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The vectorial transport of Na+ across epithelia is crucial for the maintenance of Na+ and
water homeostasis in organs such as the kidneys, lung, or intestine. Dysregulated Na+
transport processes are associated with various human diseases such as hypertension,
the salt-wasting syndrome pseudohypoaldosteronism type 1, pulmonary edema, cystic
fibrosis, or intestinal disorders, which indicate that a precise regulation of epithelial Na+
transport is essential. Novel regulatory signaling molecules are gasotransmitters. There
are currently three known gasotransmitters: nitric oxide (NO), carbon monoxide (CO), and
hydrogen sulfide (H2S). These molecules are endogenously produced in mammalian cells
by specific enzymes and have been shown to regulate various physiological processes.
There is a growing body of evidence which indicates that gasotransmitters may also regu-
late Na+ transport across epithelia.This review will summarize the available data concerning
NO, CO, and H2S dependent regulation of epithelial Na+ transport processes and will dis-
cuss whether or not these mediators can be considered as true physiological regulators of
epithelial Na+ transport biology.
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EPITHELIAL Na+ TRANSPORT
The vectorial transport of Na+ across epithelia of various organs is
a crucial event in the maintenance of general salt and water home-
ostasis in vertebrates. The molecular nature of transepithelial Na+
transport has been revealed in pioneer studies by Koefoed-Johnsen
and Ussing (1958): Na+ ions enter epithelial cells at the apical
membrane of the epithelial cells. The Na+ uptake mechanism
can be Na+ selective ion channels, such as the amiloride-sensitive
epithelial Na+ channel (ENaC), or Na+ coupled transporters
(Figure 1). The chemical driving force for the apical influx of
Na+ is created by the Na+/K+-ATPase at the basolateral side of
the epithelial cells. This enzyme actively pumps three Na+ ions out
of the cell – in exchange for two K+ ions. The K+ ions are recycled
and leave the cell via K+ channels at the basolateral membrane.
Furthermore, the K+-conductance keeps the membrane potential
of the epithelial cells negative. Thus, both the Na+/K+-ATPase as
well as K+ channels deliver the electrochemical driving force for
transepithelial Na+ transport (Figure 1).

Due to the concerted action of Na+ channels/transporters and
the Na+/K+-ATPase, there is a net movement of Na+ ions from the
apical to the basolateral side of the epithelium. This results in an
osmotic gradient across the epithelium, which eventually drives
the transepithelial absorption of water (Figure 1). This mecha-
nism is a basic principle for the physiology of various organs:
(i) in the kidneys, transepithelial Na+ and water transport dri-
ves the fluid reabsorption from the primary urine and indirectly
regulates blood volume and hence blood pressure (Bhalla and Hal-
lows, 2008); (ii) in the lungs, Na+ and water transport across the
pulmonary epithelium regulates the volume and viscosity of the
airway lining fluid (Hollenhorst et al., 2011) and keeps alveoli

free of fluid (Olver et al., 1986; Hummler et al., 1996; Althaus
et al., 2011); (iii) in the intestine, Na+ transport facilitates uptake
of electrolytes and nutrients (e.g., amino acids) as well as water
absorption from the chime.

The importance of Na+ transport processes becomes also
evident when one considers pathological conditions which are
associated with dysregulated Na+ transport. (i) In the kidneys, a
hereditary form of hypertension, Liddle syndrome, is reasoned by
hyperabsorption of Na+ from the primary urine due to a muta-
tion which leads to an increased number of ENaCs in the plasma
membrane (Shimkets et al., 1994; Schild et al., 1995). Conversely,
mutations which lead to ENaC hypoactivity cause the salt-wasting
syndrome pseudohypoaldosteronism type 1 (Chang et al., 1996).
(ii) In the lung, impaired reabsorption of Na+ and water across
pulmonary epithelia can lead to pulmonary edema (Hummler
et al., 1996; Althaus et al., 2011), whereas increased Na+ transport
can contribute to cystic fibrosis (CF)-like lung disease (Mall et al.,
2004; Azad et al., 2009; Rauh et al., 2010). (iii) In the intestine,
an inhibition of Na+ absorption, e.g., by viral infections, induces
diarrhea (Ousingsawat et al., 2011).

These physiological and pathophysiological examples demon-
strate that a precise regulation of transepithelial Na+ transport is
crucial for the function of multiple organs. A novel class of regu-
latory signaling molecules is the class of gasotransmitters (Wang,
2002). Gasotransmitters are endogenously produced as a product
of amino acid metabolism and regulate a variety of cell and organ
functions. There are currently three molecules which are regarded
as gasotransmitters: nitric oxide (NO), carbon monoxide (CO),
and hydrogen sulfide (H2S; Wang, 2002). Recently, there is a grow-
ing body of evidence that these molecules may serve as regulators
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FIGURE 1 | Schematic model of epithelial Na+ transport physiology. At
the apical side of epithelia, Na+ enters the cell either via Na+ coupled
transporters, such as the Na+/H+ exchanger (NHE), Na+-coupled amino acid or
phosphate symporters (NX), Na+/glucose symporters (SGLT), and
Na+/K+/2Cl− cotransporters (NKCC), or via Na+ selective ion channels such as
the epithelial Na+ channel (ENaC). The electrochemical gradient for apical Na+

uptake is generated at the basolateral membrane via the activity of the
Na+/K+-ATPase as well as K+ channels. The net effect of the concerted
interplay between channels/transporters and the Na+/K+-ATPase is a
movement of Na+ from the apical to the basolateral side of the epithelium
(blue arrows). This creates osmotic forces which drive the absorption of water
from the apical to the basolateral compartment (gray arrow).

of epithelial Na+ transport processes. The following sections will
describe the three known gasotransmitters and review their impact
on Na+ transport processes and Na+ transporting molecules in
renal, pulmonary, and intestinal epithelia.

NITRIC OXIDE (NO)
Nitric oxide was the first gasotransmitter that was recognized as a
physiological signaling mediator. In 1987, NO was identified to be
the “endothelial derived relaxing factor” inducing the relaxation of
vascular smooth muscle cells (Ignarro et al., 1987). NO is endoge-
nously produced from the amino acid l-arginine by nitric oxide
synthases (NOS). There are three NOS isoforms, NOS1 (neu-
ronal NOS), NOS2 (inducible NOS), and NOS3 (endothelial NOS;
Garvin et al., 2011). Apart from a classical role as a regulator of
smooth muscle tone, NO has also been demonstrated to play an
important role in the regulation of transepithelial Na+ transport.

EFFECTS OF NO ON RENAL EPITHELIAL Na+ TRANSPORT
NO reduces Na+ absorption in the kidneys
In the kidneys, NO is generally regarded to facilitate natriuresis and
diuresis, which is evident from animal studies using NO-donating
molecules. The NO-donor S-nitroso-acetylpenicillamine (SNAP)
increased urinary Na+ excretion in anesthetized dogs (Majid et al.,
1998). Similarly, the infusion of the NO-donor molecule sodium
nitroprusside (SNP) increased natriuresis and diuresis in con-
scious rats (Grandes et al., 1991). By contrast, the intrarenal
arterial infusion of the NO-donor molecule NOC-7 did not affect
baseline urinary Na+ excretion in anesthetized rabbits (Adachi
et al., 1997). However, angiotensin 2- and norepinephrine-induced
reduction in urinary Na+ excretion was blocked by NOC-7 in
this model (Adachi et al., 1997). These data suggest that NO may
block angiotensin 2- or norepinephrine-activated renal transep-
ithelial Na+ absorption in rabbits. These findings are confirmed
in studies with anesthetized rats, where SNP decreased angiotensin
2-stimulated proximal tubular fluid absorption (Eitle et al., 1998).

By contrast to the study by Adachi et al. (1997), SNP also decreased
basal tubular fluid absorption (Eitle et al., 1998). This discrepancy
might be explained by different employed concentrations of SNP
(Eitle et al., 1998). These studies indicate that exogenously applied
NO-donating drugs increase urinary Na+ excretion – which is
likely the result of a decreased transepithelial Na+ transport.

Consistent with studies investigating effects of exogenously
applied NO, inhibitors of NO synthesis, such as nitro-l-arginine
methyl ester (l-NAME), were demonstrated to exert anti-
natriuretic and anti-diuretic effects (Lahera et al., 1991, 1993;
Ortiz and Garvin, 2002). Furthermore, NOS3 knock-out mice
had a reduced Na+ excretion and urinary volume after acute vol-
ume load (Perez-Rojas et al., 2010). The treatment of anesthetized
rats with cholesterol also blocked urinary Na+ excretion (Kopkan
et al., 2009). There was no such effect in the presence of the NOS
inhibitor l-NAME, which suggests that cholesterol prevents NO-
mediated natriuresis (Kopkan et al., 2009). Those studies imply
that there is a basal tone of NO, which keeps transepithelial Na+
transport and consequently Na+ retention in the kidneys low.

NO-mediated regulation of Na+ transporting molecules along
nephrons
Several studies investigated the regulatory impact of NO on ion
transporting molecules across nephronic epithelial cells. The focus
of the following paragraphs will be on epithelial Na+ transport-
ing molecules. For effects of NO on other renal ion channels and
transporters, the reader is referred to an excellent review by Ortiz
and Garvin (2002).

The bulk of the fluid and electrolytes which are filtered at
the glomeruli are reabsorbed from the primary urine along the
proximal tubule. The reabsorption of Na+ occurs primarily by
Na+ coupled cotransporters which are located in the apical mem-
brane of the epithelium. The gradient for Na+ uptake is created
by the basolaterally located Na+/K+-ATPase. The NO donors
SNAP and SNP inhibited the Na+/H+-exchanger (NHE) in rabbit
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proximal tubules and Caco-2 cells (Roczniak and Burns, 1996; Gill
et al., 2002). Furthermore, NO donors also inhibited the Na+/K+-
ATPase in an opossum proximal tubule cell line (Liang and Knox,
1999). Consistent with this observation, Linas and Repine (1999)
demonstrated that endothelial cells can regulate Na+ transport
by proximal tubule epithelial cells via NO synthesis and conse-
quently inhibition of the Na+/K+-ATPase. Taken together, NO is
thus likely an inhibitor of Na+ reabsorption in the proximal tubule,
which is due to inhibition of NHE as well as the Na+/K+-ATPase.

In the thick-ascending limb, the uptake of Na+ from the
primary urine occurs via apical Na+ transporters, such as the
Na+/K+/2Cl− cotransporter (NKCC) and NHE, as well as the
basolateral Na+/K+-ATPase. The NO donors spermine NONOate
and nitroglycerin both decreased NHE activity in isolated and
perfused rat thick ascending limbs (Garvin and Hong, 1999).
Although Spermine NONOate decreased NKCC activity in the
same model, the Na+/K+-ATPase was not affected (Ortiz et al.,
2001). These data indicate that in the thick ascending limb, NO
rather interferes with apical transport systems than the basolateral
Na+/K+-ATPase. The source of NO in thick ascending limbs is
likely a production by NOS3, since l-arginine, the substrate for
NO production, inhibits thick ascending limb Na+ transport in
NOS1 and NOS2, but not in NOS3 knock-out mice (Plato et al.,
2000).

Beside the thick ascending limb, there is also Na+ transport
across the thin ascending limb or the descending limb. A puta-
tive effect of NO on Na+ transport activities in these segments,
however, has not been investigated so far (Garvin et al., 2011).

In the cortical-collecting duct (CCD), Na+ is taken up by the
epithelium via the concerted action of apically located ENaCs and
the basolateral Na+/K+-ATPase. Spermine NONOate and nitro-
glycerin decreased ENaC activity in rat CCD (Stoos et al., 1995).
This effect was also apparent for endothelium-derived NO, which
decreased ENaC activity (Stoos et al., 1994, 1995). By contrast, Lu
et al. (1997) observed an increase in ENaC activity due to NO. This
was likely an indirect effect via activation of basolateral K+ chan-
nels (Lu et al., 1997). Thus, whether NO elicits a net-inhibition
or activation of ENaC in the CCD remains controversial. Inter-
estingly, there was no effect of NO donors on Na+/K+-ATPase
activity in the CCD (Stoos et al., 1994, 1995). The reason why NO
inhibits the Na+/K+-ATPase in the proximal tubule but not in the
CCD is unknown. However, this discrepancy might be explained
by differences in the oxidative state of epithelial cells, which may
counter effects of NO on Na+ transport (Yu et al., 2007; Helms
et al., 2008).

Taken together, the currently available data speak in favor of a
NO-mediated inhibition of Na+ transporting molecules in renal
epithelia.

NO-induced signaling events in renal epithelia
The classical mechanism how NO exerts biological effects is the
stimulation of soluble guanylate cyclase (sGC). This results in
increased cyclic guanosine monophosphate (cGMP) production
and downstream effects on protein kinases such as protein kinase
G. NO-mediated activation of the sGC/cGMP pathway has been
demonstrated to be involved in NO regulation of NHE3 (Roczniak
and Burns, 1996; Gill et al., 2002) and the Na+/K+-ATPase (Liang

and Knox, 1999; Linas and Repine, 1999) in the proximal tubule.
These studies showed that NO-induced production of cGMP is
crucial for the regulation of Na+ transport in the proximal tubule.
Interestingly, Sasaki et al. (2004) demonstrated that cGMP is pro-
duced upon administration of SNAP in proximal tubule cells in
humans; however, the resulting decrease in Na+ uptake by the
epithelial cells was blocked by probenecid. This finding suggests
that export of cGMP by a probenecid-sensitive organic anion
transporter is necessary for the regulation of Na+ transport (Sasaki
et al., 2004). This may be the result of a downstream activation
of protein kinase G or Src tyrosine kinase signaling pathways by
extracellular cGMP (Jin et al., 2004; Nascimento et al., 2011). The
activation of the Src signaling complex is associated with endo-
cytosis of the Na+/K+-ATPase as well as the NHE3 in renal cells
(Liu et al., 2004, 2005; Oweis et al., 2006; Cai et al., 2008; Nasci-
mento et al., 2011). This would provide a molecular link between
NO-mediated cGMP production, cGMP export, and downstream
inhibition of Na+ transport in the proximal tubule.

The general inhibition of Na+ absorption by NO in the thick-
ascending limb is also likely due to cGMP mediated signaling
(Ortiz and Garvin, 2001), however, if cGMP and downstream acti-
vated mediators specifically decrease NKCC or NHE activity in this
segment, remains to be proven.

Aside from the activation of the sGC/cGMP pathway, there
are alternative signaling mechanisms that might explain effects of
NO on Na+ transporting molecules. For example, higher oxida-
tive derivates of NO, such as NO2 or N2O3, can interact with
cysteine-residues of proteins – a mechanism which is termed S-
nitrosylation (Hess et al., 2005). This direct protein-modification
can regulate the activity of ion channels and transporters, as for
example shown for purified Na+/K+-ATPase (Sato et al., 1995).
The distinct contribution of S-nitrosylation of Na+ transporting
molecules to NO-mediated interference with general Na+ trans-
port in renal epithelia, however, is not sufficiently investigated and
needs to be elucidated.

Renal sources of NO
An important question which remains is the precise source for NO
in the kidneys. Although inhibitors of NOS show obvious effects
on renal Na+ transport (see Section“NO Reduces Na+ Absorption
in the Kidneys”), it is hard to conclude from these studies what is
the cellular origin of NO. Furthermore, it is noteworthy that in
studies with systemic administration of NOS inhibitors or with
knock-out mice, a contribution of other physiological parameters,
i.e., indirect impact of blood pressure on glomerular filtration and
renal function, is difficult to exclude.

Nevertheless, it has been demonstrated that all three NOS iso-
forms are expressed in nephronic epithelia, which indicates that
the epithelial cells are generally capable of producing NO (Cabral
and Garvin, 2011). This may imply that NO might be an autocrine
regulator of Na+ transport in renal epithelia.

There is also a cross-talk between the epithelium and other
cells, such as endothelial cells or neuronal cells. A study by Linas
and Repine (1999) showed that endothelial cells can inhibit the
Na+/K+-ATPase and Na+ transport via NO release when co-
cultured with proximal tubule epithelial cells. As mentioned ear-
lier, endothelium-derived NO can also regulate ENaC activity in
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the CCD (Stoos et al., 1994, 1995). Furthermore, there is evidence
that nervous stimulation can regulate Na+ transport in the kidney.
Denervation of the kidney, for example, can abolish the anti-
natriuretic effects of l-NAME (Wu et al., 1999; Ortiz and Garvin,
2002). Thus a role for NO as a neurotransmitter with secondary
effects on Na+ transport is also likely.

Taken together, although there are still controversies in the
sources of NO, the precise signaling mechanisms as well as tar-
gets of action of NO, there is a convincing body of evidence that
NO impairs Na+ transporting molecules in nephronic epithelia
and consequently leads to renal natriuresis and diuresis.

EFFECTS OF NO ON PULMONARY EPITHELIAL Na+ TRANSPORT
General effects of NO on pulmonary Na+ transport
Consistent with the data from renal epithelia, NO is regarded to
inhibit Na+ transport across the pulmonary epithelium. There are
several studies which investigated the effects of NO on lung fluid
clearance (which is driven by transepithelial Na+ transport) in
whole-lung models. A study by Nielsen et al. (2000) demonstrated
that DETANONOate, a NO-donor, decreased amiloride-sensitive
fluid clearance in rabbits, which may indicate a decrease in ENaC-
mediated transepithelial Na+ transport by NO. Further studies
investigated the involvement of NO in lung disease-associated
impairment of transepithelial Na+ transport: The instillation of
endotoxin, for example, increased lung NO and cGMP levels and
inhibited alveolar fluid clearance in rats (Tsubochi et al., 2003).
Furthermore, Pittet et al. (2001) demonstrated an increase in
NOS2 after hemorrhagic shock in rats, which was associated with
a decrease in alveolar fluid clearance. Similarly, hydrostatic pres-
sure increased NO production and consequently decreased fluid
reabsorption in isolated rat and mouse lungs (Kaestle et al., 2007).

Aside from the exogenous administration of NO by NO-
liberating molecules, these studies imply that endogenous NO
production by NOS also leads to a decrease in pulmonary epithe-
lial Na+ transport (Pittet et al., 2001; Tsubochi et al., 2003; Kaestle
et al., 2007). Consistent with these studies, inhibition of NOS2
decreased NO production and increased amiloride-sensitive Na+
currents in a human airway epithelial cell line (H441; Song et al.,
2009). These data generally suggest an inhibitory effect of NO on
pulmonary epithelial Na+ transport. By contrast, NOS2 knock-
out mice exhibited a decreased amiloride-sensitive alveolar fluid
clearance (Hardiman et al., 2001), which is likely due to a reduced
protein expression of the α and γ subunits of ENaC (Hardiman
et al., 2004). Although indirect effects of a long-term NOS inhi-
bition on Na+ transport cannot be excluded (see section about
renal physiology), it might be hypothesized that there are differ-
ent physiological reactions due to acute or long-term changes in
pulmonary NO content.

Thus there are various studies available which demonstrate an
inhibition of fluid clearance by NO and consequently suggest an
impairment of Na+ transport across pulmonary epithelia – espe-
cially in the distal lung regions.

Aside from the distal lung epithelia, Na+ transport plays also an
important role in the regulation of airway surface liquid and thus
airway physiology (Hollenhorst et al., 2011). The administration
of NOS2 inhibitors increased amiloride-sensitive nasal potential
difference in mice (Kelley and Drumm, 1998; Elmer et al., 1999),

indicating that endogenously produced NO keeps Na+ trans-
port across nasal epithelia low. By contrast, Rückes-Nilges et al.
(2000) did not detect effects of the NO donors SNP and spermine
NONOate on Na+ transport by cultured primary human nasal
epithelial cells. The reason for this discrepancy is unknown.

A hyperabsorption of Na+ across the airway epithelia can pro-
mote CF-like lung disease (Mall et al., 2004). Interestingly, NOS2
expression is lower in CF compared to non-CF airway epithelia
(Kelley and Drumm, 1998; Moeller et al., 2006). Furthermore,
the NO concentration in exhaled air is inversely correlated with
transepithelial potential difference in patients with CF (Texereau
et al., 2005). This might suggest a regulatory mechanism for Na+
hyperabsorption across CF epithelia due to lack of tonic inhibition
by endogenously produced NO.

Effects of NO on Na+ transporting molecules in pulmonary epithelia
Consistent with the effects of NO on whole-lung Na+ and fluid
clearance, the application of NO-donating molecules decreased
amiloride-sensitive Na+ absorption by cultured rat alveolar type
2 cells (Guo et al., 1998) as well as the human airway epithelial
cell line H441 (Althaus et al., 2010). In both studies, a cGMP-
independent inhibition of ENaC as well as the Na+/K+-ATPase
was demonstrated (Guo et al., 1998; Althaus et al., 2010). By con-
trast, a patch-clamp study on rat alveolar type 2 cells described a
cGMP-dependent inhibition of Na+ channel activity due to NO
(Jain et al., 1998). The discrepancies between the studies by Jain
et al. (1998) and Guo et al. (1998) might be explained by different
culture conditions which were demonstrated to affect the pheno-
type of Na+ channels in alveolar epithelial cells (Jain et al., 2001).
Especially the supplement or non-supplement of dexamethasone,
in order to induce Na+ transport, or the culture at air/liquid inter-
face, has large effects on transepithelial Na+ transport properties
(Althaus et al., 2010). The inhibitory effect of NO on Na+ chan-
nel activity was also confirmed in patch-clamp studies on lung
slices from rat, although this effect was solely apparent on type
2, but not on type 1 alveolar epithelial cells (Helms et al., 2008).
The authors explained this observation by higher levels of reactive
oxygen species, such as superoxide anions (O−

2 ), in type 1 cells.
O−

2 might interact with NO and thereby counter inhibitory effects
of NO on type 1 cells (Helms et al., 2008).

Nevertheless, although NO-mediated signaling mechanisms
vary, the described studies demonstrate a general inhibition of
Na+ channels by exogenous NO administration in pulmonary
epithelia. By contrast to studies on renal epithelia, potential effects
of NO on Na+-coupled transporters in lung epithelia is, to the
author’s knowledge, currently unknown.

Pulmonary sources of NO
Direct evidence for endogenous NO synthesis in lungs is the fact
that NO can be detected in the exhaled air of humans (Khatri et al.,
2001; Texereau et al., 2005). However, the major cellular source of
this exhaled NO has not been identified to date.

The expression of NOS has been shown in various pul-
monary epithelial cells (Kelley and Drumm, 1998; Ermert et al.,
2002; Moeller et al., 2006; Song et al., 2009). In addition,
alveolar macrophages express all three NOS isoforms (Ermert
et al., 2002). Furthermore, LPS-activated macrophages reduced
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epithelial amiloride-sensitive Na+ absorption when co-cultured
with fetal rat distal lung epithelial cells (Ding et al., 1998). Endothe-
lial cells also contain NOS1 (Ermert et al., 2002; Lührs et al., 2002),
NOS3 (Ermert et al., 2002), and can express NOS2 upon stimu-
lation by exposure to endotoxin (Ermert et al., 2002). These data
demonstrate that NO might not only serve as an autocrine regula-
tor of Na+ transport in epithelial cells, but may also originate from
other cells and tissues, such as macrophages or the pulmonary
vasculature.

Taken together, NO is endogenously produced in lung tis-
sues. Although NO-mediated signaling mechanisms vary, the
available data suggest an inhibition of Na+ transport across pul-
monary epithelia due to impaired activity of Na+ channels and
the Na+/K+-ATPase.

EFFECTS OF NO ON INTESTINAL EPITHELIAL Na+ TRANSPORT
In the intestine, transepithelial Na+ transport drives the absorp-
tion of organic substances as well as the absorption of water from
the chime. The absorption of amino acids, glucose, or phosphate
occurs mainly in the duodenum and jejunum by Na+-coupled
symporters, whereas in the ileum, Na+ is taken up by the epithe-
lial cells via NHEs. Na+ absorption in the colon occurs via Na+
selective ion channels (such as ENaC) in most-species in an
aldosterone-dependent way.

There are various studies on the effects of NO on electrolyte and
water transport across intestinal epithelia and both pro-secretory
as well as pro-absorptive actions of NO have been reported (Izzo
et al.,1998). However,under physiological conditions, the available
studies speak in favor of a NO-dependent pro-absorptive intesti-
nal tone (Izzo et al., 1998). At this point the reader is referred to
the excellent review by Izzo et al. (1998).

Although basic effects of NO on electrolyte and fluid trans-
port in intestinal epithelia have been intensively investigated, there
are surprisingly few studies on the regulation of distinct Na+
transporting ion channels and transporters by NO.

Consistent with a pro-absorptive role of NO, treatment of rat
small intestinal epithelial cells (IEC-18) with l-NAME decreased
the activity of the Na+ glucose cotransporter SGLT1 (Coon et al.,
2008), suggesting that endogenous NO would simulate SGLT1.

By contrast, the treatment of IEC-18 cells with l-NAME stim-
ulated NHE3 by enhanced protein expression (Coon et al., 2008).
The stimulation of NHE3 by l-NAME was also observed on
rabbit ileum (Coon et al., 2007). These data suggest that con-
stitutively produced NO inhibits NHE3 in the small intestine.
Consistent with these studies, the exposure of Caco-2 cells, a
human colon adenocarcinoma cell line, to NO-donating mole-
cules inhibited NHE3 activity via cGMP-dependent mechanisms
(Gill et al., 2002).

Furthermore, an increase in Na+/K+-ATPase activity was
observed after treatment of IEC-18 cells with l-NAME (Coon
et al., 2008), which would suggest an inhibitory action of NO
on this enzyme. Furthermore, the NO-donor SNAP decreased
Na+/K+-ATPase activity in rat IEC-6 cells (Suzuki et al., 2005).

Those data indicate that, depending on the intestinal segment
and distinct Na+ transporting molecules, NO might have net pro-
or anti-absorptive effects on electrolyte and Na+ transport across
intestinal epithelia. Furthermore it is important to point out that

the described studies on Na+ transporting molecules investigated
effects of NO on epithelial cells – independently of neuronal reg-
ulation. A neuronal input – using NO as a transmitter – might
superimpose local effects on Na+ transporting molecules and
might also account for different net-effects that are attributed
to NO.

NO REGULATION OF Na+ TRANSPORT: CONCLUSIONS
There is a convincing body of evidence that speaks in favor of an
inhibitory role for NO in the regulation of Na+ transport in renal
and pulmonary epithelia. NO is endogenously produced in the
kidneys or lungs, affects Na+ transporting molecules via cellular
signaling cascades and eventually regulates organ physiology, such
as natriuresis/diuresis or Na+-driven alveolar fluid clearance.

By contrast, it is difficult to make a decisive conclusion about
a pro- or anti-absorptive role for NO in intestinal epithelia.
NO-mediated effects in the intestine seem to be dependent on
differences between intestinal segments, species, as well as con-
centrations of NO (Izzo et al., 1998). Furthermore, NO-mediated
signaling mechanisms vary, dependent on the amount of NO, and
consequently cGMP, or the availability of other oxidative species
and the formation (or quenching) of higher oxidative derivates of
NO. The heterogeneity of NO effects in the intestine might there-
fore not necessarily be contradictory, especially given the fact that
the inner milieu of the intestine is more variable (depending on the
nutritional status or intestinal flora) when compared to kidneys
or lungs.

CARBON MONOXIDE (CO)
Although generally regarded as a highly toxic gas, carbon monox-
ide (CO) has been recognized as a physiological cellular signaling
mediator. CO is endogenously produced in the human body as a
product of heme metabolism and is generated by heme-degrading
enzymes referred to as heme oxygenases (Ryter et al., 2006). There
are two distinct forms of heme oxygenases: heme oxygenase 1
(Hmox1) an inducible form, and constitutively expressed heme
oxygenase 2 (Hmox2; Maines et al., 1986). Originally, CO has
been considered simply as a by-product of heme degradation by
heme oxygenases, however, in the past decade, evidence accumu-
lated to suggest that CO produced by heme oxygenases serves as a
regulated cellular signaling molecule. This has been demonstrated
in multiple studies addressing the cellular effects of exogenous
administration of physiologically relevant doses of CO. By this
means, it was demonstrated that CO has potent cyto- and tissue-
protective properties due to its implication in anti-apoptotic,
anti-inflammatory, and anti-proliferative signaling mechanisms
(Ryter et al., 2006; Motterlini and Otterbein, 2010). In addition,
there is recently a growing body of evidence that CO might be a
regulator of ion channels/transporters and consequently epithelial
ion transport processes.

EFFECTS OF CO ON RENAL EPITHELIAL Na+ TRANSPORT
Both heme oxygenase isoforms are expressed in the kidney
(Csongradi et al., 2012) and endogenous production of CO has
been demonstrated in the kidney (Jackson et al., 2011).

Similar to NO, CO is also an activator of sGC, although with
less potency (Ma et al., 2007). Given that NO regulates Na+ trans-
port mainly by sGC/cGMP mediated signaling mechanisms, it is
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likely that CO also affects Na+ transporting molecules in epithelia.
The first hint toward this hypothesis was provided by Nathanson
et al. (1995). These authors demonstrated a CO-induced activation
of neuronal Na+/K+-ATPase by cGMP-dependent mechanisms
(Nathanson et al., 1995). An activation of the Na+/K+-ATPase by
CO in epithelia would consequently enhance transepithelial Na+
transport. Consistent with this idea, the inhibition of heme oxyge-
nases by chromium mesoporphyrin (CrMP) and thus endogenous
CO production, decreased the absorption of Na+ in the loop of
Henle of microperfused rat kidney tubules (Wang et al., 2003).
Furthermore, CO was shown to activate ENaC in a M1 mouse
kidney CCD cell line (Wang et al., 2009).

By contrast, chronic induction of heme oxygenases by cobalt-
protoporphyrin resulted in increased urinary Na+ excretion in
cirrhotic rats (Di Pascoli et al., 2011), which would suggest an inhi-
bition of renal epithelial Na+ absorption by CO. Another study has
shown that the inhibition of heme oxygenase, and CO production
with CrMP leads to a decreased urinary Na+ excretion in rats
(Jackson et al., 2011), which is likely due to enhanced Na+ absorp-
tion. Those studies would speak in favor of an inhibitory effect of
CO on transepithelial Na+ absorption in the kidney.

Interestingly, the studies by Wang et al. (2003) and Jackson et al.
(2011) describe oppositional effects of heme oxygenase inhibition
on urinary Na+ excretion – despite using the same species, the
same inhibitor and without observing effects on glomerular filtra-
tion rate. It may be speculated that there are differences between
systemic administration of inhibitors (Wang et al., 2003) versus
microperfusion studies (Jackson et al., 2011), which would indi-
cate spatiotemporal differences in CO-mediated signaling events.
Based on the available studies, whether CO is an activator or
inhibitor of transepithelial Na+ absorption in the kidney is yet
to be determined.

EFFECTS OF CO ON PULMONARY EPITHELIAL Na+ TRANSPORT
Concerning a putative role of CO on pulmonary Na+ transport,
we have previously investigated the effects of CO administration
in isolated, ventilated, and perfused rabbit lungs (Althaus et al.,
2009). In this model, CO, applied as a gas or by the donor molecule
CO-releasing molecule 3 (CORM-3), led to a decreased amiloride-
sensitive transepithelial Na+ transport as measured by radioactive
22Na+ clearance and resulted in an increased alveolar lining fluid
volume. Thus, CO impaired Na+ transport as well as fluid clear-
ance in rabbit lungs. This effect has been attributed to impaired
amiloride-sensitive Na+ transport across pulmonary epithelial
cells, as indicated by transepithelial Ussing chamber studies using
cultured H441 monolayers as well as primary isolated alveolar
type 2 cells from the rat. In contrast to NO which affected both
the activity of Na+ channels and the Na+/K+-ATPase (Althaus
et al., 2010), CO did not impair Na+/K+-ATPase activity, but did
inhibit amiloride-sensitive ENaC (Althaus et al., 2009). This find-
ing is also in contrast to the study by Wang et al. (2009), who
observed an increased activity of ENaC due to CO. This discrep-
ancy is interesting, especially since both in M1 cells, and H441
cells, the major Na+ conductance is an ENaC-typical ∼5–10 pS
channel (Althaus et al., 2009; Wang et al., 2009). The effect of CO
on ENaC in H441 cells likely involves histidine residues since CO-
effects can be mimicked and abolished by the histidine-modifying

agent diethyl pyrocarbonate (Althaus et al., 2009). As pointed out
by Wilkinson and Kemp (2011), there are differences in the histi-
dine contents of human and mouse ENaCs. Those contradictory
findings might therefore be explained by taxonomical differences.
Furthermore it is important to point out that it is difficult to com-
pare findings from excised patch-clamp experiments (Wang et al.,
2009) with intact epithelial monolayers or isolated organ stud-
ies (Althaus et al., 2009), as additional regulatory CO-sensitive
mediators might be present in intact cells.

These studies indicate that exogenously applied CO affects Na+
transport in the pulmonary epithelium. However, if CO is endoge-
nously produced in the lung and affects Na+ transport is an impor-
tant question that needs to be addressed. Constitutively expressed
Hmox2 is expressed at low levels in lung epithelial cells (Roth et al.,
2009). Furthermore, alveolar macrophages express both heme oxy-
genase isoforms (Maestrelli et al., 2001). In addition, pulmonary
endothelial cells express constitutive Hmox2 (Roth et al., 2009).
Thus, several cell types in the lung contain the enzyme system
required for the generation of CO. Similar to NO, CO can also
be detected in the exhaled air of humans (Khatri et al., 2001).
Thus, CO is indeed endogenously produced in the lung. How-
ever, a putative link between CO production and epithelial Na+
transport needs to be demonstrated.

EFFECTS OF CO ON INTESTINAL EPITHELIAL Na+ TRANSPORT
In the intestine, CO might also serve as a regulator of epithelial
ion transport processes since the expression of heme oxygenases
has been demonstrated and the administration of CO can activate
a Cl− secretion across colonic epithelia (Pouokam et al., 2011;
Steidle and Diener, 2011). However, whether or not CO also influ-
ences Na+ absorption in the intestine, as well as other epithelia, is
currently unknown.

CO REGULATION OF Na+ TRANSPORT: CONCLUSIONS
It was demonstrated that CO is able to affect Na+ transport
processes across various epithelia. In the kidneys, both pro- and
anti- Na+-absorptive effects of CO have been described. In the
lung, exogenous administration of CO decreased Na+ transport
and fluid clearance, however, a regulatory contribution of endoge-
nously synthesized CO remains to be demonstrated. Thus, there
is promising data available which indicate that CO might be
a putative novel regulator of epithelial Na+ transport physiol-
ogy. However, there are important questions remaining: How is
endogenous CO-production regulated? What are the stimulators
of CO production? How do concentrations of CO employed in
experimental studies reflect endogenously produced levels of CO?
These questions need to be answered before a decisive conclusion
that CO is a physiological regulator of epithelial Na+ transport
physiology can be drawn.

HYDROGEN SULFIDE (H2S)
Hydrogen sulfide (H2S) is a well known environmental threat with
the typical odor of rotten eggs. However, similar to NO and CO,
H2S has been suggested to represent the third biologically active
gasotransmitter (Wang, 2002). H2S is endogenously produced by
mammalian cells from the amino acid l-cysteine by mainly two
enzymes: cystathionine-β-synthase (CBS) and cystathionine-γ-
lyase (CSE; Stipanuk and Beck, 1982; Wang, 2002). CSE knock-out
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mice have reduced H2S levels in serum, aorta, and heart and
increased systolic blood pressure (Yang et al., 2008), which con-
vincingly showed for the first time a physiological role for H2S.
Although H2S has been shown to interact with various ion chan-
nels (Tang et al., 2010), putative effects of H2S on Na+ transporting
molecules are hardly investigated.

EFFECTS OF H2S ON RENAL EPITHELIAL Na+ TRANSPORT
Despite the fact that H2S is produced by CBS/CSE in the kidney
(Xu et al., 2009; Aminzadeh and Vaziri, 2012), up to today there are
no studies on the impact of H2S on Na+ transport processes across
renal epithelia. However, recently it has been shown that H2S can
activate AMP-activated protein kinase (AMPK) in rat glomerular
epithelial cells (Lee et al., 2012). Since AMPK is an important reg-
ulator of the Na+/K+-ATPase and ENaC (Carattino et al., 2005;
Woollhead et al., 2007; Albert et al., 2008; Mace et al., 2008), it
might be speculated that H2S-mediated AMPK activation affects
renal Na+ absorption. This hypothesis remains to be investigated.

EFFECTS OF H2S ON PULMONARY EPITHELIAL Na+ TRANSPORT
A first hint that H2S might affect Na+ transport processes across
lung epithelia comes from pathological observations on patients
which had prolonged exposure to this gas. One of their symp-
toms is, amongst others, pulmonary edema (Cordasco and Stone,
1973). Based on the link between alveolar fluid clearance and Na+
transport across the alveolar epithelium (Althaus et al., 2011), it
might be speculated that H2S poisoning leads to fluid accumu-
lation in the airspaces due to impairment of transepithelial Na+
and, consequently, water reabsorption. Consistent with this idea,
our laboratory has recently shown that the administration of the
H2S liberating molecule NaHS decreased amiloride-sensitive Na+
transport across the H441 lung epithelial cell line as well as native
tracheal preparations of pigs and mice (Althaus et al., 2012). This
was not the result of a direct impairment of Na+ transporting
molecules, but rather occurred indirectly via H2S-mediated inhi-
bition of basolateral K+ channels and consequently impairment of
Na+/K+-ATPase activity (Althaus et al., 2012). An impaired activ-
ity of the Na+/K+-ATPase due to NaHS has also been reported
for rat colonic epithelia; although this study did not investigate
transepithelial Na+ transport processes (Pouokam and Diener,
2011). In general, an impaired transepithelial Na+ transport by
H2S in the lung may provide a molecular explanation for edema
development in patients with H2S poisoning. However, whether
or not H2S is also an endogenous, physiological regulator of pul-
monary epithelial Na+ transport, needs to be addressed. A first
step toward the answer to this question is the fact that H2S gen-
erating enzymes are expressed in rat lungs (Madden et al., 2012)
and H2S production has been shown in lung tissue homogenates
of mammals (Olson et al., 2010). If such endogenously produced
H2S affects pulmonary Na+ transport is a question that remains
to be answered.

EFFECTS OF H2S ON INTESTINAL Na+ TRANSPORT
In the intestine, production of H2S has also been shown in
rat ileum (Zhao et al., 2003). Additionally, the H2S generating
enzymes CBS and CSE are expressed in the colon and inhibition of
these enzymes affects transepithelial ion transport (Schicho et al.,

2006; Hennig and Diener, 2009). Furthermore, the application of
NaHS induces a Cl− secretion across colonic epithelia (Schicho
et al., 2006; Hennig and Diener, 2009). Putative effects of H2S on
intestinal Na+ absorption, however, remain unknown.

H2S REGULATION OF Na+ TRANSPORT: CONCLUSIONS
Although H2S is an emerging signaling molecule in organs such as
kidneys, lung, or the intestine, its effects on epithelial Na+ trans-
port processes in those organs is largely unknown. Interestingly, a
major target for H2S are different types of K+ channels (Telezhkin
et al., 2009; Tang et al., 2010). K+ channels play a crucial role in
epithelial ion transport physiology since these channels regulate
the membrane potential and thus electrochemical gradients which
are necessary for ion fluxes. For example,we and others have shown
that modulation of K+ channel activity in the basolateral mem-
brane of pulmonary epithelia indirectly affects transepithelial Na+
transport processes (Greenwood et al., 2009; Althaus et al., 2012).
Therefore it may be speculated that H2S likely affects ion and Na+
transport processes across various other epithelia by interference
with K+ channel activity.

Beside the elucidation of effects of H2S on Na+ transport
processes, a major point that needs to be addressed is the ques-
tion if H2S is a physiological regulator of epithelial transport.
Physiological concentrations of H2S are hard to determine and
still controversial (Olson, 2011). The future challenges will be the
answer to the question what the real physiological concentrations
of H2S are and if such concentrations are necessary or sufficient
to maintain or affect epithelial Na+ transport processes.

SUMMARY AND PERSPECTIVES
There are various studies available which demonstrate that the
gasotransmitters NO, CO, and H2S affect epithelial Na+ transport
processes. However, before one can decisively consider any gaso-
transmitter as a true physiological regulator of Na+ transport, the
following criteria need to be fulfilled:

(1) The transmitter needs to be generated by specific enzymes
either directly in the epithelium or in associated tissues, such
as endothelium, nerve fibers, or other specific cells.

(2) The production of the transmitter needs to be either tonic or
stimulated by specific, physiologically relevant inducers.

(3) The endogenously produced transmitter needs to regulate
specific protein targets (Na+ transporting molecules), either
directly or by cellular signaling cascades.

Although these criteria seem to be quite straightforward, it is
not easy to address them in experimental studies. This is reasoned
by the facts that (i) it is difficult to measure physiological concen-
trations of the transmitters and (ii) consequently it is not easy to
decide whether transmitter concentrations, when applied as gas or
by donating molecules, are in a physiological range.

So far, NO is the only gasotransmitter which sufficiently fulfills
the mentioned criteria. This is evident from studies demonstrat-
ing that NO is produced by distinct cell types, either tonic or
stimulated, and can regulate specific Na+ transporting molecules
in epithelia via cellular signaling mechanisms, such as activation
of the sGC/cGMP pathway.
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Additionally, there is a growing body of evidence that the
gasotransmitters CO and H2S can influence epithelial Na+ trans-
port processes by affecting distinct Na+ transporting molecules
in epithelia. However, especially the first two criteria concern-
ing a physiological role of CO and H2S have not been suf-
ficiently addressed. The future challenge will be the investiga-
tion of the role of endogenously produced CO/H2S, the iden-
tification of stimulators of their synthesis and finally the elu-
cidation of their impact on Na+ transport processes across
epithelia.

Taken together, gasotransmitters are emerging as an important
class of signaling molecules which might be identified as novel

regulators of epithelial Na+ transport processes in the future. The
investigation of their physiology and putative dysregulation in
pathophysiological situations is an exciting field which eventu-
ally may expand our understanding of Na+ transport biology in
health and disease.
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