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The ectopic deposition of fat in liver and muscle during obesity is well established, however
surprisingly little is known about the intestine. We used the ob/ob mouse and C57BL6/J
mice fed a high fat (HF) diet to examine the effects of obesity and the effects of HF feeding,
respectively, on intestinal mucosal triacylglycerol (TG) accumulation. Male C57BL6/J (wild-
type, WT) mice were fed low fat (LF; 10% kcal as fat) or HF (45%) diets, and ob/ob mice
were fed the LF diet, for 3 weeks. In this time frame, the WT–HF mice did not become
obese, enabling independent examination of effects of the HF diet and effects of obe-
sity. Analysis of intestinal lipid extracts from fed and fasted animals demonstrated that
the mucosa, like other tissues, accumulates excess lipid. In the fed state, mucosal tria-
cylglycerol (TG) levels were threefold and fivefold higher in the WT–HF and ob/ob mice,
respectively, relative to the WT–LF mice. In the fasted state, mucosa from ob/ob mice had
threefold higher TG levels relative to WT–LF mucosa. q-PCR analysis of mucosal mRNA
from fed state mice showed alterations in the expression of several genes related to both
anabolic and catabolic lipid metabolism pathways in WT–HF and ob/ob mice relative to WT–
LF controls. Fewer changes were found in mucosal samples from the fasted state animals.
Remarkably, oral fat tolerance tests showed a striking reduction in the plasma appearance
of an oral fat load in the ob/ob and WT–HF mice compared to WT–LF. Overall, the results
demonstrate that the intestinal mucosa accumulates excess TG during obesity. Changes
in the expression of lipid metabolic and transport genes, as well as reduced secretion of
dietary lipid from the mucosal cells into the circulation, may contribute to the TG accumu-
lation in intestinal mucosa during obesity. Moreover, even in the absence of frank obesity,
HF feeding leads to a large decrease in the rate of intestinal lipid secretion.
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INTRODUCTION
The increasing prevalence of metabolic syndrome presents a great
challenge to world health. Contributing to the development of
coronary heart disease and diabetes mellitus, metabolic syndrome
is composed of multiple risk factors that include insulin resistance,
dyslipidemia, and central obesity (Eckel et al., 2010). Understand-
ing the connection between dyslipidemia and obesity remains
an important goal toward elucidating the pathological mecha-
nisms. In particular, the ectopic deposition of fat seems to play
a critical role in tissue dysfunction. Studies show that both obese
children and adults exhibit fat deposition in liver and skeletal mus-
cle (Rasouli et al., 2007; Cali and Caprio, 2009; Li et al., 2011).
Intrahepatic triacylglycerol (TG) is a known marker for meta-
bolic dysregulation in obese individuals (Fabbrini et al., 2009).
Further, intramyocellular TG can result in impaired insulin sensi-
tivity, causing a direct effect on glucose and lipid metabolism (Pan
et al., 1997). However, accumulation of lipid in other organs, and
its potentially negative effects, has remained relatively unexplored.
In particular, little is known about the effects of obesity on the
small intestine.

During digestion and absorption dietary fat, composed mostly
of TG, is broken down by lipases in the lumen of the digestive tract.
The resultant monoacylglycerols and fatty acids (FA) are absorbed
by enterocytes in the small intestinal mucosa, where they are
reesterified back into TG in the endoplasmic reticulum (ER). The
TG is incorporated into chylomicrons (CM), which are trafficked
to the Golgi apparatus and secreted into the lymphatic system and
eventually the general circulation (Phan and Tso, 2001). There is
now a growing body of evidence that newly synthesized TG is not
immediately shuttled out of enterocytes, but also stored in lipid
droplets (LD). Human studies show that dietary lipids ingested
in one meal are present in CM secreted following a second meal
(Fielding et al., 1996). Other human studies demonstrate that an
oral fat load results in jejunal storage of the ingested lipid that
can be released 4 h later by glucose administration (Robertson
et al., 2003). Intraduodenal lipid administration in rats shows that
while postprandial TG synthesis is quite rapid, the lipid load can
be increased until shuttling of TG from the ER to Golgi stops
entirely and a cytoplasmic TG pool is formed that may be an
overflow reservoir for later export (Mansbach and Dowell, 2000).
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Finally, in vivo coherent anti-Stokes Raman scattering imaging of
murine small intestine shows the existence of cytoplasmic LDs in
enterocytes following an oral fat challenge (Zhu et al., 2009). Inter-
estingly, mice fed a high fat (HF) diet had more and larger LDs
in enterocytes compared to low fat diet controls (Lee et al., 2009;
Zhu et al., 2009).

We used two murine models to explore the effects of obesity and
diet on the small intestine: ob/ob mice and HF diet fed C57BL6/J
mice. Owing to a single gene mutation that prevents the produc-
tion of the adipokine leptin, the ob/ob mouse is a model for type 2
diabetes that exhibits hyperglycemia and marked obesity (Zhang
et al., 1994; Drel et al., 2006). This is largely due to dysregulation
of central appetite signaling which results in hyperphagia, as well
as dysfunctions in FA and TG metabolism in peripheral tissues
(Friedman and Halaas, 1998; Unger et al., 1999). We also used
C57BL6/J mice to examine the effects of HF feeding on mucosal
TG. We hypothesized that in obese animals the intestinal mucosa,
like liver, and skeletal muscle, would accumulate lipids. In the
present study, we report that obese mice accumulate mucosal TG
in the fed and fasted state. This TG deposition is accompanied
by changes in the mucosal expression of several lipogenic and
lipid trafficking genes. Furthermore, both the ob/ob and the WT–
HF mice display a marked reduction in TG secretion following
an oral lipid load, relative to WT–LF mice. These results expand
our understanding of obesity and reinforce the idea that tissue fat
accumulation is often concurrent with metabolic dysfunction.

MATERIALS AND METHODS
ANIMALS, DIET, SURGICAL PROCEDURES, AND TISSUE COLLECTION
Thirty C57BL/6J wild-type (WT) male mice and 13 ob/ob male
mice were obtained from Jackson Laboratories (Bar Harbor, ME,
USA). All mice were 8 weeks old upon arrival and weighed 22–27 g
(WT) or 47–54 g (ob/ob). The mice were housed three per cage and
fed Purina 5015 rodent chow (60% carbohydrate, 12% fat, 28%
protein by kcal) for a week before the start of the study. For the
3-week feeding period, 15 WT mice and 13 ob/ob mice were fed a
10% kcal low fat semipurified diet (D12325, Research Diets, Inc.,
New Brunswick, NJ, USA; Table 1). The remaining 15 WT mice
were fed a 45% kcal HF semipurified diet (D12327, Research Diets,
Inc., New Brunswick, NJ, USA; Table 1). The WT–LF mice served
as controls for dietary fat content (versus WT–HF fed mice), and
for genotype (versus ob/ob-LF-fed mice). These three groups were
used for all analyses.

At the end of the 3-week feeding period, body composition was
analyzed by magnetic resonance imaging using an EchoMRI-100
(Echo Medical Systems, Houston, TX, USA). Food was removed
from the mice cages 12 h prior to sacrifice (fasted state) or the
mice were given ad libitum food access (fed state). Unless other-
wise noted, tissue collections were performed between 9 and 11
am. Before sacrifice, the mice were injected intraperitoneally with a
ketamine–xylazine–ace promazine cocktail (54.5/5.45/0.8 mg/kg,
respectively) to induce deep anesthesia, followed by exsanguina-
tion. The entire small intestine was excised, rinsed twice with
saline (0.85% NaCl), and the mucosa harvested by scraping with
a glass slide. The mucosa samples were immediately weighed in
polypropylene tubes and frozen in dry-ice ethanol. The liver was
excised, weighed, and frozen in dry-ice ethanol. The intestinal

Table 1 | Diet composition.

D12325 D12327

g % kcal % g % kcal %

DIET

Protein 19 20 23 20

Carbohydrate 68 70 46.1 40

Fat 4 10 20.4 39.9

Total 100 100

kcal/gm 3.86 4.6

INGREDIENT

Casein 200 800 200 800

DL-methionine 3 12 3 12

Sucrose 700 2800 396 1584

Cellulose 50 0 50 0

Soybean oil 45 405 45 405

Coconut oil 135 1215

Mineral Mix 35 0 35 0

Calcium carbonate 5 0 5 0

Vitamin mix 10 40 10 40

Choline bitartrate 2 0 2 0

FD&C blue dye #1 0.05 0 0.05 0

FD&C red dye #40 0.05 0

Total 1050 4057 881.1 4056

mucosa samples were immediately homogenized followed by sub-
sequent lipid and RNA extractions on the same day of the experi-
ment. The liver samples were stored at −80˚C until later analysis.
All animal procedures were approved by the Rutgers Univer-
sity Animal Use Protocol Review Committee and conformed to
the National Institutes of Health Guide for the Care and Use of
Laboratory Animals.

LIPID EXTRACTION AND TG ANALYSIS
Liver and mucosa samples were homogenized with 1× PBS pH 7.4
in 20× and 10× ml/g of sample, respectively, on ice with a Dounce
homogenizer and a Wheaton overhead stirrer at 5,000 rpm. Total
tissue protein concentration was determined by Bradford assay
(Bradford, 1976). The homogenate was diluted to 1 mg protein/ml
in PBS and lipid extractions were performed on 1 ml of diluted
sample by the Folch procedure (Folch et al., 1957). Lipid extracts
and triolein standards were spotted on Silica Gel G TLC plates and
separated by a non-polar solvent system (hexane–diethyl ether–
acetic acid, 70:30:1; v/v). Lipids were visualized by iodine vapor
and quantitation of TG determined using ImageJ (Bethesda, MD,
USA), as previously described (Storch et al., 2008).

HISTOLOGICAL EXAMINATION OF MUCOSAL LIPID
Mice were maintained and fed as described in the previous section.
All mice were given ad libitum access to food and water prior to
necropsies (fed state), which were performed between 9 and 11
am. The mice were first anesthetized as described above, followed
by exsanguination. The small intestine was removed, rinsed with
buffered PBS, trimmed, tied off, and filled with 4% paraformalde-
hyde in PBS for 2 h at room temperature. The lumen was then
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rinsed with 2% sucrose in PBS,cut into 7 mm pieces and embedded
in 10 mm Tissue-Tek Cryomolds (Sakura Finetek, Torrance, CA,
USA) filled with Tissue-Tek O.C.T. Compound (Sakura Finetek,
Torrance, CA, USA). Molds containing OCT and tissue were snap
frozen in liquid nitrogen and stored at −80˚C until use.

For Oil Red O analysis, 10 μm frozen sections were cut on a
Microm HM505E cryostat using Edge-Rite Low Profile Micro-
tome Blades (Richard-Allan Scientific, Kalamazoo, MI, USA) and
mounted to Superfrost Plus Micro Slides (VWR, Radnor, PA,
USA). Sectioned tissue was stored at −20˚C. Tissue was removed
from the −20˚C and brought to room temperature for 15 min prior
to Oil Red O staining. Oil Red O (Fisher Scientific, Pittsburgh,
NJ, USA) was prepared according to Humason (1972). Imme-
diately prior to use the stock solution was diluted with distilled
deionized water (6:4, V/V) and filtered through a 0.2-μm filter.
Tissue sections were post-fixed with 10% formalin (Fisher Scien-
tific, Pittsburgh, PA, USA) for 15 min, dipped in 60% isopropanol
for 30 s, and stained with Oil Red O for 30 min. Tissue was des-
tined with 60% isopropanol, rinsed under running tap for 2 min,
and counterstained with hematoxylin (Invitrogen, Camarillo, CA,
USA). Oil Red O sections were preserved with glycerin (Fisher Sci-
entific, Pittsburgh, NJ, USA) under nail polish sealed cover glass
(Fisher Scientific, Pittsburgh, PA, USA). Random sections were
analyzed and photographed using an Olympus BX51 microscope
equipped with a DP71 digital camera.

RNA EXTRACTION AND QUANTITATIVE RT-PCR ANALYSIS
Total mRNA was extracted from intestinal mucosa using a modi-
fied method from Chomczynski and Sacchi (Chon et al., 2007) and
analyzed as previously described (Lagakos et al., 2011). In brief, the
tissues were homogenized in 4 M guanidinium thiocyanate with
an Ultra-Turrax IKA-Werke (Wilmington, DE, USA). Total RNA
was isolated by phenol extraction, followed by precipitation and
washing with ethanol. The RNA was further purified by removal
of genomic DNA by DNase digest and RNeasy cleanup kit (Qia-
gen, Valencia, CA, USA). The integrity of the RNA was assessed
by gel electrophoresis and visualization of the 18S and 23S rRNA
subunits. Reverse transcription was performed on 2 μg of RNA
using a high capacity cDNA kit (Promega, Madison, WI, USA).
Primer sequences were determined using the NCBI gene database
and ordered from Sigma Aldrich (St. Louis, MO, USA) for the fol-
lowing primers shown in Table 2: β-actin, monoacylglycerol acyl-
transferase 2 (MGAT2), diacylglycerol acyltransferase 1 (DGAT1),
diacylglycerol acyltransferase 2 (DGAT2), monoacylglycerol lipase
(MGL), glycerophosphate acyltransferase 3 (erGPAT3), mitochon-
drial glycerophosphate acyltransferase (mtGPAT),CD36,microso-
mal triacylglycerol transfer protein (MTP), liver fatty acid binding
protein (LFABP), intestinal fatty acid binding protein (IFABP),
carnitine palmitoyltransferase 1 (CPT1), acyl-CoA oxidase (ACO),
fatty acid synthase (FASN), and acetyl-CoA carboxylase 1 (ACC1).
The efficiency (100 ± 5%) of each PCR primer set was first assessed
by standard curve. Real time PCR (RT-PCR) was performed in
triplicate using the ddCT method on the ABI 7300 PCR instru-
ment (Applied Biosystems, Foster City, CA, USA). Each reaction
contained 80 ng of cDNA, 250 nM of each forward and reverse
primer, and 12.5 μl of POWER SYBR Green Master Mix (Applied
Biosystems, Foster City, CA, USA) in a total volume of 25 μl.

Table 2 | Primer sequences used for qRT-PCR analyses.

Gene Primer sequence (forward and reverse)

β-actin 5′-GGCTGTATTCCCCTCCATCG-3′

5′-CCAGTTGGTAACAATGCCATGT-3′

MGAT2 5′-CGGAGGTGGACAACCTAACG-3′

5′-TGAGGTATTCCGGCCTGTTAT-3′

DGAT1 5′-TGTTCAGCTCAGACAGTGGTT-3′

5′-CCACCAGGATGCCATACTTGAT-3′

DGAT2 5′-TTCCTGGCATAAGGCCCTATT-3′

5′-AGTCTATGGTGTCTCGGTTGAC-3′

MGL 5′-CAGAGAGGCCCACCTACTTTT-3′

5′-ATGCGCCCCAAGGTCATATTT-3′

erGPAT3 5′-TATCCAAAGAGATGAGTCACCCA-3′

5′-CACAATGGCTTCCAACCCCTT-3′

mtGPAT 5′-CTGCTTGCCTACCTGAAGACC-3′

5′-GATACGGCGGTATAGGTGCTT-3′

CD36 5′-TCCCCCTACTAGAAGAAGTGGG-3′

5′-TCCAACAGATTGGTTTCGTTCA-3′

MTP 5′-CTCTTGGCAGTGCTTTTTCTCT-3′

5′-GAGCTTGTATAGCCGCTCATT-3′

LFABP 5′-GGGGGTGTCAGAAATCGTG-3′

5′-CAGCTTGACGACTGCCTTG-3′

IFABP 5′-GTGGAAAGTAGACCGGAACGA-3′

5′-CCATCCTGTGTGATTGTCAGTT-3′

CPT1 5′-AGCACACCAGGCAGTAGCTT-3′

5′-AGGATGCCATTCTTGATTCG-3′

ACO 5′-ATATTTACGTCACGTTTACCCCGG-3′

5′-GGCAGGTCATTCAAGTACGACAC-3′

FASN 5′-AGGTGGTGATAGCCGGTATGT-3′

5′-TGGGTAATCCATAGAGCCCAG-3′

ACC1 5′-ATGGGCGGAATGGTCTCTTTC-3′

5′-TGGGGACCTTGTCTTCATCAT-3′

β-actin was used as the endogenous control for each standard
and the relative quantitation of each gene was determined with
respect to the average of the WT–LF mice.

ORAL FAT TOLERANCE TEST
Following the 3-week feeding study the mice were fasted for 16 h
overnight. All OFTT were conducted from 9 am to 1 pm. The mice
were weighed and at t 0 were injected with 500 mg/kg body weight
of Tyloxapol (Triton WR-1339) to block peripheral lipoprotein
clearance. Thirty minutes following Tyloxapol injection, 300 μl of
olive oil (OO) was given by orogastric gavage. Blood samples were
collected from the tail at time = 0 (t 0), 30, 60, 90, 150, 240 min.
The amount of TG present in blood plasma at each time point was
determined using a Wako L-Type TG-H kit (Richmond, VA, USA)
and performed in duplicate in a microplate reader.

STATISTICAL METHODS
Unless otherwise noted, all group data are shown as aver-
age ± SEM. Statistical comparisons were determined using a two-
sided Student’s t -test or one-way ANOVA with Tukey’s post hoc
comparison. Differences were considered significant at p < 0.05.
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RESULTS
HIGH FAT FED AND OB/OB MOUSE MODELS
As expected at baseline the WT mice had a substantially lower body
weight than their age-matched ob/ob counterparts (Figure 1A).
Following the 3-week feeding period, the ob/ ob maintained their
weight. The WT–LF and WT–HF groups gained approximately
3 g/mouse (Figure 1A). At the end of the 3-weeks, body compo-
sition was assessed by MRI and showed that the ob/ob mice had
a significantly higher percentage of total body fat than both the
WT–LF and WT–HF groups (Figure 1B). There was no significant
difference in total body fat percentage between the WT–LF and
WT–HF groups. The ob/ob group also displayed significantly more
epididymal fat as a percentage of their body weight than either WT
group (Figure 1C). While there was a trend of higher percent epi-
didymal fat in the WT–HF compared to WT–LF mice, it did not
reach statistical significance. The hedonic mouse strain C57BL6/J
tends to develop obesity and hyperglycemia (Petro et al., 2004).
That the WT–HF mice did not gain weight relative to the WT–
LF group is in contrast to our previous studies using older mice
(Chon et al., 2007), however, this allowed a comparison between
the effects of HF feeding in the absence of obesity, to the effects of
genetically mediated obesity.

TG CONTENT OF INTESTINAL MUCOSA AND LIVER
Hepatic TG levels were 120 ± 29, 129 ± 35, and 3698 ± 323 μg/mg
protein for the WT–LF, WT–HF, and ob/ob mice, respectively, in
the fed state. We also quantified the amount of TG in the intestinal
mucosa of fed and fasted mice (Figure 2). In fasted mice, the ob/ob
group had approximately threefold higher mucosal TG compared
the WT–LF and WT–HF groups (p < 0.01). Thus, in the ob/ob
genetic obesity model, intestinal mucosa has increased TG levels
even in the fasted state. In the fed state, mucosal TG levels in ob/ob
were fivefold greater than in the WT–LF mice (p < 0.01). In WT
animals, a threefold increase in mucosal TG was found in the fed
state in HF animals, however in the fasted state there were no dif-
ferences in mucosal TG levels between HF- and LF-fed mice. Fecal
fat levels were <4% by weight in all groups (not shown).

Neutral lipid accumulation in duodenal sections from the prox-
imal small intestine of fed mice was visualized using ORO staining.

In keeping with the biochemical analysis, pronounced staining
was observed in ob/ob mucosa, and greater staining was found
in WT–HF compared to WT–LF mucosa (Figures 3A–C). We
noticed during sectioning and histological preparation that the
ob/ob mucosal samples were more fragile than either of the WT
samples, as seen by decreased mucosal integrity (Figure 3C).

LIPID METABOLIC GENE EXPRESSION IS ALTERED IN OBESE
INTESTINAL MUCOSA
To further understand the changes that may account for increased
enterocyte TG storage, we quantified the relative expression of 14
lipid metabolic and transport genes in the intestinal mucosa of fed
and fasted mice using RT-PCR. In fasted WT–HF mice DGAT2,
MGL, MTP, and FASN expression were significantly greater than
in fasted WT–LF controls (Figure 4A). In the fed state these same
genes as well as erGPAT3, CD36, CPT1, ACO, and ACC1 were
significantly increased in the WT–HF group, while MGAT2 tran-
script levels were significantly decreased. In both the fasted and
fed states, mtGPAT, DGAT1, IFABP, and LFABP were not signifi-
cantly different between the WT mice fed either a low fat or HF
diet.

In contrast to the WT–HF group, in fasted ob/ob mice, many
of the genes analyzed were significantly down-regulated relative to
the WT–LF controls (Figure 4B). However in the fed state, similar
to what was observed in the WT–HF group, most of the genes ana-
lyzed were increased relative to WT–LF mice, including a robust
upregulation of CPT1. These results indicate that both the HF
diet and genotype influence the expression of genes in intestinal
mucosa involved in TG synthesis, chylomicron secretion, and the
uptake, oxidation, and de novo synthesis of FAs. It is therefore pos-
sible that gene expression differences in obese mice may, in part,
contribute to the observed TG accumulation in ob/ob and WT–HF
mouse intestine (Figures 2 and 3).

DECREASED INTESTINAL TG SECRETION IN OB/OB AND WT–HF MICE
We challenged the three groups with an OFTT to determine their
capacity to absorb a bolus of OO and release it into the blood-
stream. Both the WT–HF and ob/ob mice had dramatic reductions
in appearance of the oil load as serum TG over the 4-h test. The

FIGURE 1 | Weight and body fat of mouse models. (A) Average body
weight of mice over the 3-week feeding study. Error bars may not be visible
within data point. (B) Percent body fat as determined by EchoMRI. (C)

Percent of total body weight as epididymal fat determined by tissue weight.
Data represent average ± SEM, p < 0.05 or lower versus WT–LF, n = 5–6 for
WT, n = 3 for ob/ob.

Frontiers in Physiology | Fatty Acid and Lipid Physiology February 2012 | Volume 3 | Article 25 | 4

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Fatty_Acid_and_Lipid_Physiology
http://www.frontiersin.org/Fatty_Acid_and_Lipid_Physiology/archive


Douglass et al. Dysfunction in the obese intestine

differences between groups increased over time up to t 240, at which
point serum TG levels for WT–LF, WT–HF, and ob/ob mice were
1180 ± 2, 359 ± 133, and 134 ± 17 mg/dl, respectively (Figure 5).
The markedly slower rates of TG secretion in the WT–HF mice and
the ob/ob mice suggest that obesity and HF feeding are accompa-
nied by intestinal dysfunction. The reduced rate of intestinal lipid
secretion likely contributes to increased storage of dietary fat in
enterocyte LDs, resulting in increased mucosal TG accumulation
(Figures 2 and 3).

DISCUSSION
In obesity, excess fat deposition occurs not only in adipocytes
but also in liver and skeletal muscle. In the present study, we
explored the effects of obesity and HF feeding on the small
intestine, and found that mucosal TG accumulation is accompa-
nied by changes in lipid metabolic gene expression and markedly
diminished secretion of dietary lipids.

As expected the ob/ob mice displayed significantly higher liver
TG content. Ectopic fat deposition in the liver, or hepatosteato-
sis, is commonly associated with obesity and can progress into
fibrosis and severely compromised liver function, eventually lead-
ing to cirrhosis and hepatocarcinoma (Festi et al., 2004; Janardan
and Rao, 2006). The delayed lipoprotein secretion observed in the

FIGURE 2 |TG content in liver and intestinal mucosa. Intestinal mucosa
TG content in fed and 12-h fasted mice. Average ± SEM, *p < 0.05 or lower
versus fed or fasted WT–LF, n = 4–6 for WT, n = 3–4 for ob/ob.

present study suggests a similar dysfunctional relationship to ente-
rocyte lipid accumulation and tissue function. Inflammation is
also likely to play a contributory role in the intestinal dysfunction,
as it has been recently shown that obese rats fed a HF diet exhibit
gut inflammation coupled with alterations in tight junctions and
increased intestinal permeability (de La Serre et al., 2010).

In the fed state, the ob/ob mucosa contained fivefold higher TG
levels than WT mucosa. Notably, we found threefold higher TG
levels in fasted ob/ob mice as well. A recent study by Zhu et al.
(2009). showed that in lean WT mice the enterocyte LDs present
after an OO gavage of are almost entirely depleted 12 h later. This
is in agreement with the absence of TG accumulation in the 12-
h fasted WT–LF group. The results indicate that mucosal LDs in
obese mice persist even after a long period of time following lipid
ingestion. However, it remains to be determined if this is a result of
obesity per se, or whether the absence of leptin has a specific effect
in the small intestine to promote an energy sparing phenotype.
Interestingly, Iqbal et al. (2010). reported that leptin receptor B-
deficient mice also had elevated intestinal mucosal TG levels. Other
hormones may also play a role, particularly insulin, which has been
reported to produce effects in the small intestine. For example, it
has been reported that adolescents with diabetes mellitus exhibit
lipid accumulation within proximal jejunum mucosa (Bobo et al.,
1977). Insulin has also been shown to decrease chylomicron pro-
duction in human jejunal explants (Loirdighi et al., 1992), and
rodent studies show many effects of insulin resistance on insulin
signaling in enterocytes, including increased de novo lipogenesis
and altered GLUT2 translocation (Haidari et al., 2002; Tobin et al.,
2008). Thus, the mucosal lipid accumulation shown here in ob/ob
mice may, in part, be secondary to insulin resistance in this mouse
model.

Increased postprandial TG biosynthesis and storage, as well
as reduced CM secretion, are both potential contributors to the
increased intestinal lipid content observed herein. TG biosynthesis
in enterocytes can occur via MGAT2 and DGAT1/2 activity or the
glycerol-3-phosphate pathway, with the former pathway thought
to contribute more than 75% of TG resynthesis (Johnston et al.,
1967). We found increased mRNA abundance of most enzymes
involved in both pathways in the fed ob/ob mice. Overexpression of
DGAT2, but not DGAT1, in mouse liver promotes LD formation,
suggesting a dominant role for DGAT2 in TG storage (Yamazaki
et al., 2005). DGAT1−/− mice display reduced CM secretion, sup-
porting a preferential export of DGAT1-catalyzed TG. In the
fed ob/ob mice, the DGAT2 expression increase was modestly

FIGURE 3 | Lipid accumulation in fed state proximal intestinal mucosa. (A) LF-fed WT mice (B) HF fed WT mice (C) LF-fed ob/ob mice. 40× magnification,
10 μm section, ORO, and H&E stain, as described in Section “Materials and Methods.”
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FIGURE 4 | Relative quantitation of mRNA expression of lipid

metabolic and transport genes. (A) Fasted and fed WT–HF mice relative
to fasted and fed WT–LF mice. (B) Fasted and fed ob/ob mice relative to
fasted and fed WT–LF mice. Average ± SEM, *p < 0.05 or lower versus
fasted WT–LF, **p < 0.05 or lower versus fed WT–LF, n = 3–6 per group.

greater than the increase in DGAT1 expression (1.96 ± 0.14 and
1.54 ± 0.07, respectively, p = 0.04), although both were signifi-
cantly increased relative to fed WT–LF mice. Pharmacological
inhibition of intestinal lipoprotein secretion in rats results in
markedly increased intestinal lipid content, indicating a primary
role for CM biogenesis and secretion in regulating intracellular
lipid levels (Tso et al., 1980). MTP is important as an intracel-
lular chaperone in lipoprotein biogenesis, and its function and
activity may be altered in the obese intestine (Atzel and Wetterau,
1993; Swift et al., 2005). In the present study we found that MTP
expression was unchanged in the ob/ob mice in the fasted state,
despite the presence of mucosal TG; expression in fed ob/ob mice
was increased 1.3-fold, a change that appears to be insufficient for
efficient export of a lipid load.

It is interesting that many of the mucosal genes analyzed were
lower in fasted ob/ob mice compared to fasted WT–LF mice. While
this would appear to oppose the obese phenotype of these mice,
it is worth noting that that expression of adipogenic enzymes in

FIGURE 5 | Oral fat tolerance tests. Fasted mice given the LPL-inhibitor
Tyloxapol were gavaged with an olive oil bolus as described in Section
“Materials and Methods.” Average ± SEM, n = 4 per group, *p < 0.05 or
lower versus WT–LF.

adipose tissues of ob/ob mice is also reported to be significantly
decreased, suggesting that absence of functional leptin signaling
induces an energy sparing state in peripheral tissues (Nadler et al.,
2000).

De novo FA synthesis could also be contributing to the observed
mucosal TG accumulation. Although the contribution of endoge-
nous synthesis to total intestinal TG is thought to be small, it has
been shown that FA synthesis is increased twofold in the small
intestine of ob/ob mice relative to lean WT mice (Memon et al.,
1994). We found increased ACC1 expression in fed ob/ob mice,
and a trend toward increased FASN. It should be noted that our
ob/ob mice consumed a high sucrose LFD, thereby providing an
abundant supply of substrate for lipogenesis.

Markedly diminished secretion of a dietary lipid bolus was
found not only in the ob/ob but also in the WT–HF group.
Despite having a similar weight and body composition to the WT–
LF mice, the WT–HF mice had a much lower rate of secretion,
implying that enterocyte dysfunction may precede the accumula-
tion of mucosal lipids. The HF diet may also be an independent
contributor to the secretion defect. In human studies, HF diet
interventions for as little as 3 days as well as for 2 weeks, have
been shown to significantly decrease gastrointestinal transit time
(Cunningham et al., 1991; Castiglione et al., 2002; Clegg et al.,
2011). Additionally, rodent studies show that increased gastric
emptying as a result of chronic HF feeding may be attributed,
in part, to impaired cholecystokinin (CCK) signaling (Covasa
and Ritter, 2000). Thus, it is possible that the HF feeding in the
present WT–HF group leads to an acute lipid load in the prox-
imal small intestine secondary to increased gastric emptying. In
turn, this may underlie the increased postprandial lipid accumu-
lation and upregulation of mucosal genes such as DGAT2 and
CD36 in the intestinal mucosa of fed WT–HF mice. Adaptation to
the HF diet by persistently increased gastric emptying rates may
therefore contribute to the secretion dysfunction observed in the
OFTT.
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The reduced rate of intestinal TG secretion may also be sec-
ondary, at least in part, to changes in mucosal lipid metabolism.
The increased expression of erGPAT3 coupled with the reduced
expression of MGAT2 suggests the potential switch in anabolic
metabolism from TG production to phospholipid biosynthesis,
which may contribute to reduced TG available for secretion. In
addition, the increased CPT1 and ACO mRNA in fed ob/ob and
WT–HF samples, relative to WT–LF, suggest an increased level of
lipid oxidation. Although the levels of mucosal FA oxidation are
quite low (Windmueller and Spaeth, 1978; Lagakos et al., 2011), it
is possible that an increase in FA oxidation could play a small role
in reducing the secreted TG pool.

It is important to note that very little is known about the reg-
ulation of mucosal lipid metabolic gene expression. We showed
previously that, unlike in the liver where transcriptional regulation
of expression of MGAT and MGL were found, in the intestinal
mucosa both of these genes appeared to be highly regulated by
post-transcriptional mechanisms (Chon et al., 2007). Thus, in
future studies we will determine the effects of obesity and HF feed-
ing on the protein expression and activities of lipid metabolic and
transport proteins, to gain further insight into the mechanisms by
which the mucosa accumulates increased TG and develops reduced
postprandial TG secretion.

The dramatically lower rates of lipid secretion in ob/ob and
HF fed mice are surprising in light of multiple studies that show
increased postprandial lipemia in obese subjects (Lewis et al., 1990;
Mekki et al., 1999). An important factor may be the contribution
of the liver to plasma TG, as it has been shown that hepatic lipopro-
tein production accounts for a significant part of postprandial TG
levels (Lewis et al., 1990). While we cannot rule out the influence
of endogenous lipoprotein production by the liver, the OFTT pro-
tocol uses an intentionally large bolus of OO to focus on intestinal
lipid secretion and minimize the hepatic contribution. In keeping

with the present results, Ji and Friedman (2008) found a significant
inverse correlation between body weight increase and changes in
plasma TG levels following an intragastric corn oil gavage in rats.

It is notable that diminished lipid secretion is also observed by
Uchida et al. (2012) in the current issue, in both diet-induced obese
(DIO) and ob/ob mice. They found that plasma TG appearance fol-
lowing an acute intragastric fat challenge was reduced in the ob/ob
and DIO mice relative to lean LFD-fed controls. This was accom-
panied by postprandial hypertriglyceridemia and a delayed TG
peak in oral fat challenges without Tyloxapol, indicating a role for
hepatic lipid secretion and lipoprotein clearance in determining
circulating TG levels. Differences between our studies and theirs
include the diet composition and length of feeding. Nevertheless,
the intestinal lipid secretion results concur, demonstrating that
reduced TG secretion is a persistent defect that can be observed
after both 3 weeks of HF feeding, in the absence of obesity, and
after 6 weeks of HF feeding, when DIO is present, as well as under
varying dietary fat composition, suggesting that the amount rather
than the type of fat in the diet is a primary determinant of intestinal
lipid secretion rate.

In summary, we report for the first time that the intestinal
mucosa accumulates excess TG during obesity. Both alterations
in the expression of lipid metabolic and transport genes, as
well as reduced secretion of dietary lipid, may contribute to the
TG accumulation in intestinal mucosa during HF feeding and
obesity.
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