussed
above, it remains to be proven that blockade of T cell costimula-
tion by APC within the affected blood vessels was relevant to the
anti-hypertensive effect.

Graft arterial disease (transplant arteriopathy, graft arterioscle-
rosis) is characterized by chronic remodeling of allograft arteries
by intimal smooth muscle cell accumulation, progressing to lumi-
nal obstruction, and ischemic damage to the graft. This process
is the major cause of long term failure of transplanted hearts and
kidneys. Graft arterial disease is believed to be initiated, and may
or may not be sustained, by graft recipient alloreactive T cells
(Mitchell and Libby, 2007). In rodent models of cardiac allograft
rejection, blocking, or genetic deficiency of B7–CD28 costim-
ulatory pathways reduces development of graft arterial disease
(Furukawa et al., 2000; Kim et al., 2001). However, there is no
published evidence for a role of vascular macrophages or DCs in
this disease, and in fact DC or macrophages have not been found
in significant numbers in affected vessels. Thus, the effectiveness
of costimulatory blockade in preventing graft arterial disease is
more likely to reflect interference with the priming of alloreactive
T cells in secondary lymphoid organs.

The pathogenesis of certain forms of arteritis, including giant
cell arteritis, Takayasu’s disease, and Kawasaki disease, involve T
cell mediated damage to the vessel wall. DCs are present within the
media of the affected vessels in these diseases, and their interaction
with infiltrating T cells has been documented. The influence of

costimulatory pathways in either the lymphoid tissue-based prim-
ing of the vasculopathogenic T cells, or in the local activation of
these T cells in the arteries, is largely unexplored. In giant cell
arteritis, a population of CD83+ CD86+ DCs infiltrates into the
media of the artery from the adventitia and colocalize with T cells
(Krupa et al., 2002). In coronary arteries of patients with Kawasaki
disease, mature myeloid DCs identified by expression of BDC1,
HLA-DR, and the costimulator CD83 accumulate in the intima
and colocalize with T cells (Yilmaz et al., 2007). In Takayasu’s dis-
ease, immunohistochemical S-100+ cells adjacent to CD3+ cells
in the adventitia of arterial specimens was interpreted as showing
DC interactions with T cells (Inder et al., 2000a,b).

Mouse models of T cell mediated arteritis have been developed
and may be useful to explore the contribution of costimulatory
pathways to these disorders and the therapeutic potential of block-
ing these pathways. In a humanized mouse model of giant cell
arteritis, human artery segments are implanted into SCID mice,
and human allogeneic T cells from healthy donors or from giant
cell arteritis patients are adoptively transferred into the mice. After
LPS injection, a T cell rich inflammatory infiltrate and medial infil-
tration of vascular DCs develops in the arteries (Ma-Krupa et al.,
2004). A mouse model of coronary arteritis resembling Kawasaki
disease has also been described, in which mice are injected with
a cell wall extract isolated from Lactobacillus casei (Lehman et al.,
1985). The coronary arteritis that develops in this model resembles
that seen in the human disease, and is dependent on T cells (Schulte
et al., 2009). Interestingly, F4/80+ macrophages, activated myeloid
DCs, and plasmacytoid DCs are present in the arterial lesions, and
CD3+ T cells colocalize with the myeloid DCs. It will be of interest
to explore the impact of costimulator blocking agents or costimu-
latory gene knockout approaches on disease development in these
models.

THERAPEUTIC TARGETING OF THE COSTIMULATORY AND
COINHIBITORY FUNCTIONS OF VASCULAR APCs
Given the evidence for a significant contribution of effector T cells
to the pathogenesis of various inflammatory diseases of blood
vessels, and the knowledge that costimulation of T cells by DC
and/or macrophages is required for generation and full activation
of effector T cells, it is logical investigate costimulatory blockade as
a therapeutic approach to vascular inflammation. So far, one form
of costimulatory blockade, namely CTLA-4-Ig, has been shown to
be effective in clinical trials leading to FDA approval for particular
disorders. CTLA-4-Ig is a soluble fusion protein consisting of the
extracellular CD80/CD86 binding portion of CTLA-4 coupled to
a modified Fc region of IgG1 to achieve optimal pharmacokinetics
properties. CTLA-4 binds to CD80 and CD86 with much higher
affinity than CD28, and thus CTLA-4-Ig functions as a competitive
inhibitor of costimulation by CD80 and CD86 expressing APCs.
Two forms of CTLA-4-Ig, abatacept, and belatacept, which differ
in only two amino acids and thereby differ in their affinities for
CD80 and CD86, are approved for the treatment of rheumatoid
arthritis and prevention of renal allograft rejection, respectively
(Ford and Larsen, 2009). (CTLA-4-Ig should not be confused with
anti-CTLA-4 antibody, e.g., Ipilimumab, which has the opposite
effect of enhancing T cell mediated responses and is approved for
treatment of metastatic melanoma.)
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There are significant challenges to the development of safe and
effective therapies for vascular diseases based on costimulatory
blockade. Because these approaches are immunosuppressive and
unlikely to be specific for pathologic immune responses targeting
blood vessels, there will be some risks of opportunistic infections.
So far, the experience with CTLA-4-Ig treatment of rheuma-
toid arthritis patients has indicated such risks are low compared
to other immunosuppressive biologic drugs (Curtis and Singh,
2011). Atherosclerosis and hypertension, the two most common
vascular diseases for which there is preclinical evidence supporting
a costimulatory blockade strategy, are chronic diseases in which
activation of T cells may be contributing to disease progression
over many years, and chronic immunosuppression may not be
an acceptable approach. In each of these diseases, however, there
are acute phases that pose significantly elevated risk of morbid-
ity and mortality, and these acute exacerbations may be related to
increased immune mediated inflammation. Thus, as we refine the
use of biomarkers to predict the onset of acute coronary syndrome
and hypertensive crises,we may be able to effectively intervene with
temporary but robust costimulatory blockade. Another obstacle
to highly effective costimulatory blockade for the treatment of
vascular disease, as well as other autoimmune diseases, is the con-
tribution of memory T cells. Memory T cell responses may be
resistant to costimulatory blockade for two reasons. First, as dis-
cussed earlier, memory T cells have less stringent requirements for
costimulation. Second, after a pathologic T cell mediated immune
response has been established for some time, there will be a high
frequency of memory T cells specific for the target tissue anti-
gens compared to the few naive T cells present before the disease
developed. If costimulation enhances the response of these mem-
ory T cells, it may be difficult to block enough APC-memory T cell
costimulatory interactions to achieve therapeutic benefit.

Another possible complication of targeting the B7:CD28 path-
way to treat established diseases is the role played by CD4+
effector T cells that lack CD28. Increased numbers of circulat-
ing CD4+CD28− T cells are found in the blood of patients with
various disorders, including rheumatoid arthritis (Schmidt et al.,
1996), diabetes (Giubilato et al., 2011), and significantly for vas-
cular pathology, acute coronary syndrome (Zal et al., 2004; Liuzzo
et al., 2007). These cells produce inflammatory cytokines (inter-
feron γ and TNF) and they have cytolytic functions. Whether or
not they contribute to atherosclerotic lesion inflammation and
acute plaque changes is not know. Other molecules may serve as
costimulators for these CD28− T cell, such as activating receptors
found typically on NK cells (Snyder et al., 2004).

T cell tolerance to self proteins is maintained in part by the
presentation of peptides of these proteins to T cells in the absence
of innate inflammatory signals that usually accompany infection
or tissue injury (see Figure 1A). Tolerizing DCs carrying self
antigens from healthy tissues to secondary lymphoid organs are
considered key to this process. These DCs are capable of pre-
senting peptide–MHC antigen to naïve T cells without providing
sufficient costimulatory signals to lead to clonal expansion and
effector T cell differentiation. Tolerizing DCs may also express
more coinhibitors that activating DCs. The consequence of antigen
presentation by these DCs is deletion, anergy, or Treg differentia-
tion. The emerging understanding that DCs are present in normal
blood vessels may explain how T cell tolerance to blood vessel

specific protein antigens is maintained. There has been a long
held view that peripheral APC-mediated induction of T cell toler-
ance could be achieved therapeutically by costimulatory blockade,
especially in the context of transplantation (Wekerle et al., 2002).
The basic concept of tolerance induction has been to block cos-
timulation at a time when the relevant target antigens are being
presented to naïve T cells, for example in allograft tolerance
around the time the transplant is performed. Thus T cells would
receive antigen receptor signals in the absence of costimulation.
Immunologic tolerance induction has the advantage of a lim-
ited time of pharmacologic intervention and limited non-specific
immunosuppression. In studies performed more than 15 years
ago in rodent models, short term costimulatory blockade of the
B7–CD28 pathway in combination with anti-CD154 treatment
induced long term acceptance of allografts, and donor antigen
specific tolerance was apparently achieved (Larsen et al., 1996).
This strategy has not proven successful in inducing tolerance in
preclinical primate models. Potential thrombosis/hemostasis com-
plications of targeting CD154 related to expression of the protein
on platelets has hampered progress in the strategy of targeting
both B7:CD28 and CD154:CD40 pathways in humans. With the
development of new reagents, and better, albeit still incomplete,
understanding of the signaling pathways that mediate costimula-
tion and coinhibition, effective strategies for tolerance induction
based on costimulatory blockade appears to be an achievable
goal (Ford and Larsen, 2009). With regard to vascular diseases,
a major challenge in adopting tolerance induction strategies will
be the identification of the relevant antigens. In the case of ath-
erosclerosis, most attention had been paid to the heterogeneous
collection of antigens generated by LDL oxidation, based on the
isolation of ox-LDL reactive T cells from human plaques (Stemme
et al., 1995) as well as the presence of T-dependent anti-ox-LDL
antibodies in atherosclerotic patients and hypercholesterolemic
animals. However, more recently, evidence from studies of mice
immunized with ox-LDL indicated that the T cells that were acti-
vated and exerted pro-atherogenic responses were specific for
native LDL and unmodified ApoB100 peptides (Hermansson et al.,
2010). Furthermore, adoptive transfer of myeloid DCs pulsed with
native human ApoB100 and rendered tolerogenic by in vitro treat-
ment with IL-10 significantly reduced atherosclerosis in Ldlr−/−
mice expressing transgenic human ApoB100 (Hermansson et al.,
2011). The atheroprotection was correlated with induction of
Treg and reduction in plaque T cell infiltration in the treated
mice. That study confirms that DCs can modulate atherosclero-
sis in an antigen specific manner, and suggests that DC-induced
peripheral T cell tolerance can ameliorate inflammatory vascular
diseases.

More advanced animal models, improved immunophenotyp-
ing of human arterial disease, and studies of vascular disease in
patients being treated with drugs that target costimulatory and
coinhibitory molecules will all be required in order to more fully
understand the role of different costimulatory and coinhibitory
pathways. This will permit the development specialized treatments
to target the relevant molecules on the relevant cell types, in the
relevant locations.
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