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Neuronal avalanches are a novel mode of activity in neuronal networks, experimentally
found in vitro and in vivo, and exhibit a robust critical behavior: these avalanches are char-
acterized by a power law distribution for the size and duration, features found in other
problems in the context of the physics of complex systems. We present a recent model
inspired in self-organized criticality, which consists of an electrical network with threshold
firing, refractory period, and activity-dependent synaptic plasticity. The model reproduces
the critical behavior of the distribution of avalanche sizes and durations measured experi-
mentally. Moreover, the power spectra of the electrical signal reproduce very robustly the
power law behavior found in human electroencephalogram (EEG) spectra. We implement
this model on a variety of complex networks, i.e., regular, small-world, and scale-free and
verify the robustness of the critical behavior.
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1. INTRODUCTION
The activity in neuronal networks consists in one or more action
potentials in a single neuron or an ensemble of neurons. The first
case is typical for small networks, as some experimental systems
in vitro, where isolated spikes can be observed. The presence of a
number of action potentials in an ensemble of neurons not always
is a consequence of an external stimulus. Neuronal systems exhibit
an intense spontaneous activity, known since a long time, whose
relation with the response to stimulation is not fully understood
yet. It is however well established that spontaneous activity can-
not be simply reduced to a background noise uncorrelated to the
system response. Indeed, experimental results for the cat visual
cortex (Arieli et al., 1996) have shown that the intensity of the
response to an external stimulus is roughly proportional to the
intensity of the spontaneous activity state of the system when the
stimulus is applied. The variability in the response provided to the
repeated application of the same stimulus is therefore caused by
the different levels of ongoing activity. A similar analysis has been
performed at the intracellular level on the same system, confirm-
ing that the spatio-temporal structure of the spontaneous activity
influences the response signal (Azouz and Gray, 1999).

The typical form of spontaneous activity consists in the almost
synchronous emission of action potentials in a large number of
neurons, followed by periods of substantial inactivity. These high
activity events, named bursts, are observed both during develop-
ment and in mature systems and can last from a few to several
hundreds milliseconds. Conversely, the quiet periods can last sec-
onds and have been attributed to a variety of mechanisms: The
decrease in the available neurotransmitter (Stevens and Tsuji-
moto, 1995; Staley et al., 1998); the presence of an inhibitory
factor leading to a disabilitation of the neurotransmitter release
(Stevens and Tsujimoto, 1995; Staley et al., 1998); the inactiva-
tion, or remodulation of the response, of the glutamate receptors
(Maeda et al., 1995). An alternative form of temporal organization

is slow oscillations between high activity and low activity states
with a typical frequency of 0.3–1 Hz. The temporal organization
of this spontaneous activity has been characterized by the distrib-
ution of inter-times, i.e., the temporal intervals between successive
bursts or successive spikes (Segev et al., 2002).

In 2003 Beggs and Plenz have identified a novel form of sponta-
neous activity, neuronal avalanches (Beggs and Plenz, 2003, 2004).
Coronal slices of rat somatosensory cortex were placed onto a 8 × 8
multielectrode array (MEA) and spontaneous activity was induced
by bath perfusion with the glutamate receptor agonist NMDA
in combination with a dopamine receptor agonist. The intrinsic
activity of the system was monitored by measuring the potential
at each electrode. This local field potential (LFP) integrates the
electrical activity of neurons placed in the region surrounding the
electrode: negative peaks in the LFP measure the influx of positive
ions and therefore the cumulative membrane potential variation
of the neurons in the region. Experimental data show that before
6 days in vitro activity is mainly composed of sparse activations but
during the second week simultaneous activations occur in several
electrodes. The novel idea was to examine this electrophysiologi-
cal signal on a finer temporal scale, which was able to evidence a
complex spatio-temporal structure. Indeed, activity starting at one
electrode may involve more, non-necessarily neighboring, elec-
trodes. Binning time in cells of duration δt, allows to create a
spatio-temporal grid reporting the active electrodes in each tem-
poral cell. A neuronal avalanche is therefore defined as a sequence
of successively active electrodes between two temporal bins with
no activity. The total number of active electrodes, or alternatively
the sum of all LFPs, is defined as the size s of an avalanche and the
time interval with ongoing activity as its duration T.

The striking result is that both size and duration have no charac-
teristic value, i.e., their distributions exhibit a power law behavior.
The analysis at a finer temporal scale is then able to enlighten the
non-synchronous character of the bursts. The exponents of these
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power law distributions depend on the choice for the temporal bin
δt. Indeed larger bins make active electrodes belonging to differ-
ent avalanches to merge into the same larger event, leading to a
smaller exponent. In order to identify the appropriate value of δt,
Beggs and Plenz (2003) verified that if δt is equal to the average
value of the time delay between two successive LFPs in the culture,
the exponent does not depend any longer on the specific culture.
They were then able to identify the universal scaling behavior.

P (s) ∝ s−σ with σ = 1.5 ± 0.1

P (T ) ∝ T −τ with τ = 2.0 ± 0.1.
(1)

The power law behavior for the size distribution is followed by
an exponential cut-off due to the finite size of the system, whereas
for the duration distribution it extends over about one decade and
the exponential cut-off sets in at about 10 ms.

The results in vitro have been confirmed by extended stud-
ies in vivo on anesthetized rats during development (Gireesh and
Plenz, 2008) and awake rhesus monkeys (Petermann et al., 2009).
Spontaneous neuronal activity recorded by MEA placed in the
rat cortical layer 2/3 at the beginning and the end of the second
week postnatal, shows higher frequency (up to 100 Hz) oscillations
nested into lower frequency (4–15 Hz) oscillations. At the end of
the first week postnatal, bursts start to organize into high frequency
oscillations and become more synchronized during the second
week. Synchronous activity in the bursts exhibits the same scaling
behavior found for neuronal avalanches in vitro [equation (1)].
This similarity between in vitro and in vivo experiments supports
the idea that the emergence of nested oscillations reflects the devel-
opment of layer 2/3 in the cortex. Ongoing activity measured in the
primary motor and premotor areas of two awake monkeys, sitting
with no behavioral task, nor under particular stimulus, exhibits
also neuronal avalanches. Their organization is independent of the
detection threshold and exhibits scale invariance. Power laws for
the size and duration distributions confirm the scaling behavior
in equation (1) and suggest that in large neuronal networks a wide
variety of avalanche sizes is possible, including clusters percolat-
ing throughout the system. This indicates that the largest cluster
is solely controlled by the system size and not by the dynamics.
This result also generalizes avalanche dynamics across species and
different cortical areas. Criticality can be therefore considered as a
generic property of spontaneous cortical activity, which may indi-
cate that networks with a larger response repertoire were selected
over others throughout evolution. A flexible spontaneous activity
could then underlie and optimize important cortical functions as
learning and memory.

The investigation on the spontaneous activity has been per-
formed also for dissociated neurons from different networks as
rat hippocampal neurons (Mazzoni et al., 2007), rat embryos
(Pasquale et al., 2008), or leech ganglia (Mazzoni et al., 2007).
Neurons are mechanically dissociated by trituration through fine-
tipped pipettes and placed onto a MEA, pre-coated with adhesion
promoting molecules, in a nutrient medium. Under fixed con-
ditions of humidity and temperature, neurons start to develop
a network of synaptic connections and, after a variable period
in vitro, exhibit spontaneous electrical activity. The electrodes
of the MEA in these experiments record the spikes, rather than

the LFPs, due to individual neurons attached to them. As a con-
sequence, the temporal scale for the data analysis has to take
into account this difference in order to properly characterize the
neuronal response. Choosing the average inter-spike time at a
single electrode as the temporal scale for data binning, the spon-
taneous activity is monitored during the development and in
mature cultures. Different behaviors are observed. Only those
systems exhibiting a medium level of synchronization between
random spikes and synchronized bursts exhibit critical behav-
ior. For those cultures the scaling behavior is very robust and
in agreement with equation (1). In particular, the emergence of
a critical state has been found to be strongly related to the aging
of the system, namely after the first few weeks in vitro, where
the behavior of the system is subcritical, some cultures may self-
organize, and reach the critical state as they mature (Pasquale et al.,
2008).

In real brain neurons are known to be able to develop an
extremely high number of connections with other neurons, that is
a single cell body may receive inputs from even a hundred thou-
sand pre-synaptic neurons. One of the most fascinating questions
is how an ensemble of living neurons self-organizes, develop-
ing connections to give origin to a highly complex system. The
dynamics underlying this process might be driven both by the aim
of realizing a well connected network leading to efficient infor-
mation transmission, and the energetic cost of establishing very
long connections. The morphological characterization of a neu-
ronal network grown in vitro has been studied (Shefi et al., 2002)
by monitoring the development of neurites in an ensemble of
few hundred neurons from the frontal ganglion of adult locusts.
After few days the cultured neurons have developed an elaborated
network with hundreds of connections, whose morphology and
topology has been analyzed by mapping it onto a connected graph.
The short path length and the high clustering coefficient measured
indicate that the network belongs to the category of small-world
networks (Watts and Strogatz, 1998), interpolating between reg-
ular and random networks. In classical small-world networks the
majority of sites have a number of connections close to the average
value in the network. Real neuronal networks behave quite differ-
ently, since neurons with quite diverse number of connections are
observed. Indeed, the properties of the functionality network have
been measured experimentally in human adults (Eguiluz et al.,
2005). Functional magnetic resonance imaging has shown that
this network has universal scale-free properties, namely it exhibits
a distribution of out-going connection number, kout, which fol-
lows a power law, i.e., n(kout ) ∝ k−2

out , independent of the different
tasks performed by the patients. This behavior suggests that in
the network few neurons are highly connected and act as hubs
with respect to information transmission. Small-world features
have been also measured for functionality networks in healthy
humans, whereas they are not present in patients affected by neu-
rological diseases: Alzheimer patients have longer path lengths
(as in regular networks; Stam et al., 2007) whereas schizophrenic
patients show a more random architecture of the underlying net-
work (Rubinov et al., 2009). Epileptic patients exhibit a more
ordered neuronal network during seizures (Ponten et al., 2007),
whereas brain tumor patients a more random one (Bartolomei
et al., 2006).
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2. THE MODEL
2.1. CONNECTIVITY NETWORKS
The first step to develop a model simulating neuronal dynamics
is the choice of the specific network of connections. The simplest
choice is a regular lattice, i.e., a square lattice for a two-dimensional
system. However, following recent experimental results, we allow
neurons to develop long range connections: Starting from a reg-
ular lattice, a small fraction of bonds, from 0 to 10%, is rewired,
namely one of the two connected neurons is chosen at random in
the system. This procedure originates long range connections and
gives rise to a small-world network (Watts and Strogatz, 1998; Shefi
et al., 2002), which more realistically reproduces the connections
in the real brain.

In a small-world networks the number of connections for
different neurons is close to an average number. In order to repro-
duce the experimental data on the connectivity distribution in
functionality networks, we implement also scale-free networks.
More precisely, we set N neurons at random positions in two-
dimensional space and to each neuron we assign an out-going
connectivity degree, kout, according to the distribution measured
by fMRI measurements of ongoing activity in humans (Eguiluz
et al., 2005). Each neuron has a degree equal to a random number
between kmin

out = 2 and kmax
out = 100 according to the probability

distribution n(kout ) ∝ k−2
out . The two neurons are chosen accord-

ing to a distance dependent probability, p(r) ∝ e−r/5<r>, where r
is their spatial distance (Roerig and Chen, 2002).

In order to consider a network with both features, small-world
and scale-free, we also implement the Apollonian network. This
has been recently introduced (Andrade et al., 2005) in a simple
deterministic version starting from the problem of space-filling
packing of spheres according to the ancient Greek mathematician
Apollonius of Perga. In its classical version the network associated
to the packing gives a triangulation that physically corresponds to
the force network of the sphere packing. One starts with the zero-
th order triangle of corners P1, P2, P3, places a fourth site P4 in the
center of the triangle and connects it to the three corners (n = 0).
This operation will divide the original triangle in three smaller
ones, having in common the central site. The iteration n = 1 pro-
ceeds placing one more site in the center of each small triangle
and connecting it to the corners (Figure 1). At each iteration n,
going from 0 to N, the number of sites increases by a factor 3 and
the coordination of each already existing site by a factor 2. More
precisely, at generation N there are

m (k, N ) = 3N , 3N−1, 3N−2, . . . , 32, 3, 1, 3

vertices, with connectivity degree

k (N ) = 3, 3 × 2, 3 × 22, . . . , 3 × 2N−1, 3 × 2N , 2N+1 + 1

respectively, where the two last values correspond to the site P4

and the three corners P1, P2, P3. The maximum connectivity
value then is the one of the very central site P4, kmax = 3 × 2N,
whereas the sites inserted at the N -th iteration will have the lowest
connectivity 3.

The important property of the Apollonian network is that it
is scale-free. In fact, it has been shown (Andrade et al., 2005)

FIGURE 1 | Apollonian network for N = 2: iterations n = 0, 1, 2 are

symbols ©, �, •, respectively.

that the discrete cumulative distribution of connectivity degrees
P(k) = �k′≥km(k, N )/NN, where NN = 3 + (3(N+1) − 1)/2 is the
total number of sites at generation N, can be fitted by a power
law. More precisely, P(k) ∝ k1−γ , with γ = ln3/ln2∼1.585. More-
over the network has small-world features. This implies (Watts
and Strogatz, 1998) that the average length of the shortest path l
behaves as in random networks and grows slower than any positive
power of N, i.e., l ∝ (lnN )3/4. Furthermore the clustering coeffi-
cient C is very high as in regular networks (C = 1) and contrary to
random networks. For the Apollonian network C has been found
to be equal to 0.828 in the limit of large N. On this basis, the
Apollonian network appears to have all the new features that we
would like to investigate: small-world property found experimen-
tally (Shefi et al., 2002) and possibility of a very high connectivity
degree (scale-free). Moreover it also presents sites connecting
bonds of all lengths. Also this last feature can be found in real
neuronal networks, where the length of an axon connecting the
pre-synaptic with the post-synaptic neuron can vary over several
orders of magnitude, from micrometers to centimeters. Finally,
most studies in the literature consider the case of a fully connected
network, where each neuron is connected to every other neuron.
Even if not completely realistic, we consider also this last case.

2.2. NEURONAL DYNAMICS
We here discuss a neuronal network model based on self-organized
criticality ideas (Bak, 1996). The model implements several phys-
iological properties of real neurons: a continuous membrane
potential, firing at threshold, synaptic plasticity, and pruning. In
order to define the model we need to specify the behavior of the
single neuron under different conditions, the dynamics then deter-
mines the system behavior (de Arcangelis et al., 2006a; Pellegrini
et al., 2007; de Arcangelis and Herrmann, 2010). We consider N
neurons at the nodes of the chosen network, characterized by their
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potential vi. The neuron positions will then be ordered in space for
regular lattices and small-world networks, organized in a hierar-
chical manner for the Apollonian network and randomly chosen
in two dimensions for the scale-free and fully connected networks.
Once the network of output connections is established, we iden-
tify the resulting degree of in-connections, kinj , for each neuron j.
To each synaptic connection we assign an initial random strength
gij, where gij �= gji, and to each neuron randomly either an excita-
tory or an inhibitory character, with a fraction pin of inhibitory
synapses. Whenever at time t the value of the potential at a site
i is above a certain threshold vi ≥ vmax, the neuron sends action
potentials which arrive to each of the kouti pre-synaptic buttons
and lead to a total production of neurotransmitter proportional
to vi. As a consequence, the total charge that could enter into con-
nected neurons is proportional to vikouti . Each of them receives
charge in proportion to the strength of the synapses gij

vj (t + 1) = vj (t ) ± vi (t ) kouti

kinj

gij (t )∑
k gik (t )

(2)

where the sum is extended to all out-going connections of i. In
equation (2) the membrane potential variation is obtained by
dividing the received charge by the surface of the soma of the
post-synaptic neuron, proportional to the number of in-going ter-
minals kinj . The plus or minus sign in equation (2) is for excitatory
or inhibitory synapses, respectively. In regular networks neurons
have about the same number of in-going and out-going connec-
tions, therefore equation (1) reduces to the simpler expression

vj(t + 1) = vj(t ) ± vi(t )
gij (t )∑
k gik (t ) . The same consideration holds

for small-world networks.
The firing rate of real neurons is limited by the refractory

period, i.e., the brief period after the generation of an action
potential during which a second action potential is difficult or
impossible to elicit. The practical implication of refractory peri-
ods is that the action potential does not propagate back toward
the initiation point and therefore is not allowed to reverberate
between the cell body and the synapse. In our model, once a neu-
ron fires, it remains quiescent for one time step and it is therefore
unable to accept charge from firing neighbors. This ingredient
indeed turns out to be crucial for a controlled functioning of our
numerical model. In this way an avalanche of charges can propa-
gate far from the input through the system. The initial values of the
neuron potentials are uniformly distributed random numbers and
the value of vmax is fixed equal to 6 in all simulations. Moreover, a
small fraction (10%) of neurons is chosen to be output sites, i.e.,
an open boundary, with a zero fixed potential, playing the role of
sinks for the charge. They model neurons connected to neurons
not belonging to the slice and avoid that an excess to charge influx
would lead to supercritical behavior. Each time neuronal activity
stops in the network, an external stimulus is necessary to trigger
further activity, which therefore mimics the nutrients from the
bath needed to keep a real neuronal network alive. This stimu-
lus consists in increasing the potential of a random neuron by a
random quantity uniformly distributed between 0 and vmax.

During the propagation of an avalanche according to equation
(2), we identify the bonds connecting two successively active neu-
rons, namely neurons whose activity is correlated. The strength

of their connections is increased proportionally to the activity
of the synapse, namely the membrane potential variation of the
post-synaptic neuron induced by the pre-synaptic neuron

gij (t + 1) = gij (t ) + αiij (t ) (3)

where iij(t ) is the current through that synaptic connection and
α a dimensionless parameter. Once an avalanche of firings comes
to an end, the strength of all inactive synapses is reduced by the
average strength increase per bond

�g =
∑

ij ,t

δgij (t ) /Na (4)

where Na is the number of bonds active in the previous avalanche.
Here α is the only parameter controlling both the strengthening
and the weakening rule in the Hebbian plasticity and represents the
ensemble of all possible physiological factors influencing synap-
tic plasticity. By implementing these rules, our neuronal network
“memorizes” the most used paths of discharge by increasing their
strength, whereas the less solicited synapses slowly atrophy. Indeed,
once the strength of a bond is below an assigned small value
gt = 10−4, we remove it, i.e., set its strength equal to zero, which
corresponds to the so-called pruning.

We implement synaptic plasticity rules during a series of Np

stimuli in order to modify the synaptic strengths, initially set at
random. In this way we do not impose a strength configuration
but let the system activity tune their values. Once a percentage
of bonds is pruned, we stop plastic adaptation and we perform
our measurements, by applying a new sequence of stimuli with-
out modifying the synaptic strengths. The extension of the plastic
adaptation procedure then represents the level of experience, or
age, of the system, whose response we monitor over a time-scale
much shorter than the one needed for structural adaptation. All
data presented in this manuscript are averaged over long temporal
sequences in several initial network configurations. More precisely,
for regular and small-world networks we average data on 10 dif-
ferent initial configurations with a sequence of 10000 avalanches
per configuration. On the Apollonian network we average over 100
different initial configurations and a sequence of 30000 avalanches
per configuration. For scale-free and fully connected networks we
average over 60 different initial configurations and a sequence of
50000 stimulations per configuration.

3. PRUNING
The total number of pruned bonds at the end of each avalanche,
Npb, in general depends on the initial conductance g 0, therefore it
is interesting to investigate the two cases of either all initial con-
ductances equal to 0.25, or being uniformly distributed between
0 and 1. First the case of equal initial conductances is analyzed.
The strength of the parameter α, controlling both the increase and
decrease of synaptic strength, determines the plasticity dynam-
ics in the network. This homeostatic mechanism implies that the
more the system learns strengthening the used synapses, the more
the unused connections will weaken. For large values of α the sys-
tem strengthens more intensively the synapses carrying current but
also very rapidly prunes the less used connections, reaching after
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a short transient a plateau where it prunes very few bonds. On the
contrary, for small values of α the system takes more time to ini-
tiate the pruning process and slowly reaches a plateau (Figure 2).
The inset of the figure shows the asymptotic value of the fraction
of surviving bonds, calculated as the total number of bonds in
the unpruned network minus the asymptotic number of pruned
bonds, as function of α. The number of unpruned bonds asymp-
totically reaches its largest value at the value α � 0.03 for different
networks. This could be interpreted as an optimal value for the
system with respect to plastic adaptation.

For the Apollonian network it is interesting to investigate if
pruning acts in the same way on bonds created at different itera-
tions n, n = 0, . . ., N, or rather tends to eliminate bonds of some
particular iteration. The probability to prune bonds of different
n is evaluated, that is the number of pruned bonds over the total
number of bonds for each iteration stage, as function of the num-
ber of applied stimuli. Figure 3 shows that the plateau is reached
at about the same value of Np and the shape of the curve is similar
for each n. However the probability to prune bonds with large n
is higher: These are the bonds created in the last iterations and
therefore embedded in the interior of the network. This suggests
that the most active bonds are the long range ones (small n), which
therefore support most of the information transport through the
network. It is also interesting to notice that, since the total number
of bonds depends exponentially on n, the gaps between the asymp-
totic values of the probability for successive generations depend
exponentially on n. In the inset of Figure 3 we show the asymptotic
number of pruned bonds per generation on a semi-log scale, this
quantity is well fitted by the exponential behavior Npb � exp n.

The same analysis has been performed for random initial con-
ductances between 0 and 1. The results are similar to the previous
case. It can be noticed that pruning starts already at Np = 1, since
conductances close to zero are present, and the plateau is reached

FIGURE 2 | Average number of pruned bonds Npb as function of the

number of external stimuli Np for a square lattice of linear size L = 100,

equal initial conductances, and different values of α. In the inset we
show the asymptotic value of the percentage of surviving bonds as
function of α.

after about 1000 stimuli. The value of α which optimizes the num-
ber of active bonds is about 0.030 also for the Apollonian network.
In this case, the pruning behavior for different iterations is similar
to the previous case, with the pruning probability exponentially
increasing with n, as Npb � exp n.

The effect of pruning on the connectivity degree of the network
is an interesting quantity to monitor on scale-free networks. On
Apollonian networks we evaluate the number of sites with a num-
ber of out-going connections kout as function of kout in the initial
network and after application of a given number of external stim-
uli (Figure 4). After the application of few external stimuli, i.e.,
for a short plastic adaptation, the distribution n(kout) shows the
same scaling behavior of the original Apollonian network. As the
pruning process goes on, sites exhibit varying connectivity degree,
and new values of kout appear. The result is that the scaling behav-
ior is progressively lost, as well as the scale-free character of the
network, since there is a generalized decrease of the connectivity
in the network.

4. AVALANCHE STATISTICS
After “aging” the system applying plasticity rules during Np exter-
nal stimuli, we submit the system to a new sequence of stimuli
with no modification of synaptic strengths. The response of the
system to this second sequence models the spontaneous activity
of a trained neuronal network with a given level of experience. We
analyze this activity by measuring the avalanche size distribution
n(s) and the time duration distribution n(T ).

The avalanche size distribution n(s) consistently exhibits power
law behavior for different values of model parameters. Figure 5
shows the avalanche size distribution for different networks and
values of Np, including also the case Np = 0 (no plasticity adap-
tation), for random initial conductances and the optimal value of

FIGURE 3 | Probability of pruning for bonds of different iterations n of

Apollonian networks, from bottom n = 0 to top n = 9, as function of the

number of external stimuli Np for equal initial synaptic strengths. In
the inset, the asymptotic Npb (after 5000 stimuli) is shown as function of n
with the exponential fit Npb � exp 0.5n.
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α. The value of the exponent is obtained by regression of the log-
binned data and found to be σ = 1.5 ± 0.1 for all networks, except
the Apollonian network where τ = 1.8 ± 0.2. The exponent is sta-
ble with respect to variations of the parameters for both equal and
random initial conductances. More accurate methods, as maxi-
mum likelihood fitting, should verify the stability of these values
(Clauset et al., 2009).

FIGURE 4 | Connectivity degree distribution n(kout) at different pruning

stages Np for Apollonian networks with equal initial synaptic

strengths and α = 0.020. As soon as pruning starts to eliminate bonds,
new connectivity degrees appear, not present in the original network.
Conversely, two out of the three corner sites, which for the generation
N = 9 have initially a connectivity degree 1025, may loose bonds because of
pruning and, as a result, n(1025) = 1.

FIGURE 5 | Avalanche size distribution for different networks with

pin = 0.05: the square lattice (N = 106, α = 0.03); the scale-free network

(N = 4000); and the Apollonian network for different values of Np (9th

generation with α = 0.030). Initial synaptic strengths are randomly
distributed. Data are logarithmically binned. In the inset, the corresponding
behavior of the number of pruned bonds for the Apollonian network is
shown.

It is interesting to stress the importance of noise: Indeed, by
applying the external stimulation not at random but at a fixed
neuron, the scaling exponent becomes σ = 1.2 ± 0.1 (de Arcan-
gelis et al., 2006a). We notice that, for fixed size s, increasing
Np decreases the number of avalanches of that size, suggesting
that strong plasticity remodeling decreases activity. The exponent
appears to be independent of Np, as long as the number of pruned
bonds, Npb, is far from the plateau (see inset in Figure 5). Similar
results are found for equal initial conductances. The dependence
of the critical behavior on synaptic strengths has been recently
investigated in networks of integrate-and-fire neurons (Levina
et al., 2007). The value of the exponent is compatible within error
bars with the value found in the experiments of Beggs and Plenz
(2003), 1.5 ± 0.4. However, one has to notice that experimental
results for neuronal avalanches were obtained for local field poten-
tials, i.e., the underlying events correspond to local population
spikes, whereas the numerical events are single neuronal spikes.
The slightly larger value of the exponent, found on the Apollonian
network, suggests that the peculiar hierarchical structure of the
network may reduce the probability of very large avalanches but
does not change substantially the electrical activity. For larger Np,
the distribution exhibits an increase in the scaling exponent and
finally looses the scaling behavior for very large Np values, in the
plateau regime for the number of pruned bonds.

In order to investigate the role of plastic modifications on the
production of very large avalanches, simulations are performed
for fully connected networks which undergo plastic adaptation
routines of different length. All networks exhibit supercritical
behavior, namely an excess of very large avalanches, due to the
high level of connectivity in the system (Figure 6). Very large
avalanches involve almost all neurons and their large number hin-
ders pruning, namely there are only very few synapses in the system
repeatedly inactive which progressively weaken and atrophy. This
behavior is independent of the extension of the plastic adaptation.
No pruning is observed even following the application of hundred
thousand stimuli. Very large avalanches therefore seem to be sus-
tained by the high connectivity in the system and apparently do

FIGURE 6 | Avalanche size distribution for 100 configurations of fully

connected networks with N = 1000 neurons with pin = 0.05.The different
curves correspond to different durations of the plastic adaptation period Np.
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not depend on the synaptic strengths. The analysis of the effect of
pruning on very large avalanches confirms this observation. Plas-
tic adaptation of different duration is now applied to scale-free
networks, leading to pruning of synapses. Supercritical behav-
ior, that appears in the unpruned networks, survives when only
few percentage of the synapses is removed. Conversely, a more
extended pruning strongly affects connectivity and hampers the
development of very large avalanches.

At time t = 0 a neuron is activated by an external stimulus ini-
tiating the avalanche. This will continue until no neuron is at or
above threshold. The number of avalanches lasting a time T, n(T ),
as function of T also exhibits power law behavior (Figure 7) fol-
lowed by an exponential cut-off. The scaling exponent is found
to be τ = 2.1 ± 0.2 for all networks and equal and random initial
conductances. Only for the fully connected networks the distrib-
ution exhibits a bump at long durations, due to the excess of large
avalanches which all contribute to the tail of the distribution. The
value of the exponent is found to be stable with respect to dif-
ferent parameters, provided that the number of pruned bonds
Npb is lower than the plateau for that value of α. Finally this
value agrees within error bars with the value 2.0, exponent found
experimentally by Beggs and Plenz (2003, 2004).

5. POWER SPECTRUM
The power spectrum of the time signal for the overall electrical
activity can be calculated. The aim is to compare the scaling behav-
ior of the numerical spectrum with the power law observed usually
in medical data (Novikov et al., 1997; Freeman et al., 2000). For this
purpose, the number of active neurons is monitored as function of
time, which recalls the experimental condition in which electrodes
are placed on the scalp in order to study the patient’s spontaneous
electrical activity. In neuronal networks neuronal activity consists
in avalanches of all sizes generated in response to the external stim-
ulus. Here the unit time is the time for the avalanche to propagate

FIGURE 7 | Avalanche duration distribution for different networks with

pin = 0.05: the scale-free network (N = 4000); the fully connected

network with Np = 50000; the Apollonian networks for different values

of α (9th generation, Np = 500). Data are logarithmically binned. The
dotted line has slope 2.1.

from one neuron to the next one. The power spectrum is calcu-
lated as the squared amplitude of the time Fourier transform as
function of frequency, averaged over many initial configurations.
Because of the definition of the numerical time unit, the frequency
unit does not correspond to the experimental one in Hertz.

Figure 8 shows the spectrum for different networks and differ-
ent values of Np. We also show the magnetoelectroencephalogra-
phy (similar to EEG) obtained from channel 17 in the left hemi-
sphere of a male subject resting with his eyes closed, as measured
in Novikov et al. (1997), having the exponent 0.795. For Np = 0,
i.e., without plasticity adaptation, the spectrum has a 1/f behav-
ior, characteristic of SOC. For values of Np different from zero, but
before the Npb plateau, one can distinguish two different regimes: a
power law behavior with exponent β = 0.8 ± 0.1 at high frequency,
followed by a crossover toward white noise at low frequency. The
difference between β = 1 for Np = 0 and β ; 0.8 for higher Np, sug-
gests that plasticity reduces the relevance of small frequencies in
the power spectrum, in better agreement with experimental EEG
spectra (Novikov et al., 1997; Freeman et al., 2000). The stability
of the exponent with respect to α has also been verified, finding
consistently β = 0.8 ± 0.1 at high frequency. The stability of the
spectrum exponent suggests that an universal scaling character-
izes a large class of brain models and physiological signal spectra
for brain controlled activities. Medical studies of EEG focus on
subtle details of a power spectrum (e.g., shift in peaks) to discern
between various pathologies. These detailed structures however
live on a background power law spectrum that shows universally
an exponent of about 0.8, as measured for instance in Freeman
et al. (2000) and Novikov et al. (1997). A similar exponent was
also detected in the spectral analysis of the stride-to-stride fluctu-
ations in the normal human gait which can directly be related to
neurological activity (Hausdorff et al., 2001). The measured value
for the power spectra exponent is in agreement with the expected

FIGURE 8 | Power spectra obtained for different networks: square

lattice (N = 106, α = 0.03, Np = 10); small-world networks (N = 106,

α = 0.05, Np = 1000, 1% rewired bonds); Apollonian networks for

different Np (9th generation, α = 0.020). The experimental data (black line)
are from Novikov et al. (1997) with frequency in Hertz. Experimental data
are shifted in order to be in the same frequency range of numerical data.
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relation β = 3 − τ , being the scaling exponent of the avalanche
duration distribution τ > 1 (Jensen, 1998).

The scaling behavior of the power spectrum can be interpreted
in terms of a stochastic process resulting from the superposition of
multiple inputs taking Gaussian distributed random values (Haus-
dorff and Peng, 1996). The output signal sum of different and
uncorrelated superimposed processes is characterized by a power
spectrum with power law regime, crossing over to white noise
at low frequencies and to brown noise to high frequencies. The
low crossover frequency is related to the inverse of the longest
characteristic time among the superimposed processes. 1/f noise
characterizes a superposition of processes of different frequencies
with similar amplitudes. In our case the scaling exponent is smaller
than unity, suggesting that processes with high characteristic fre-
quency are more relevant than processes with low frequency in the
superposition (Hausdorff and Peng, 1996).

6. DISCUSSION
Several experimental evidences suggest that the brain behaves as
a system acting at a critical point. This statement implies that
the collective behavior of the network is more complex than the
functioning of the single components. Moreover, the emergence
of self-organized neuronal activity, with the absence of a charac-
teristic scale in the response, unveils similarities with other natural
phenomena exhibiting scale-free behavior, as earthquakes or solar
flares (de Arcangelis et al., 2006b). For a wide class of these phe-
nomena, self-organized criticality has indeed become a successful
interpretive scheme. As in self-organized criticality, the thresh-
old dynamics ensures time-scale separation (slow external drive
and fast internal relaxation). This dynamics leads to criticality and
therefore power law behavior (Jensen, 1998). The model belongs
to the class of non-conservative models, since output neurons can
drive charge outside the system. However the model presents a
number of different features: The propagation of charge from one
neuron to the connected one is non-uniform and non-isotropic.

Moreover the connectivity network is not static but dynamically
evolves following activity. In this scenario the plastic rules intro-
duce a homeostatic regulatory mechanism between excitation and
inhibition leading to critical behavior. The ensemble of these new
ingredients is at the origin of the measured exponents, different
from the typical exponents found in SOC models. It is interest-
ing to notice that in fully connected networks the excess of very
large avalanches hampers the synaptic depression mechanisms
and therefore alters the self-organized regulation between exci-
tation and inhibition. As a consequence, supercritical behavior is
observed.

Extensive simulations of this activity-dependent model are
derived for regular, small-world, scale-free, and fully connected
lattices. The results are compared with experimental data. The
first result is that an optimal value of the plasticity strength α

exists with respect to the pruning process, optimizing information
transmission. This remark could be interpreted as the evidence
of a homeostatic mechanism between strengthening and weaken-
ing processes in the adaptation of real synapses. Moreover the
avalanche size and duration distributions exhibit a power law
behavior with stable exponents compatible with the values exper-
imentally found for neuronal avalanches. These values appear to
be independent of the model parameters and the specific connec-
tivity network. This universal behavior is also in agreement with
experimental results, which provide the same exponents for very
different systems (dissociated neurons, cortex slices, and networks
in vivo), evidently characterized by connectivity networks with
different complexity. Solely the fully connected networks consis-
tently exhibit supercritical behavior due to the high connectivity
level which sustains large avalanche activity. The stability of the
spectrum exponent suggests that a universal scaling characterizes
a large class of brain models and physiological signal spectra for
brain controlled activities. This work may open new perspectives
to study pathological features of EEG spectra by including further
realistic details into the neuron and synapse behavior.
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