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Human life expectancy has nearly doubled in the past century due, in part, to social and
economic development, and a wide range of new medical technologies and treatments. As
the number of elderly increase it becomes of vital importance to understand what factors
contribute to healthy aging. Human longevity is a complex process that is affected by both
environmental and genetic factors and interactions between them. Unfortunately, it is cur-
rently difficult to identify the role of genetic components in human longevity. In contrast,
model organisms such as C. elegans, Drosophila, and rodents have facilitated the search for
specific genes that affect lifespan. Experimental evidence obtained from studies in model
organisms suggests that mutations in a single gene may increase longevity and delay the
onset of age-related symptoms including motor impairments, sexual and reproductive and
immune dysfunction, cardiovascular disease, and cognitive decline. Furthermore, the high
degree of conservation between diverse species in the genes and pathways that regulate
longevity suggests that work in model organisms can both expand our theoretical knowl-
edge of aging and perhaps provide new therapeutic targets for the treatment of age-related
disorders.
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INTRODUCTION
Aging generally refers to the process of getting chronologically
older and it is typically accompanied by senescence, the gradual
loss of physiological functions. Both of these processes are to some
degree, inevitable for all living organisms. Chronological aging is
primarily predetermined by heredity, whereas senescence results
from a complex interaction between environmental and genetic
factors.

During the last century, advances in medical technology have
significantly contributed to extension of human longevity. Accord-
ing to data from the United Nations, US Census Bureau, Statistical
Office of the European Communities, and National Institute of
Aging (NIA) there are several trends in global aging: (1) The overall
population is aging. For the first time in history, people aged 65 and
over will outnumber children under the age of 5. (2) Life expectancy
is increasing. Most countries, including developing countries, show
a steady increase in longevity over time. (3) The number of oldest
old is rising. People aged 85 and over are now the fastest growing
portion of many national populations. (4) New economic challenges
are emerging. Population aging will have dramatic effects on social
entitlement programs, labor supply, trade, and savings around the
globe and may demand new fiscal approaches to accommodate a
changing world (Doriansky et al., 2007). Altogether, these findings
further emphasize the need to understand how to promote healthy
aging rather than just extending lifespan.

Non-genetic factors such as nutrition, environmental quality,
psychosocial factors, and lifestyle play an important role in healthy
aging. However, experimental studies have indicated that the her-
itable component has a significant impact on the senescence of
invertebrates and mammals and accounts for approximately 35%

of the variance in lifespan (see Finch and Tanzi, 1997; Finch and
Ruvkun, 2001 for details). Over the past few decades and espe-
cially since the completion of the Human Genome Project, a
great number of studies have been carried out aimed at identi-
fying the genetic factors that affect human lifespan. Despite the
wide range of approaches utilized to identify longevity genes in
humans including, linkage analysis (Puca et al., 2001; Tan et al.,
2004), candidate–gene association analysis (Park et al., 2009; Lopez
et al., 2012), and longitudinal studies (Nybo et al., 2003; Soerensen
et al., 2010), progress has been limited due to the fact that these
methods can be experimentally intensive, time-consuming, and
poorly replicated. In addition, it is very difficult to control for
variations in environmental conditions. In contrast, it is easier
to minimize the effect of environmental conditions, lifestyle, and
genetic background in model organisms. Moreover, while studies
of longevity in humans are limited to demographic observations of
externally apparent symptoms,model organisms can be genetically
manipulated and phenotypically characterized in much greater
depth allowing theories of aging and age-related disease to be
experimentally tested.

Model organisms have also revealed that diverse organisms
may share common biological mechanisms regulating longevity
(Guarente and Kenyon, 2000; Helfand and Rogina, 2003; Hekimi,
2006). For example, studies have shown that dietary restriction,
without malnutrition, can extend lifespan, and delay the onset
of age-related pathologies in a wide range of species including
yeast, worms, flies, and mammals (Good and Tatar, 2001; Barger
et al., 2003; Koubova and Guarente, 2003; Johnson, 2008; Mair
and Dillin, 2008; Skinner and Lin, 2010). Similarly, several meta-
bolic processes and signaling pathways have also been shown
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to have an evolutionarily conserved role in aging. For exam-
ple, the insulin/insulin growth factor (IGF) signaling pathway
(Kenyon et al., 1993; Clancy et al., 2001; Tatar et al., 2001; Bluher
et al., 2003), histone deacetylases such as rpd3/Sir2 (Kim et al.,
1999; Tissenbaum and Guarente, 2001; Rogina et al., 2002), and
genes involved in oxidative stress (Phillips et al., 1989; Sohal and
Weindruch, 1996; Parkes et al., 1998; Honda and Honda, 1999;
Migliaccio et al., 1999; Sun and Tower, 1999; Taub et al., 1999;
Tower, 2000), all exert evolutionarily conserved effects on aging
and lifespan in a wide range of model organisms. The extent of
evolutionary conservation in both the outward signs of aging and
the environmental and genetic factors that influence it, suggests
that aging itself is an evolutionarily conserved process and not
simply an inevitable deterioration of biological systems. As such,
studies of both the effects and causes of aging in model organisms
can yield valuable insight into the molecular and cellular processes
that underlie aging in humans.

Various model systems, including yeast, C. elegans, and rodents
have been used to study the processes regulating organismal
longevity. Drosophila also has many advantages to studying the
biology of aging. For example, flies represent an optimal compro-
mise between physiological, genetic, and anatomical relevance to
humans as well as genetic, physiological, behavioral, and demo-
graphic power (Boulianne, 2001; Reiter et al., 2001; Helfand and
Rogina, 2003; Jafari et al., 2006; Iliadi and Boulianne, 2010). Fruit
flies also have a number of strengths that specifically aid in studies
of aging and longevity. For example, while the lifespan of flies is
relatively short (60–80 days), flies still exhibit age-related decline in
several behaviors (Grotewiel et al., 2005). Furthermore, the demar-
cation between development and adulthood is much clearer in
insects than other model organisms (adulthood being defined as
eclosion from the pupal case). Large brood sizes also make it pos-
sible to measure survival in large numbers of individuals within
each experimental cohort in controlled environments and to test
the functional consequences of senescence either longitudinally
in individuals or as sampled from the aging population. Finally,
since most cells in adult flies are postmitotic (except a few cells in
the gut, malpighian tubules, and gonads), the age-related decline
in cellular function can be examined without interference from
newly dividing cells. In this review, we will discuss how studies
in Drosophila can provide insight into the mechanisms regulating
healthy aging.

PHYSIOLOGY OF SENESCENCE
Aging is a universal process and all species studied show age-related
functional declines. However, different species age at different rates
likely due to different fitness strategies employed to survive and
reproduce in a competitive environment. The rate of aging can
also be quite variable between individuals of a given species. Fur-
thermore, while all cells, tissues, and organs show a functional
decline over time, not all tissues experience aging at the same rate.
Some systems may change slowly, while others decline rapidly, and
some may even show periods of increased function (Spirduso et al.,
2005). Despite the extensive variability both between species, and
within individuals, several tissues exhibit physiological senescence
in both invertebrates and mammals, including a decline in mus-
cle strength (Nair, 2005; Augustin and Partridge, 2009; Demontis

and Perrimon, 2010), immune response (Hoffmann, 2003; Flajnik
and Du Pasquier, 2004), stress resistance (Service et al., 1985; Rose,
1999; Murakami, 2006), reproduction (te Velde and Pearson, 2002;
Novoseltsev et al., 2005; Tatar, 2010; Luo and Murphy, 2011), and
cognition (Horiuchi and Saitoe, 2005; Grady, 2008).

AGING, MUSCLE STRENGTH, AND LOCOMOTOR FUNCTION
Sarcopenia or loss of muscle mass and function, is perhaps
one of the most marked problems associated with aging and
has been described for both invertebrates and higher organisms
(Fisher, 2004; Augustin and Partridge, 2009). At the cellular level,
this disease reflects mitochondrial dysfunction, altered apoptotic
and autophagic signaling, as well as trace metal dyshomeostasis
(Marzetti et al., 2009). Morphologically, sarcopenia is character-
ized by a decrease in both the number and size of individual fibers
(Larsson et al., 1978) and an increase in the extracellular space
and deposition of protein aggregates within the interstitial matrix
(Kim et al., 2008). Despite the fact that Drosophila and human
muscles show essential differences in fiber type, innervation, and
regeneration, they both exhibit age-related morphological and
functional changes. For example, myofibrils of old flies display
reduced sarcomere length, increased in vivo interfilament spacing,
and increased lattice disorder, showing a loss of ultrastructural
integrity and acute sarcopenia (Miller et al., 2008). Interest-
ingly, heart muscle structure and cardiac performance are also
progressively impaired with age in flies (Nishimura et al., 2011).

Additionally, recent studies in flies have indicated a role for
the well-known longevity-regulating pathways in the coordina-
tion of muscle aging. For example, the activation of dFOXO and
its target 4E-BP in muscle decelerates aging and reduces the age-
related accumulation of protein aggregates, whereas foxo mutants
accelerate loss of proteostasis (Demontis and Perrimon, 2010).
RNAi-mediated knockdown of the mitochondrial superoxide dis-
mutase 2 (SOD2) in muscle tissue decreases locomotion and short-
ens lifespan (Martin et al., 2009). Likewise, results from another
study have shown that overexpression of p38 MAP kinase extends
Drosophila lifespan in a MnSOD-dependent manner while inhi-
bition leads to early lethality and accelerates age-related motor
(muscle-restricted) dysfunction (Vrailas-Mortimer et al., 2011).

Behavioral locomotion assays can offer an accurate way of
assessing changes in muscle function. In Drosophila, many studies
have shown that motor functions are significantly reduced with
aging (Le Bourg and Lints, 1984; Fernandez et al., 1999; Simon
et al., 2006; Martinez et al., 2007; Rhodenizer et al., 2008). Among
various available methods for the assessment of locomotor activ-
ity, the startle-induced climbing behavior (negative geotaxis) is a
reliable and informative assay. Usually, in these experiments, flies
are tapped down to the bottom of their test vial and the distance
the flies climb up the vial within a particular period of time is mea-
sured. This assay measures a whole complex of different behaviors
including the escape reflex in response to mechanical stress, neg-
ative geotaxis (an inner orienting response and movement in
opposition to gravitational cues), climbing ability, and locomotor
activity itself. All of these behaviors reflect the functional status
of muscle and locomotor function to varying degrees. Interest-
ingly, detailed studies have revealed that the age-related decline
in performance does not depend on the density of animals in the
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test vial or the housing conditions (Cook-Wiens and Grotewiel,
2002; Goddeeris et al., 2003) but rather is primarily due to an
age-dependent decrease in locomotor speed (Rhodenizer et al.,
2008) similar to that seen in humans, suggesting a conserved
mechanism. The relative simplicity and reproducibility of these
behavioral assays makes locomotor activity a useful biomarker for
healthy aging.

AGE-SPECIFIC IMMUNE RESPONSE
The aging of an organism is accompanied by weakening of both the
acquired and innate immune response (immunosenescence) to a
wide range of pathogens. This process is mainly characterized by
a gradual depression of cellular function throughout the immune
system that, not only decreases immune response, but can also pro-
voke the development of autoimmune disorders (Prelog, 2006).
The innate immune response represents the first line of defense,
comprising multiple pathways and systems, which are functionally
conserved in both vertebrates and invertebrates (Flajnik and Du
Pasquier, 2004). In Drosophila an innate immune response con-
sists of several general components including pathogen detection
via receptors that activate the Toll or Imd (Immune deficiency)
signaling pathways (De Gregorio et al., 2002), hormonal regula-
tion by means of juvenile and 20-hydroxy-ecdysone hormones
that antagonistically induce antimicrobial peptide genes (Flatt
et al., 2008a), prophenoloxidase cascade resulting in melanization
(encapsulation of pathogens) (Tang, 2009), and cellular events
such as phagocytosis (Williams, 2007). In contrast, acquired or
adaptive immunity is an antigen-specific response that lasts a
very long time and can generate “immune memory” to protect an
organism against re-exposure to the same antigens. This type of
response has been described for vertebrates and represents the sec-
ond line of defense that is initiated when the non-specific, innate
immune response is unable to deal with an invading pathogen.

Several studies suggest that aging has a profound effect on the
status of the immune system in insects. For example, reduced
phenoloxidase activity was observed in aged bumblebees (White-
horn et al., 2011) and crickets (Adamo, 2004). Adult scorpionflies
show a dramatic decrease in phagocytic capacity with age, even
though cell numbers remained fairly constant (Kurtz, 2002). To
date, the majority of studies in Drosophila have focused on the
analysis of genes that exhibit age-related transcriptional changes.
Interestingly, the most striking genome-wide (Pletcher et al., 2002;
Landis et al., 2004; Sarup et al., 2011) and body-wide (Seroude
et al., 2002) age-related increase in expression was found for
genes that are involved in the immune response. However, it
is unclear why immune response genes are up-regulated during
aging. One possible explanation is that organisms increase their
expression of immune related genes in response to prolonged
exposure to pathogens throughout their life. Alternatively, it may
reflect the decline in functional capacity of innate immunity with
age (Zerofsky et al., 2005; Ramsden et al., 2008; Sarup et al., 2011).

Studies such as these may be useful for identifying potential bio-
markers of immunosenescence, although additional microarray
and proteomic studies will be required to identify novel mark-
ers and validate genes/proteins previously shown to exhibit age-
related expression changes following infection or in the absence
of infection. Additional studies will also facilitate the development

of appropriate molecular biomarkers of immunosenescence and
the possible discovery of a completely novel mechanism that
does not involve any of the genes/pathways identified to date.
Another approach is to use cellular immunity biomarkers such
as hemocytes. In adult flies, hemocytes either freely float within
the hemolymph or are sessile (Williams, 2007). They are primarily
specialized for phagocytosis and encapsulation. In a recent study,
Mackenzie et al. (2011) compared the numbers and activity of the
circulating hemocytes in flies of different ages. They found that the
hemocyte population, which is responsible for clearing microbes
from the hemocoel, becomes less able to phagocytose microbes
with age due to fewer cells with phagocytic activity. The num-
ber of circulating hemocytes in females also significantly declined
with age. Given the similarity between plasmatocyte hemocytes
in adult Drosophila and the monocyte lineage that gives rise to
macrophages in vertebrates, coupled with the relative simplicity
of these measurements, this method has the potential to be a valid
way of monitoring healthy aging of the fly immune system. Fur-
thermore, using techniques such as this to analyze age-specific
survival and the ability to protect against, and clear infection, will
improve our understanding of which components of the immune
system are responsible for immunosenescence.

AGING AND STRESS RESISTANCE
The rate of living theory is probably the oldest among theories
of aging (Pearl, 1928). Pearl formulated his theory based on Rub-
ner’s observation of a negative relationship between metabolic
rate, body size, and longevity. Pearl’s theory postulated that the
lifespan of an organism is related to its metabolic rate; such that
individuals (within a given species) with a higher metabolic rate
(high level of energy consumption) will have a shortened lifespan
compared to individuals with a lower rate. Consistent with this the-
ory, observations in Drosophila melanogaster and Musca domestica,
showed that flies raised at lower ambient temperatures have a lower
level of metabolic activity and much longer lifespan compared
to flies raised at higher temperatures (Miquel et al., 1976; Sohal,
1986; Farmer and Sohal, 1987). The association between metabolic
rate and lifespan was also supported by artificial selection exper-
iments (Riha and Luckinbill, 1996; Arking et al., 2002). Although
this theory is not universally accepted (Austad and Fischer, 1991;
Speakman et al., 2004; Van Voorhies, 2004) it nevertheless formed
the basis for a free radical theory of aging (Harman, 1956). Accord-
ing to Harman’s theory, free radicals, produced as a by-product of
oxidative phosphorylation can damage important biological mol-
ecules. Accumulation of this damage over time, accounts for the
effects of aging and eventually leads to death. The reactive oxygen-
containing species (ROS) can covalently modify biomolecules such
as nucleic acids, proteins, and lipids and cause oxidative stress.
The level of this stress is determined by the misbalance between
the production of ROS on the one hand and the efficiency of the
antioxidant defense and repair processes on the other hand. Several
studies in Drosophila have shown that flies selected for extended
longevity exhibit resistance to oxidative stress (Service et al., 1985;
Arking et al., 1991). In healthy cells, resistance to oxidative stress
is accomplished by means of a complex defense system consist-
ing of both enzymatic and non-enzymatic components, the main
role of which is to breakdown and/or to neutralize ROS. This
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defense complex includes superoxide dismutases (Cu/Zn SOD
and MnSOD), catalase (cat), and glutathione-peroxidase. Firstly,
superoxide dismutases convert superoxide to hydrogen peroxide
and then catalase and glutathione-peroxidase remove the hydro-
gen peroxide from the intracellular environment by converting
it to water. It is thought that these defense mechanisms become
less efficient with aging and in some disease conditions, and ROS
damage accumulates within cells in the form of chromosomal
aberrations, membrane destabilization, loss of essential protein
function, and ATP depletion. In humans, damage caused by ROS
is not only thought to contribute to the aging process but has
also been linked to numerous neurodegenerative diseases such as
Amyotrophic Lateral Sclerosis (Robberecht, 2000) and Alzheimer’s
disease (Smith et al., 2000).

Several selection experiments have shown that some long-lived
Drosophila strains express higher than normal levels of SOD (Tyler
et al., 1993; Dudas and Arking, 1995; Hari et al., 1998). Inter-
estingly, reverse selection of the long-lived flies for short lifespan
restores antioxidant gene expression to control levels (Arking et al.,
2000). Studies of the effect of single gene mutations that affect the
lifespan of flies may also serve as a confirmation of the relation-
ship between aging and resistance to stress. For example, reduced
expression of methuselah (encoding a G protein-coupled recep-
tor), causes a significant increase in lifespan and resistance to a
number of stresses including starvation, high temperature and
paraquat (Lin et al., 1998). In contrast, mutations that affect genes
involved in ROS defense such as SOD or catalase have a negative
impact on lifespan and show hypersensitivity to a variety of agents
that generate ROS including Cu2, paraquat, ionizing radiation,
and hyperoxia (Campbell et al., 1986; Mackay and Bewley, 1989;
Phillips et al., 1989). The relationship between oxidative stress and
lifespan has also been illustrated by overproducing ROS protec-
tive enzymes. Using an inducible expression system based on the
FLP recombinase; Tower and colleagues found a positive effect
of SOD overexpression on Drosophila lifespan (Sun and Tower,
1999; Tower, 2000). A similar effect was seen when human SOD
was overexpressed in motorneurons (Parkes et al., 1998). Remark-
ably, the extension of lifespan did not change the overall metabolic
rate of the flies, suggesting that the observed effect was due to
increasing oxidative stress resistance. Lifespan was also extended
by simultaneous overexpression of SOD and catalase (Orr and
Sohal, 1994). Transgenic flies which overexpress these two tan-
dem acting enzymes exhibited a one-third extension of lifespan as
well as reduced oxidative damage and a delayed loss of locomotor
activity.

Despite the above examples, it is unclear whether the activity
of antioxidant enzymes is required to extend lifespan. For exam-
ple, the activity of several antioxidant enzymes were essentially the
same in Drosophila lines selected for long or short lifespan. Sim-
ilarly, the glutathione content (Mockett et al., 2001), SOD allele
frequency (Force et al., 1995), and the electrophoretic mobility of
SOD enzymes (Luckinbill et al., 1989), were also similar in short
and long-lived lines. Furthermore,other studies showed that trans-
genic manipulations of antioxidant enzyme expression had little
or no effect on lifespan (Seto et al., 1990; Reveillaud et al., 1991;
Orr and Sohal, 1992, 1993; Orr et al., 2003). These discrepancies
may be explained by differences in genetic background, the level

of transgene expression, the experimental methodologies used
and/or the lack of adequate controls. Overall, these studies suggest
that antioxidant defense may not be essential for lifespan exten-
sion but rather play a primary role in healthy aging. Unfortunately,
there are only a few studies that report the functional consequences
of manipulating the levels of antioxidant enzymes in Drosophila.
Nevertheless, several facts appear to indicate that antioxidant
defense affects healthy aging. First, in those studies where behav-
ioral analysis was reported, the increased or reduced/abolished
antioxidant enzyme activity was associated with delayed or accel-
erated functional senescence, respectively (Orr and Sohal, 1994;
Ruan et al., 2002; Piazza et al., 2009; Hirano et al., 2012). Second,
increased antioxidant enzyme activity increases stress resistance
while reduced/abolished activity has the opposite effect, in most
studies (see Le Bourg, 2001b for details). Third, the positive effect
of increased antioxidant expression on lifespan tends to be most
apparent in short-lived genetic backgrounds. Using data from
all published studies examining overexpression of antioxidant
enzymes, Orr and Sohal (2003) found a clear negative correlation
between lifespan extension with overexpression of the antioxi-
dant enzymes and the lifespan of controls. It seems that when
an organism is “genetically” under great stress, the enhancement
of its antioxidative defense properties can have a beneficial (res-
cue) effect whereas, under optimal conditions including optimal
(wild type) genetic background such enhancement is less effective
or even ineffective. Finally, the progression and severity of many
age-related pathologies and diseases can be increased or dimin-
ished through modulation of the expression of genes involved
in oxidative defense. Salmon et al. (2010) summarized the data
showing that healthspan rather than lifespan is strongly affected
by antioxidant status. Altogether, the data suggests that resistance
to oxidative stress can be used as an indicator of healthy aging.

AGING, SEXUAL BEHAVIOR, AND REPRODUCTION
From an evolutionary point of view, there is no doubt that a higher
level of reproductive success positively contributes to total fitness
(Ehrman and Parsons, 1981). At the same time, life history theory
(antagonistic pleiotropy) proposes that higher levels of repro-
duction are negatively correlated with survival (Williams, 1957).
This so-called “cost of reproduction” concept has been widely
accepted and demonstrated in a number of experimental studies
(see reviews; Rose and Bradley, 1998; Partridge et al., 2005; Flatt
and Promislow, 2007; Tatar, 2010). For example, selection experi-
ments in Drosophila have shown that direct selection for extended
longevity decreases early reproduction (Zwaan et al., 1995), while
selection for postponed reproduction leads to increased longevity
(Rose, 1991; Partridge et al., 1999). Female flies sterilized by either
irradiation or by the sterile ovoD mutation have reduced age-
related mortality (Sgro and Partridge, 1999). However, several
experiments have cast doubt on the relationship between lifespan
and fecundity. Using Drosophila mutants that lack a proliferating
germ line, Barnes et al. (2006) have shown that life-long germ line
ablation reduced longevity in females and either had no effect,
or gave rise to a slight extension of longevity in males. In a sim-
ilar study, loss of germ cells late in development or in the adult
extends lifespan and modulates components of insulin/insulin-
like growth factor signaling in Drosophila (Flatt et al., 2008b) and
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C. elegans (Arantes-Oliveira et al., 2002). Examination of lifespan
in various mutant or transgenic animals, also argue against a direct
cost of reproduction on lifespan. In C. elegans, mutations in the
age-1 and daf-2 genes result in life extension, without changes in
reproductive ability (Johnson et al., 1993; Gems et al., 1998). In
Drosophila, females bearing mutations in either the insulin-like
receptor gene (Tatar et al., 2001), or the insulin-receptor substrate
chico (Clancy et al., 2001), show decreased fertility and increased
lifespan consistent with the cost of reproduction theory. However,
the extended longevity and reduced fecundity appear to be unre-
lated since in combination with the dominant sterile mutation
ovoD (which blocks oogenesis and extends female lifespan), chico
mutant flies do not live as long as either fertile chico heterozygotes
or sterile homozygotes (Clancy et al., 2001). Interestingly, several
long-lived lines, including Indy mutants (Marden et al., 2003),
ecdysone receptor mutants (Simon et al., 2003), or flies overex-
pressing the transcription factor dFOXO in adult head fat body
(Hwangbo et al., 2004), do not exhibit reduced fecundity and, in
some cases, have even shown an increase for these traits. It has
been demonstrated in a series of Drosophila behavioral experi-
ments, that sexual behavior and mating itself may have a profound
negative impact on lifespan. For example, males that were supplied
daily with virgin females showed decreased lifespan (Partridge and
Farquhar, 1981). In females, mating reduces lifespan (Fowler and
Partridge, 1989), possibly as a result of the competitive reallo-
cation of limited physiological resources for courtship and egg
production (Partridge et al., 1987), or from toxic peptides trans-
ferred to females in male seminal fluid (Chapman et al., 1995).
However, it is unclear whether all of these factors are relevant in
nature. For example, most females in nature are fertilized. They
actively reject male courtship in many different ways including
decamping behavior (running away, jumping, and flying away
from the courting male) that may lead to full loss of contact with
the courting male. In addition, female egg production and egg-
laying rates greatly depend on ecological context, such as weather
and climatic conditions, food availability, and the presence of
predators.

In humans, the relationship between longevity and reproduc-
tion have been addressed in numerous studies, however, the results
have yielded even more conflicting conclusions. The majority
of these studies were focused on validation of The Disposable
Soma Theory of Aging. One of the basic principles Kirkwood’s
evolutionary theory is that aging occurs as a result of decreased
investment of resources in somatic maintenance and repair, to
allow for increased allocation of resources toward reproduction
(Kirkwood, 1977). This theory was tested using historical data
sets collected from the British aristocracy living from the eighth
to the nineteenth century (Westendorp and Kirkwood, 1998). It
was shown that both the longevity of women, living at least up
to 50 years (i.e., after the end of their reproductive life) and the
longevity of men were negatively correlated with fertility. Thus,
the authors came to the conclusion that these results confirm
the existence of a trade-off between longevity and fertility in
humans. While this study had a large resonance in the scien-
tific and public press, it has been severely criticized (Gavrilov and
Gavrilova, 1999; Le Bourg, 2001a; Gavrilova and Gavrilov, 2005;
Mitteldorf, 2010) primarily because of the quality of the database

and inadequate statistical approach. In another study, using data
from 153 countries, a highly significant positive correlation was
observed between lifespan and fecundity (Thomas et al., 2000).
Also, in a more detailed genealogical analysis of British aristocrats,
a significant correlation between human lifespan and fertility was
found when the effects of health and of mortality selection dur-
ing childbearing ages were considered (Doblhammer and Oeppen,
2003). There are many additional reports that indicate a positive
(Muller et al., 2002; McArdle et al., 2006) or inconclusive associ-
ation (Le Bourg et al., 1993; Lycett et al., 2000) between lifespan
and fertility in humans (see also Gavrilova and Gavrilov, 2005 for
historical review of the relevant studies). Le Bourg (2007), in his
comprehensive review summarizes most of the available data and
concludes that, at present, there is insufficient evidence to con-
clude that longevity requires limited resources to be invested in
somatic maintenance, thus reducing the availability of resources
for reproduction. In fact, as the author points out, even if a rela-
tionship between these variables does exist, it depends more on
the population under study than on a general mechanism linking
longevity and fertility.

Aging has a negative impact on sexual activity and reproductive
function for both sexes. Age-related decline in these functions is
caused by numerous physiological changes particularly in the neu-
roendocrine and reproductive systems. In women these changes
are mainly manifested in the reduction in follicle number and
ovarian function and, as a consequence, in reduced secretion
of estrogens and progesterone (Djahanbakhch et al., 2007). In
men, the progressive decline in sexual function is accompanied
by changes in levels of testosterone and associated reproductive
hormones (Murray and Meacham, 1993). There is a fundamental
difference between reproductive senescence in men and women.
Women, show an abrupt loss of reproductive potential that marks
the end of their “reproductive life,” while in men, reproductive
function declines more gradually and does not involve an acute
drop in fertility.

In contrast to humans, Drosophila females continue to pro-
duce primary oocytes from stem or progenitor cells throughout
their life, reaching a maximum in young females and followed
by a steady decline (Novoseltsev et al., 2005). The quality of
eggs or level of fertilization is also affected by age (David et al.,
1975). Interestingly, detailed analysis of female reproductive senes-
cence revealed that Drosophila egg-laying and mortality rates were
dependent on mating history (Rogina et al., 2007). Female repro-
ductive life can be divided into three epochs: optimal, vulnerable,
and declining terminal. The first epoch of adulthood is char-
acterized by a high rate of egg-laying after mating and has a
reversible effect on mortality. During the second epoch, mating
does not induce increased egg-laying but does result in an irre-
versible increase in mortality. Finally, at the terminal stage, females
exhibit sharp reductions in egg-laying regardless of their chrono-
logical age. Despite the differences between flies and humans as to
the effect of age on reproductive behavior, there may be some
parallels between the processes that occur in follicles of aging
humans and in egg chambers of aged flies under oxidative stress
(Tatar, 2010). Cumulative oxidative damage caused by free rad-
icals was suggested to impair the viability of developing follicles
in humans (Tatone et al., 2008). In Drosophila, overexpression
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of the antioxidant enzyme SOD in germ line stem cells leads
to increased numbers of these cells in aged females (Pan et al.,
2007).

Drosophila males exhibit a peak of sexual activity up to 4 weeks.
During this period they show a fairly constant performance in
such traits as multiple mating, latency time, duration of cop-
ulation, and level of fertility. These characteristics decline in
a manner that is similar to the age-dependent course of sur-
vivorship (Economos et al., 1979). Male reproductive success
can be measured either under competitive or non-competitive
mating conditions. Selection for delayed senescence increased
the male reproductive success in both competitive and non-
competitive conditions. This selection also resulted in signifi-
cant increases in the ability to recover from exhaustive mating
bouts (Service, 1993). Several components of male reproduc-
tive behavior show a clear age-dependent decline including the
time to begin copulation, duration of copulation, and the pro-
portion of females that were remated (Service, 1993). Moreover,
males that had been subjected to selection for delayed senes-
cence were superior to control males (rapid senescence) with
regards to one of the components, sperm competition (sperm
defense).

Overall, the peculiarities of Drosophila reproductive history
allow us to conclude that fruit flies exhibit obvious senescence
in reproductive functions. The progression of senescence can be
monitored by measuring the age-related changes in sexual and
reproductive behaviors. Delay in reproductive senescence may
contribute to the general extension of lifespan, which is more
important in healthy aging.

SENESCENCE OF COGNITIVE FUNCTION
The gradual impairment of cognitive function is one of the main
components of the normal aging process. Age-related decline in
cognitive function may vary considerably between individuals and
in the cognitive processes affected such as attention, memory, or
decision-making. Progressive impairment of cognitive function
is frequently associated with age-related degenerative brain dis-
orders such as different types of dementia, including Alzheimer’s
and Huntington’s disease, vascular and Parkinson’s dementia, and
Lewy body disease. These diseases are becoming more and more
common amongst aged people across the globe and represent a
growing clinical and social issue.

Attention is a key cognitive process that affects virtually all other
cognitive functions. For example, it has been suggested that atten-
tive processes may be involved in orientation, concentration, and
filtration of distracting information (McDowd and Shaw, 2000).
Older people usually have some difficulties with attention tasks
that require dividing or switching of attention between multi-
ple inputs (Verhaeghen and Cerella, 2002). An early symptom of
Alzheimer’s disease also involves problems with selective attention.
Specifically, Alzheimer’s patients exhibit a proportionally greater
deficit in inhibitory and visual search tasks (Levinoff et al., 2004)
as well as in tasks that require the inhibition of automatic cognitive
ability (Perry et al., 2000).

Memory impairments are among the most commonly recog-
nized cognitive changes in senescent humans. They arise from
defects in the encoding, storage, and retrieval of information. In

general, these defects can be classified into several major groups:
(1) “sensory memory” – retains information only long enough
to operate on it (object recognition), and requires the contri-
bution of different sensory inputs; (2) “working memory” also
known as “short-term memory” – actively holds new informa-
tion in the mind allowing temporal tasks such as reasoning
and comprehension to be performed, and is required for fur-
ther information processing; (3) “long-term memory” – where
information can be essentially stored for a lifetime. Working
memory is impaired in old age (Hertzog et al., 2003; Oberauer
et al., 2003), however, the mechanisms underlying this impair-
ment are still under debate. Loss of long-term memory in aged
humans may be associated with a number of causes. First of
all, there are several differences between the long-term memory
defects observed during normal aging and those that are asso-
ciated with some pathological conditions. In normal aging, the
memory defects are mainly the result of inconsistent encoding
and retrieval strategies, whereas pathologies such as Alzheimer’s
disease, are characterized by a selective and severe deteriora-
tion in the consolidation and storage of new information. In
other words, in normal age-related memory loss, individuals may
express a sense of frustration due to an inability to recall spe-
cific memories, while in Alzheimer’s disease patients forget the
memory entirely, including the context in which the memory was
formed.

Evidence from a wide range of cross-sectional studies suggests
that many of the individual differences in age-related cognitive
function are associated with differences in sensory function such as
hearing or sight. Moreover, when this variance in sensory function
is statistically controlled, the differences in cognitive function dis-
appear (Baltes and Lindenberger, 1997). Many cognitive processes
such as problem solving, goal-directed behavior, and decision-
making require the integration and processing of information
from numerous primary inputs for its effective performance.

The study of learning and memory in fruit flies began in
the laboratory of Seymour Benzer more than three decades ago.
Using chemical mutagenesis approaches coupled with a reliable
method designed to specifically induce learning and memory, sev-
eral mutants were isolated (Quinn et al., 1974). Studies of these
mutants have provided insight into the cellular and biochemical
mechanisms underlying learning and different kinds of memory
formation (Dubnau and Tully, 1998). Flies have multimodal sen-
sory modalities that gather information about the external world
and translate it by means of the nervous system into an appro-
priate behavioral response. In fact, flies possess a large number
of sensory organs that result in the perception of taste, touch,
smell, hearing, and vision (Stocker, 2004; Ebbs and Amrein, 2007;
Gerber and Stocker, 2007; Kernan, 2007; Ting and Lee, 2007).
Many studies clearly demonstrate that fruit flies are capable of both
associative and non-associative learning and memory. For exam-
ple, flies can learn to move toward odors previously associated
with reward, or avoid an odor that has been paired with punish-
ment (Tempel et al., 1983; Tully and Quinn, 1985). They can also
learn to recognize different visual, tactile, and spatial cues (Wust-
mann and Heisenberg, 1997; Heisenberg et al., 2001). Interestingly,
Drosophila males show a plasticity in courtship behavior, through
a complex process that may include habituation, sensitization,
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operant, and classical learning (Siegel and Hall, 1979; Kamyshev
et al., 1999; Griffith and Ejima, 2009). Several recent studies have
shown that flies may demonstrate attention-like (van Swinderen,
2007), goal-driven (Pick and Strauss, 2005), and decision-making
behaviors (Zhang et al., 2007). To date, Drosophila has also been
successfully used as a model system to reveal molecular, physio-
logical, and behavioral mechanisms of several human neurode-
generative diseases, including Alzheimer’s, Parkinson’s, and Hunt-
ington’s (Chan and Bonini, 2000; Lu, 2009; Bonner and Boulianne,
2011).

Similar to other organisms, Drosophila exhibit age-related
reductions in learning ability and memory performance. In early
studies, Le Bourg (1983) investigated the role of age on non-
associative learning using a proboscis extension reflex (PER).
This reflex represents a stereotyped response to the activation of
chemoreceptors located on the foreleg tarsi by sucrose. Repeated
application of sucrose caused habituation to the stimulus whereby
the fly stopped extending its proboscis in response to application.
In this study, flies did not show any age-related effect on habit-
uation as measured either by the percentage of flies that were
able to habituate or the number of training sessions required for
habituation. Aged individual flies showed impairment in habit-
uation, specifically in the speed of memory acquisition in this
learning task (Fois et al., 1991). Decrease in learning perfor-
mance was observed between 3 and 35 days, and reached a plateau
after 35 days. In another paradigm, the conditioned suppression
of PER, flies learned to associate sucrose stimulation with neg-
ative reinforcement (Brigui et al., 1990). Both middle-aged and
old flies required more training to associate the positive and nega-
tive stimuli. Age-dependent effects on PER were also observed in a
visual discrimination task. The acquisition of PER suppression was
delayed in middle-aged and old flies (Fresquet and Medioni, 1993).
Age-related memory impairment in flies was also observed using
a Pavlovian olfactory avoidance paradigm (Tamura et al., 2003).
In this paradigm, flies learn to associate an electric shock with
an odor. Depending on the training regimen induced, memory
may persist either for minutes (short-term memory), hours (short
and middle-term memory), or even days (long-term memory).
Flies exhibited a weak reduction in immediate memory perfor-
mance (right after training) by about 10 days of age, which did not
progress up to the age of 50. However, short-term memory was
severely impaired in 20 day old flies and declined to a minimum
up to the age of 50 days. Interestingly, aging has differential effects
on distinct memory forms. For example, old and young flies per-
form comparably with respect to protein synthesis-independent
anesthesia resistant memory, while the protein synthesis depen-
dent long-term memory is completely abolished in old flies (Mery,
2007).

Several studies on Drosophila learning and memory mutants
confirm that not all forms of memory are equally affected by age.
For example, young amnesiac (middle-term memory mutant) flies
show similar memory retention to aged wild type flies (Tamura
et al., 2003). Expression of this gene does not decrease with age and
its overexpression does not suppress age-related memory impair-
ment in a wild type background (Saitoe et al., 2005). Another
memory mutant, DCO, delays age-related memory impairment
without altering lifespan and memory at early ages (Yamazaki et al.,

2007). Another method to induce and test learning and memory in
flies is conditioned courtship suppression, where male flies learn
to attenuate their courtship behavior after a negative experience of
courting a fertilized female. This paradigm is based on natural sex-
ual behavior and involves only natural stimuli such as visual and
olfactory (pheromones) cues. Interestingly, 30-day-old wild type
flies do not show a significant decrease in immediate or short-term
memory with this assay, whereas mutants in the kynurenine path-
way do (Savvateeva et al., 1999). Thus, natural selection may favor
the maintenance of some specific forms of memory in aged flies.
Taken together, these studies demonstrate that Drosophila can be
utilized to identify and characterize the effect of age and the role of
single genes in learning and memory and provide insight into core
mechanisms of cognitive senescence in many species including
humans.

CONCLUSION
It is well-known that advances in medicine and health care have
significantly contributed to increased longevity in humans over
the last 100 years. There is also a clear trend toward increased life
expectancy including an increase in the numbers of people living
to an advanced age and the number of people with chronic age-
related diseases. These trends emphasize the need to understand
the genetic and physiological factors underlying biological aging
and particularly, those that promote healthy aging.

According to Arking (2003) there are three ways to extend lifes-
pan: increasing early survival rate, increasing late survival rate,
or delaying senescence. Remarkably, the first two do not affect
basic aging processes. For example, the first one leads to a sig-
nificant increase in mean but not maximum lifespan, while the
second one leads to change in a maximum but not mean lifes-
pan. Delayed senescence, in turn, leads to a significant increase
in both the mean and maximum lifespan (Arking, 2005). This
raises the question as to whether healthspan and delayed senes-
cence are inter related. As stated above, while many genes have
been shown to extend lifespan, these may have little or no abil-
ity to delay physiological senescence. In other words, the period of
functional disability before death may increase despite the fact that
the total duration of life is increased. Thus, the search for appro-
priate biomarkers applicable to monitor functional senescence is
highly important with regards to healthy aging and age-related
diseases.

Finally, it is likely that not all senescent physiological changes
revealed in flies can be simply translated to humans. However,
flies and humans often show very similar age-related physiological
phenotypes suggesting that at least some of the basic biological
properties and mechanisms that regulate longevity are conserved
amongst species. Clearly, future studies focusing on mechanisms
that promote healthy aging rather than lifespan extension could
have significant impact on our elderly population and those
suffering from age-related disorders.
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