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This study investigates human performance in a cyclic Fitts task at three different scales
of observation, either in the presence (difficult condition) or in the absence (easy con-
dition) of a speed–accuracy trade-off. At the fastest scale, the harmonicity of the back
and forth movements, which reflects the dissipation of mechanical energy, was measured
within the timeframe of single trials. At an intermediate scale, speed and accuracy mea-
sures were determined over a trial. The slowest scale pertains to the temporal structure
of movement variability, which evolves over multiple trials. In the difficult condition, reli-
able correlations across each of the measures corroborated a coupling of nested scales of
performance. Participants who predominantly emphasized the speed-side of the trade-off
(despite the instruction to be both fast and accurate) produced more harmonic movements
and clearer 1/f scaling in the produced movement time series, but were less accurate and
produced more random variability in the produced movement amplitudes (vice versa for
more accurate participants). This implied that speed–accuracy trade-off was accompanied
by a trade-off between temporal and spatial streams of 1/f scaling, as confirmed by entropy
measures. In the easy condition, however, no trade-offs nor couplings among scales of per-
formance were observed.Together, these results suggest that 1/f scaling is more than just
a byproduct of cognition.These findings rather support the claim that interaction-dominant
dynamics constitute a coordinative basis for goal-directed behavior.
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INTRODUCTION
Trade-off phenomena emerge when human performance reaches
its limits, and the trade-off between speed and accuracy espe-
cially, has played an historic role in the study of cognitive per-
formances. Speed–accuracy trade-offs entail that faster actions
are performed less accurately, while more accurate actions are
executed more slowly, and have been a topic of study for more
than a century (Woodworth, 1899). Nevertheless, the origins
of speed–accuracy trade-offs are still debated. This study aims
to describe a speed–accuracy trade-off in terms of interact-
ing constraints, which are nested across different timescales of
performance.

Our interest in nested constraints is motivated by the fact that
well-coordinated behavior consists of dynamic sequences that
evolve simultaneously on slower or faster timescales (cf. Pattee,
1973). For instance, in an everyday conversation, a conversant will
produce syllables, themselves contained in words, which in turn
are contained in sentences. The events that equate pronouncing
a syllable (fast), word (slower), or sentence (slowest) unfold on
different timescales. The involved timescales of control extend to
around 70 muscles that must coordinate to pronounce a single
syllable (Turvey, 2007), as well as to the postural sway and eye
movements of speakers that become coupled in their conversation
(Shockley et al., 2003; Richardson et al., 2007). All these correlated
events (e.g., producing an utterance, word, or sentence, leaning for-
ward, or backward, etc.) exist across nested timescales of change,
from milliseconds to minutes or possibly hours, although they are

coupled, nonetheless, in a highly constrained coordinated activity
of speech to enact a conversation.

The example of a conversation aims to show that coordinating
listening and speaking means properly sequencing events across
a hierarchy of timescales. With these multiple timescales present
in any example of behavior, the challenge is to identify the gen-
eral principles of coordination in systems of such complexity. A
good place to start investigating how behavior becomes so precisely
ordered spatially and temporally is at the limits of task perfor-
mance. It is in behavioral regimes where incompatible constraints
are imposed on performance where trade-off behaviors emerge,
and where the different timescales of changing constraints are
likely to reveal themselves in most detail.

In this study, we employ a cyclic precision aiming task that has
a long history in psychology (Fitts, 1954), allowing a solid empir-
ical ground on which to begin to describe the nested sources of
constraint within a speed–accuracy trade-off. In this task, partic-
ipants are typically instructed to move a pen or stylus as fast and
as accurately as possible back and forth between two visual tar-
gets. Arguably one of the most robust models of speed–accuracy in
goal-directed movements, Fitts’ law, describes the relation between
the duration of accurate movements (MT) and the precision con-
straints of the task, namely the target size W and the movement
amplitude D between the targets; MT = a + b log2 (2D/W).

Note that movement time and accuracy describe performance
at the timescale of aggregate single trial outcomes. Consequently,
Fitts’ original model made no predictions about the movement
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trajectories enacted within a trial. Historically, however, the study
of speed–accuracy trade-offs has been tied as well to the kinematics
of movement trajectories (i.e., changes in displacement, veloc-
ity, and acceleration over time or position). Increasing accuracy
requirements, for instance, induces systematic changes in move-
ment kinematics (e.g., the deceleration phase lengthens for more
narrow targets, time to peak velocity is scaled to movement ampli-
tude, etc.; Adam, 1992). The speed–accuracy trade-off thus yields
contingencies that couple the timescale of single trial outcome
measures (as expressed by aggregate speed and accuracy mea-
sures), to the faster changing kinematics enacted within a single
movement.

Here, we further pursue the suggestion that constraints at one
timescale interact with and may therefore trade-off against con-
straints at a slower or faster timescale. This entails contingencies of
trade-off phenomena that compose horizontal couplings (within
a timescale: i.e., speed versus accuracy) as well as vertical couplings
(across timescales: i.e., speed or accuracy versus movement kine-
matics). The present study tests whether such couplings extend to
the temporal structure of observed variability in sources of con-
straint evolving on timescales slower still than the trial-by-trial

scale of average speed or accuracy (Gilden et al., 1995; Slifkin and
Newell, 1998; Gilden, 2001; Riley and Turvey, 2002; Van Orden
et al., 2003; Hausdorff, 2007).

Figure 1 presents the different levels of analysis included in
this study, each of which pertains to a different measurement
of performance. The top part of Figure 1 pertains to the fastest
timescale of the Fitts task. It shows acceleration profiles that reveal
the biomechanical constraints that operate on kinematic parame-
ters within the movement trajectories of a Fitts task performance.
The middle part of Figure 1 pertains to an intermediate mea-
surement scale of speed and accuracy measures, which summarize
an entire movement outcome and directly reveals the degree of
task-compliance. The bottom part of Figure 1 pertains to the
slowest changes occurring over multiple trial outcomes across the
entire Fitts task session, as it shows two time series with a distinct
sequential structure of variability over many trials.

By investigating a perceptual-motor task simultaneously at
three different scales of observation, we expect linkages within and
between these scales. If control is indeed distributed over inter-
twined timescales, that would challenge the conventional assump-
tion, however, that the locus of human control is encapsulated in

FIGURE 1 |Three possibly interlinked measurement scales are shown.

The top part represents an example of performances evolving within the
timeframe of a movement (finest scale). The middle part pertains to

performances at the level of a movement outcome (intermediate scale). The
bottom part concerns dynamics evolving over sequences of multiple trial
outcomes (coarsest scales).
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discrete components that each solve their own problems along a
single common timescale (cf. Simon, 1973). And in fact, there exist
good arguments to support the idea that the many free variables of
the skeletomuscular system are not controlled individually (Bern-
stein, 1967; Turvey, 2007). For instance, in natural and artificial
self-organizing systems, simple coupling rules at the level of the
individual components of the system can result in overall coherent
behavior (Prigogine and Stengers, 1984; Bak et al., 1987).

MOVEMENT KINEMATICS
The spatial and temporal details of movement trajectories con-
stitute a rich source of information about the organization of
human movement. This fine observational scale of movement
analysis contains details which are lost at the coarser scale of a
movement outcome as it provides information on how muscles
act to generate and degenerate kinetic energy in the moving arm
within the timeframe of an entire movement. Kinematic descrip-
tions of movement patterns have a long history in the study of
motor control and have substantially fueled the debate on trade-off
phenomena. In this study we limit our interest in movement kine-
matics to a physical description of the dissipation of mechanical
energy in rhythmical movements.

Specifically, rhythmical movements can be described precisely
in physical terms of a self-sustained oscillation (e.g., Haken et al.,
1985; Kay et al., 1987; Kugler and Turvey, 1987; Beek et al., 1995;
Kelso, 1995). As an example, consider a mass-spring system with-
out friction. If the system is at rest at the equilibrium position then
there is no force acting on the mass. If the mass is displaced from
the equilibrium position, a restoring (elastic) force F (potential
energy) is exerted by the spring in the form of: F = −kx (Hooke,
1678; known as Hooke’s law), where k is a spring constant, and
x is the displacement from the equilibrium position. The neg-
ative sign means that the elastic, restoring force always acts in
the opposite direction of the displacement. In other words, when
the system is displaced from its equilibrium position, mass will
start oscillating in a sinusoidal fashion (called simple harmonic
motion) because an elastic restoring force which obeys Hooke’s
law tends to restore the system toward the center of displacement.
This means that velocity is maximal at the center of the movement
(equilibrium position) and minimal at the turning points, while
acceleration is maximal at the turning points, and minimal at the
center. Thus, if rhythmical movements reveal simple harmonic
motion, the oscillator energetically self-sustains itself, hence the
term self-sustaining oscillator.

Under certain conditions, typically involving low precision
constraints, a moving limb in a cyclic Fitts task acts as a linear oscil-
lator and thus displays simple harmonic motion (e.g., Mottet and
Bootsma, 1999). Rhythmical movement thus exploits the elastic
properties of the neuromuscular system, much like a mass-spring
system. This means that when the moving arm, hand, and shoul-
der are stretched to the left, it pulls back to the right near reversals,
because muscular and other tissues function as the spring that
elastically stores and releases mechanical energy (Turvey, 1990).
In other words, kinetic energy that is lost toward the end of each
movement is stored in a potential, elastic form at the natural bio-
mechanical turning points of the limbs to the benefit of the next
half-cycle of movement (Guiard, 1993). Unlike the mass-spring

example, however, human movement is susceptible to friction and
consequently mechanical energy is lost in each movement cycle. A
self-sustained linear oscillator must therefore overcome the energy
loss due to friction to sustain cyclic motion (see Kugler and Turvey,
1987, for a detailed description).

Figure 2A shows 20 low precision-constrained movement tra-
jectories (targets are 2 cm wide and 8 cm apart) that reveal simple
harmonic motion, and hence, obey Hooke’s law. Figure 2C shows
that changes in velocity with changes in displacement (called a
phase portrait) are circular, typical for a linear oscillator: maximal
velocity is reached at the center of the movement where accel-
eration is minimal (see Figure 2E), and maximum acceleration
is reached at movement reversals where velocity is minimal. The
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FIGURE 2 | (A) Depicts 20 harmonic half-cycles (the circular targets were
2 cm wide and 8 cm apart) produced by one representative participant
during the course of the experiment. (B) Shows 20 inharmonic half-cycles
produced by another representative participant in a condition where targets
were 0.4 cm wide and 24 cm apart. (C) Harmonic half-cycles reveal a
circular phase portrait typical for a linear oscillator, whereas (D) inharmonic
half-cycles reveal a damped phase portrait. The respective acceleration
(Hooke’s) portraits for the harmonic and inharmonic movements are
presented in the respective (E,F). Note the different scale on the x -axes.
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smooth cyclic motion requires only a modicum of fresh energy
to sustain the trajectory to the next target, thus dissipating little
mechanical energy because of the elastic restoring force.

Highly precision-constrained movements, in contrast (as
shown in Figure 2B; targets are 0.4 cm wide and 24 cm apart)
typically require strong deceleration when approaching a target,
and thus display inharmonic motion. In physical terms, the self-
sustained oscillation becomes dampened as mechanical energy is
dissipated by decelerating toward the target (see Figures 2D,F).
This means that the mechanical energy that cannot be recovered
in potential form (because it is dissipated) needs to be re-inserted
each time a participant re-accelerates toward the next target. The
relative degree of harmonicity in the kinematics of rhythmical
movement thus offers a physical description of the recycling of
kinetic energy in potential form, which acts as a biomechanical
constraint on speed–accuracy trade-off in cyclic movements.

LONG-RANGE DYNAMICS
When people perform cyclic movements, there is always cycle-
to-cycle variability. The variability of goal-directed behavior may
in fact be one of its most prominent characteristics: Individual
movement cycles are never exact duplicates of one another. The
conventional assumption is that movement variability is a prod-
uct of unstructured (random, Gaussian) noise, superimposed on
a deterministic signal. That is, trial-ordered dynamics are usu-
ally conceived as a statistical nuisance, providing minimal, if any,
insight into the nature of coordination, apart from the magnitude
of white noise (e.g., standard deviation).

Over recent decades, however, it has become clear that move-
ment variability rarely equates with white noise, and that temporal
variability is usually structured and reveals specific details of the
system dynamics (Slifkin and Newell, 1998; Gilden, 2001; Riley
and Turvey, 2002; Stergiou and Decker, 2011; Torre and Balasub-
ramaniam, 2011). In fact, structured variability appears to be the
rule rather than the exception, and is often more revealing than
aggregate information in terms of unpacking the nature of the sys-
tem organization (Kello et al., 2007; Kiefer et al., 2009; Ihlen and
Vereijken, 2010; Konvalinka et al., 2011; Wallot and Van Orden,
2011a).

Nevertheless, the nature of cognitive dynamics still remains
a much debated topic. Some scientists prefer to retain that long-
range dynamics are only a byproduct, which is neither detrimental
nor particularly useful to inquiry (Wagenmakers et al., 2011). Oth-
ers have suggested that structured variability is a fundamental,
functional feature, playing a crucial role in the coordination of
perception and action (Van Orden et al., 2003; Kello et al., 2007;
Wijnants et al., 2009). Here we pursue the latter suggestion by
investigating the fractal scaling properties and entropy of spatial
and temporal long-range dynamics, both in the presence and in
the absence of speed–accuracy trade-off.

1/f scaling
1/f Fluctuation presents an intriguing phenomenon that has
received a growing interest in biology, psychology, and movement
sciences during the last decade. It is a describing property of the
trial-by-trial variability of a time series, observed during repeated
human performances. Fractal processes like 1/f scaling have the

characteristic of self-similarity, which means that similar statisti-
cal features are observed across different temporal or spatial scales.
The fractal pattern of variation can, for instance, be portrayed in a
spectral analysis. This involves transforming a time series into the
frequency domain by Fourier analysis, which represents the series
as a set of sine waves, each with an associated frequency (how often
changes of a particular size occur) and power (the size of changes
across measured values). 1/f Scaling of a time series means that
changes in power are typically small at the highest frequencies
(i.e., extending over few trials), but that those changes are embed-
ded in overarching, lower frequent changes of higher amplitude
spanning over many measurements. 1/f Scaling thus composes a
nested pattern of response variability across scales; a time series
plot of 1/f fluctuations has the same “look and feel” as one zooms
in or out to see more fine-grained or coarse-grained features of
the fluctuations (e.g., see Wallot and Van Orden, 2011b).

Statistically, a 1/f scaling relation can be expressed as a rela-
tion between the size of changes (power), and how often changes
of that size occur (frequency), which is inversely proportional on
logarithmic scales. Figure 3 presents three types of temporal vari-
ability (i.e., noise) of a time series accompanied by their respective
power spectra. The top part of the figure represents a data series
with random background noise. A data series with random back-
ground noise, as traditionally assumed in many statistical analyses,
does not yield a relationship among frequency (f) and a particular
change of amplitude S(f) in the signal. The middle part of the
figure represents a time series that is very close to ideal 1/f scaling,
and can be parameterized by an exponent α, as 1/fα, where α is 1
for ideal 1/f scaling. The bottom part of the figure is called Brown-
ian noise and can be described as 1/f2 noise. Brownian noise is
also called a random walk, because it can be produced by adding
a random increment to each sample to obtain the next. In con-
trast to white noise, which can be produced by randomly choosing
each sample independently, Brownian noise yields persistence or
memory in the data series.

To date, dozens of studies have been published on 1/f scaling in
cognitive and motor performance, all demonstrating widespread,
perhaps ubiquitous fractal dynamics (e.g., Diniz et al., 2011; Van
Orden et al., 2011, are reviews). Typically, repeated human behav-
iors show a scaling exponent α in the range of 0 and 1, in between
random noise and 1/f scaling. Examples of cognitive tasks include
mental rotation, lexical decision, and visual search (Gilden, 2001),
simple reaction time and word-naming (Van Orden et al., 2003),
forearm oscillation (Delignières et al., 2008), synchronization to a
metronome (Chen et al., 1997; Ding et al., 2002); implicit associ-
ations (Correll, 2008), bi-daily reports of self-esteem (Delignières
et al., 2004), and movement times in a Fitts task (Valdez and
Amazeen, 2008; Wijnants et al., 2009), among others. But some-
times α varies between 1 and 2 or even beyond, often in continuous
processes like postural sway (e.g., Collins and De Luca, 1993),
force production (Sosnoff et al., 2009), or galvanic skin response
(Wijnants, 2012).

Although 1/f scaling has been observed throughout human
physiology and behavior in varying degrees, its origin, and mean-
ing remains unclear (Van Orden et al., 2005; Diniz et al., 2011).
One position in the debate is that 1/f scaling is a typical behavior of
self-organizing systems, which reflects a fundamental aspect of all
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FIGURE 3 |Three different classes of temporal variability, white noise (upper left panel), 1/f scaling (middle left panel), and Brownian noise (lower left

panel), and their respective power spectra are shown in the respective panels at the right.

physiological and cognitive functions: their emergence in the bal-
ance of independent versus interdependent component activities.
In recent years, there has been a growing empirical support for the
position that 1/f scaling may indeed result from the interaction
of many ongoing processes over a multiplicity of interdependent
scales, thereby serving as a coordinative basis of cognitive func-
tion (e.g., Kello et al., 2007; Wijnants et al., 2009; Kello, 2011; Van
Orden et al., 2011). That is, 1/f scaling is usually seen most clearly
in well-coordinated behaviors, and less clearly in non-optimal per-
formance or with aging and disease (e.g., Goldberger et al., 2002;
West, 2006).

For instance, deviations from 1/f scaling, either toward white
noise or toward Brownian motion, have been found with epilepsy
(Ramon et al., 2008), heart failure (Goldberger et al., 2002),
fetal distress syndrome (Goldberger, 1996), major-depressive dis-
order (Linkenkaer-Hansen et al., 2005), mania (Bahrami et al.,
2005), attention-deficit-hyperactivity-disorder (Gilden and Han-
cock, 2007), developmental dyslexia (Wijnants, 2012), autism (Lai
et al., 2010), Alzheimer’s disease (Abásolo et al., 2006), Hunting-
ton’s disease (West, 2006), Parkinson’s disease (Hausdorff, 2007),
and slow transit constipation (Yan et al., 2008), among other

examples. In each of these studies, healthy controls revealed long-
range dynamics reliably closer to 1/f scaling in the respective
variables of interest.

These examples have been paralleled by manipulations of
task constraints as well. For instance, the presence of 1/f scaling
increases as performance becomes more proficient with learn-
ing (Wijnants et al., 2009), yet may sometimes decrease as task
demands increase (Clayton and Frey, 1997; Correll, 2008; although
cf. Kloos and Van Orden, 2010). The presence of 1/f scaling also
correlates with the severity of a reading impairment (Wijnants,
2012), depression symptoms (Linkenkaer-Hansen et al., 2005), the
success rate of recovery from traumatic brain injury (Burr et al.,
2008), the severity of Huntington’s and Parkinson’s symptoms
(Van Orden, 2010) and falling risk in elderly (Hausdorff, 2007).
In each of the cases more flexibly stable, adaptive, or coordinated
behaviors showed clearer 1/f scaling.

These studies raise the suggestion of close linkages between
fractal dynamics and coordination in human physiology and cog-
nition, and with these precedent studies in mind we employ 1/f
scaling as a performance index of coordination in a Fitts task (cf.
Miyazaki et al., 2001; Valdez and Amazeen, 2008) to investigate
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speed–accuracy trade-off. Far from being a statistical artifact or
“just” unexplained variance, fractal patterns may actually be a sig-
nature of strongly emergent coordination. If so, one may expect
1/f scaling measures to be sensitive to the task-specific constraints
that are in play in a trade-off among performance measures.

Entropy
We complement our analyses of long-range dynamics by assessing
the entropy of the data signals, which provides a complemen-
tary way of characterizing the presence of temporal structure in
a time series. A measure of entropy summarizes the degree of
predictability of a time series, which is the likelihood that sim-
ilar observations (i.e., observations within a specified range of
measurement values) are followed by a number of additional
observations within that range. Entropy can thus be conceived
as a measure of orderliness. The entropy of a system increases as it
becomes more disordered or random, and decreases as it becomes
more patterned (i.e., shows increased temporal order, as in 1/f
scaling). This means that changes in entropy provide a potential
window into self-organizing control in complex systems, because
self-organization can be considered as a spontaneous tendency of
a system toward order and entropy is a measure of the disorder of
a system.

In other words, time series containing coherent dynamical
structure are expected to yield lower entropy than less predictable
(i.e., random) time series. Nonetheless, reduced entropy is far from
an exclusive criterion for self-organization. For instance, trivially
uniform or periodic signals would yield even lower entropy (i.e.,
high self-similarity on a fixed scale) than would be expected from
the behavior of a self-organizing system that is scale-free. That
is, self-organizing systems arguably live near the midpoint of a
scale that ranges from independent random variables (i.e., high
entropy) to static or periodic variables (i.e., low entropy). Incon-
veniently, there is neither a clear-cut midpoint nor an absolute
scale of entropy in terms of cognitive activities. Therefore, we use
entropy here solely as a check of convergence in direction of change
with 1/f scaling measures. Although the extent of 1/f scaling should
be honest in itself, a measure of entropy provides an additional reli-
ability check of the deviations from randomness that are expected
in the performances of low-dimensional, self-organizing systems
constrained across multiple scales of degrees of freedom.

HYPOTHESIS
Here, we employ the classic paradigm of precision aiming to inves-
tigate speed–accuracy trade-off in goal-directed behavior. We pre-
sented participants with a Fitts task and instructed them to move
as fast and as accurately as possible back and forth between two cir-
cular targets for a prolonged time (1100 half-cycles). The resultant
movement coordinates were analyzed at three different measure-
ment scales of performance. The finest scale yields a measurement
of the movement kinematics (within-trial). This description of
performance is not implied by aggregate single trial outcomes
(speed and accuracy) which, in turn, are not implied by the struc-
ture of motor variability (1/f scaling and entropy). Changes in
long-range dynamics contingent on a trade-off between speed
and accuracy would complete an evaluation of performance at
the three different measurement scales.

Half of the participants were presented with a difficult Fitts task
(D = 24 cm, W = 0.4 cm). This difficult condition was designed
to be incompatible with the speed–accuracy task instruction. We
expected that in the presence of incompatible task constraints
(i.e., performing a highly precision-constrained task simulta-
neously fast and accurate), participants would predominantly
emphasize one of the conflicting task dimensions over the other,
because it is known that participants self-define their position
along the continuum of speed versus accuracy while being equally
instructed to move as fast and as accurately as possible (cf.
Adam, 1992; Rinkenauer et al., 2004). We exploited the resultant
between-subject variability to evaluate whether these performance
modes entail constraints that apply to the other two scales of
description.

If levels of performance are coupled across timescales, it is
expected that movement kinematics and long-range dynamics will
be contingent upon control over the emphasized side of the trade-
off. For instance, it is known that faster, less accurate performance
better capitalizes on the elastic properties of the body, and thus
producing more harmonic kinematics compared with more accu-
rate, but slower performance (e.g., see Figure 5). Equally, there is
evidence suggesting that long-range dynamics of human perfor-
mance are contingent on the emphasized performance mode. For
instance, extensive practice of a challenging Fitts task not only
leads to faster movement times, but also to clearer 1/f scaling
and reduced entropy in a time series of movement times (Wij-
nants et al., 2009). So, if 1/f scaling indeed serves as a coordinative
basis for goal-directed behavior, the straight-forward prediction
follows that clearer 1/f scaling, and lower entropy are expected in
long-range dynamics pertaining to the emphasized performance
outcome (either speed or accuracy).

This would entail functional motor synergies optimizing speed
and yielding clearer examples of 1/f scaling and reduced entropy
in movement time series (see Figure 4A). At the same time, a faster
performance mode entails less control over accuracy, and thus,
less clear examples of 1/f scaling and higher entropy are expected
in movement amplitude series (see Figure 4B). Conversely, when
control comes down on the accuracy side of the trade-off, we
may expect clearer examples of 1/f scaling and reduced entropy
in movement amplitude series, but more random dynamics in
movement time series. This would then amount to a trade-off
in long-range dynamics that is contingent on the speed–accuracy
trade-off.

The other half of the participants was presented with an easy
Fitts task (D = 8 cm, W = 2 cm), designed to be compatible with
the speed–accuracy task instruction. The targets were five times
as large and three times closer together compared to the diffi-
cult condition. This easy condition allowed participants to be
simultaneously fast and accurate, rather than requiring them to
emphasize one task requirement over the other like in a speed–
accuracy trade-off. Thus, we expected participants to assemble
functional synergies supporting fast and accurate performance
simultaneously. Consequently, we anticipate the trade-off between
long-range dynamics of movement time series (see Figure 4C) and
movement amplitude series (see Figure 4D), hypothesized in the
difficult condition, to be absent in the easy condition because both
task requirements can be met simultaneously.

Frontiers in Physiology | Fractal Physiology May 2012 | Volume 3 | Article 116 | 6

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Fractal_Physiology
http://www.frontiersin.org/Fractal_Physiology/archive


Wijnants et al. Cross-level contingencies in motor coordination

0 200 400 600 800 1000
0.25

0.3

0.35

0.4

0.45

Trial number

M
ov

em
en

t t
im

e 
(s)

C

0 200 400 600 800 1000
4

6

8

10

12

Trial number

M
ov

em
en

t a
m

pl
itu

de
 (

cm
)

D

0 200 400 600 800 1000
15

20

25

30

35

Trial number

M
ov

em
en

t a
m

pl
itu

de
 (

cm
)

B

0 200 400 600 800 1000
0.4

0.45

0.5

0.55

0.6

0.65

Trial number

M
ov

em
en

t t
im

e 
(s

)

A

FIGURE 4 | (A,B) Represent example movement time and movement amplitude series in the difficult condition. (C,D) Represent example movement time and
movement amplitude series in the easy condition.

MATERIALS AND METHODS
PARTICIPANTS
Thirty undergraduate students were randomly assigned to one
of the two difficulty conditions. The participants received course
credits for participation. All participants had normal or corrected
to normal vision and were right-handed. None suffered from any
known motor impairment.

MATERIALS
Fitts’ law allowed us to construct material conditions that differed
reliably, and to a known degree, in difficulty. An Index of Difficulty
(ID, measured in bits/s) has been derived from Fitts’ law, using the
ratio between the width W of targets and their distance D. For this
study, two levels of difficulty were constructed. The difficult con-
dition used circular targets 0.4 cm wide and 24 cm apart, yielding
an ID of 6.9. At this level of task difficulty, participants are gen-
erally unable to produce optimal kinematics and remain accurate,
as opposed to the easy condition which used circular targets 2 cm
wide and only 8 cm apart, yielding an ID of 3 (Guiard, 1993; Mottet
and Bootsma, 1999). Movement coordinates were recorded on a
WACOM digitizer tablet with a sampling rate of 171 Hz. The input
device was an inkless stylus used on a model sheet (A4) placed on
top of the digitizer tablet.

PROCEDURE
Participants were seated on a height-adjustable chair and
instructed to use their dominant hand to draw lines (hence, not

tapping) back and forth between two circular targets, as quickly
and accurately as possible. The targets were positioned one on the
left and one on the right side of a printed sheet of paper. When 1100
trials were completed a tone signaled the end of the experiment.

DATA ANALYSIS
We analyzed the participants’ performances at three different
scales of analysis. From each participants’ sequence of 1100 move-
ments we computed an Index of Harmonicity (H ) from the
movement kinematics, aggregate speed and accuracy measures
of single trial outcomes, and long-range dynamics of movement
time and movement amplitude series using fractal dimension
(FD) and sample entropy statistics (as explained below). Then,
within each task condition, the 15 participants were ranked
on each of the variables applying non-parametric (Spearman)
correlation statistics to assess contingencies in the between-
subject variability across these variables. We used Spearman’s rho
because we expected monotonic relations, but not necessarily
linear ones.

Harmonicity
A measurement called Index of Harmonicity (H ; cf. Guiard, 1993)
was computed based on the acceleration trace of the back and forth
movements. First, the recorded position time series were filtered
using a third-order 5 Hz low-pass Butterworth filter. As a second
step the position recordings were rescaled so that the point of zero
position was exactly in the middle of the two targets. For example
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in the easy task condition target distance was 8 cm, so the left target
was at −4 cm, and the right target at 4 cm.

Then the acceleration time series were computed (in cm/s2),
and segmented so that each segment ranged from one zero-
crossing in displacement (movement midpoint) to the next zero-
crossing and thus contained one movement reversal. Figure 5A
shows three example acceleration profiles from four consecutive
movements segmented this way. The oscillation midpoints are
shown as vertical lines, and time is on the x-axis. Also displace-
ment is shown, but note that acceleration and displacement were
normalized to bring them on a comparable scale in the figure.
Also note that a segment containing a reversal at the right target
(positive displacement) is shown as negative acceleration, and a
segment containing a movement reversal at the left target (negative
displacement) as positive acceleration.

Next, the local extrema (LE) were identified in the acceleration
trace of each segment. The minimal and maximal LE within each

segment are shown as square markers in Figure 5. H was computed
as the ratio of the maximal LE to the minimal LE of acceleration
for positive displacement (i.e., movement to the right; note, neg-
ative acceleration), and vice versa as the ratio of minimal LE to
maximal LE for negative displacement (i.e., movement to the left;
note, positive acceleration). By construction, H ranges between 0
and 1. That is, if acceleration changes sign at a movement reversal
(i.e., a corrective movement), H is set to 0, reflecting the full dis-
sipation of mechanical energy. The value of H was computed for
every segment, and averaged to yield a global estimate of H.

The extent to which, at movement reversals, terminal braking,
and initial re-acceleration fuse, as expressed by H, is of interest
because such a fusion reflects the saving of mechanical energy,
that is, the recycling of kinetic energy in potential form. For
instance, Figure 5A is taken from the difficult task condition
and shows that terminal braking is required when approach-
ing the target to comply with the high precision constraint, and
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FIGURE 5 | (A) Shows the normalized acceleration and displacement
series observed in four half-cycles of movement (difficult condition)
divided into three segments, each containing a movement reversal.
The minimal and maximal local extrema (LE) in each segment are

shown as square markers. H was computed as the ratio of these
extrema (see text). If only one local extreme was observed, as in the
(B) (easy condition), H is the ratio of that extreme against
itself (H = 1).
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consequently mechanical energy is dissipated (cf. Figure 2F). In
the next movement, re-acceleration is required to meet up with
the speed-constraint. This can be seen as biphasic acceleration
segments (Figure 5A) of which H expresses the depth of the well,
hence the amount of mechanical energy that is dissipated. The
stronger the deceleration (and the consequent re-acceleration)
near movement reversals, the more energy is dissipated and the
lower the value of H.

In easy task conditions, however, the two peaks in the bipha-
sic acceleration profile tend to merge into a single event (see
Figure 5B). The acceleration profile becomes sinusoidal, because
the displacement series is perfectly sinusoidal, as in a frictionless
mass-spring system. In this case only one LE is detected, and H
is the ratio of the LE to itself (i.e., H = 1), evidencing perfectly
simple harmonious kinematics (cf., Figure 2E).

Speed and accuracy
For each participant, we computed the average movement time
and the percentage of accuracy. Movement time (in seconds)
was determined as the difference in the number of sampled
points between begin and end points of each movement (zero-
crossings in velocity), divided by sample rate (in Hz). Accuracy
was determined as the percentage of hits (hits/total number of
movements*100).

1/f scaling
The repeated performances of each participant were treated as a
time series. That is, the movement time and movement ampli-
tude sequences were kept in the trial-order in which they were
collected. The movement amplitudes were computed as the one-
dimensional distance between zero-crossings in velocity (cf. Fitts,
1954), see for instance Figures 2C,D. We estimated the FDs of the
time series using spectral analysis, standardized dispersion analysis
(SDA), and detrended fluctuation analysis (DFA). These meth-
ods are complementary in that the strengths of each compensate
for the weaknesses of the others. For instance, spectral analysis,
while robust in many respects, requires preprocessing of the signal
because extreme observations can contaminate the outcome of the
analysis (see Holden, 2005). DFA can be applied to non-stationary
signals and is not susceptible to most statistical artifacts or long-
term trends, but it can falsely classify certain types of signals as
fractal (Rangarajan and Ding, 2000). SDA is also highly reliable,
but linear and quadratic trends may bias its output. We ensure
reliable conclusions by using all three methods together.

With these analyses it is prudent to preprocess the raw data in
order to avoid the known pitfalls (Holden, 2005). Therefore, out-
liers were removed if they lay outside three standard deviations
from the mean. Then, linear trends and quadratic trends were
removed and the beginning trials of the experiment were trun-
cated until 1,024 observations remained, because spectral analysis
and SDA require series lengths that are a power of 2. As a last step,
the time series were normalized.

Spectral analysis
Spectral analysis transforms data series from the time domain
(e.g., milliseconds) into a frequency domain (Hz), through a Fast-
Fourier-Transformation. The procedure finds the best-fitting sum
of harmonic sine waves in a data signal, and renders their power

(amplitude square) at each fitted frequency on log–log-scales. The
total number of estimated frequencies in the Fast-Fourier Trans-
form was 512. The statistic of interest is the slope of the spectral
portrait, which captures the relation between amplitudes and fre-
quencies of variation in the data signal. Here, we fitted the spectral
slope over the 25% of lowest frequencies (cf. Eke et al., 2002). A
zero slope indicates a random signal, a slope of −1 indicates 1/f
scaling. Spectral slopes as steep as −2 indicate fractional Brownian
motion, the epitome of random walk processes (see Figure 3).

Standardized dispersion analysis
Standardized dispersion analysis investigates the scaling of vari-
ability with changes in sample size. That is, variability is measured
using the standard deviation (using the population formula, i.e.,
using N, the number of data points, in the calculation, rather than
the usual bias corrected N − 1) of means of progressively larger
adjacent samples in a time series. That is, the analysis tracks how
dispersion in sample means decreases as progressively larger sam-
ples of adjacent data points (bins) are aggregated together in a
sample mean. As a first step, the standard deviation is computed
for the original data series, which contains 1024 “mean” values of
the data points themselves. The second step involves calculating the
standard deviation of the 512 means (bins) of each two consecu-
tive measurements (bin size), and so on. We iterated this procedure
until only 32 bins were remaining, each of which represents the
mean of 32 adjacent samples in the original time series.

The results from SDA can be seen in a plot of the logarithm of
the bin size against the logarithm of the standard deviation, as in
Figure 6. For random, white noise, it should not matter that adja-
cent samples are being grouped and regrouped to form samples
of different sizes; for white noise, the slope in Figure 6 is close to
−0.5 (see Van Orden et al., 2003 for a detailed description). The
outcome of SDA is expressed by the FD of a time series, which is
given as 1 – the slope of the regression line. Thus, the FD of white
noise is 1.5. This can be derived simply from the equation for the
standard error of the mean (SE = SD/

√
N ). For a large sample size

N, the standard error SE gets close to zero, and thus yields a stable
population parameter for white noise. Thus, SE scales as a function
of sample size N as 1/

√
N for a SD of 1 as in our normalized series.

On log–log-scales, this can be written as log (SE) = −0.5 log(N ).
The slope of −0.5 in Figure 6 simply follows from this equation,
and leads to a corresponding FD of 1 − (−0.5) = 1.5. A shallower
slope (i.e., the 1/f scaling pattern shown in Figure 5 has a slope
of around −0.2; i.e., FD equals roughly 1.2), however, indicates
correlated activity across timescales, as expressed by the change in
a variance statistic due to changes in bin sample sizes. A FD thus
expresses whether the variance statistic converges fast enough, as
sample size increases, to yield a stable population parameter. If
not, then the process that produced the variance would reveal a
slope that is less steep than −0.5 (suggesting a FD less than 1.5),
which would indicate a lack of characteristic scale or quantity of
variance in the series. An in-depth tutorial of both spectral analysis
and SDA can be found in Holden (2005).

Detrended fluctuation analysis
Detrended Fluctuation Analysis (Peng et al., 1993) is yet another
method to reveal the extent of 1/f scaling in behavioral time series,
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FIGURE 6 | Standardized dispersion is shown as a function of

sample-bin size, on log-scales (base 2 was used here). The solid line is
the least-squares regression for the six different estimates. Fractal
dimension is computed as 1 – the slope. The fractal dimension of white
noise equals 1.5, whereas a fractal dimension of 1.2 indicates exact 1/f
scaling.

and is especially useful when confronted with non-stationary
signals. The first step is to integrate the time series to be analyzed.
Next, the integrated time series is divided into bins of equal length,
containing n data points. In each bin of length n, a least-squares
line is fitted to the data (representing the trend in that bin). And
then the time series is detrended by subtracting the local trend in
each bin. From the now integrated and detrended time series, the
root-mean-square fluctuation (average fluctuation) is calculated.
This computation is repeated over various timescales (bin sizes)
to characterize the average fluctuation at each timescale. In the
present study, DFA was performed on bin sizes ranging between
22 and 29 data points (ranging from a few seconds to minutes
of performance). The results from DFA are usually shown in a
plot of bin size against fluctuation, as in Figure 7, in which the
scaling exponent is given by the slope. For 1/f scaling, fluctuation
will increase with bin size, as indicated by a linear relationship on
log-scales (yielding a slope of 1). White noise yields a slope of 0.5.

A common scale of Fractal Dimension
The reported FD statistics were taken from an average of the
FDs across the three estimates (spectral analysis, SDA, and DFA).
The outcomes of spectral analyses and DFA were first trans-
formed into a common scale of FD. We assumed that a FD
of 1.5 equals white noise, exact 1/f scaling yields a FD of 1.2,
and Brownian motion 1.1, and then fitted a curve between
these values and the desired corresponding spectral slope (i.e.,
white noise = 0, pink = −1, and Brownian motion = −2) and
DFA exponents (i.e., white noise = 0.5, pink = 1, and Brownian
motion = 1.5). This led for spectral analysis to the conversion
formula FD = (α2 + 4α + 15)/10, where FD is the fractal dimen-
sion, and α the slope of the power spectrum, and for DFA,
FD = 0.4β2 − 1.2β + 2, where β is the slope of the log-plot of
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FIGURE 7 | Average fluctuation is depicted as a function of sample-bin

size, on log-scales. The solid line is the least-squares regression across
timescales. The slope of the regression line equals 0.5 for white noise, and
1 for 1/f scaling.

bin size against fluctuation. For a more in-depth discussion on
conversion strategies, see Hasselman (in preparation).

Sample entropy
We supplemented the fractal analyses by estimating the entropy
in each data series. Entropy measures have previously been used
as a gage of complexity in human performance (e.g., Slifkin and
Newell, 1998; Newell et al., 2003; Stergiou and Decker, 2011) and
covary with fractal statistics in goal-directed movements (Wijnants
et al., 2009). The measure of entropy used here is called Sample
Entropy or SampEn. SampEn (m, r, N ) is the negative natural log-
arithm of the conditional probability that a data set of length N,
having stayed within a tolerance r for a number m of data points,
will continue within that tolerance at the next point, disallow-
ing self-matches. SampEn can thus be considered a measure of
self-similarity in a time series and was computed as described by
Richman and Moorman (2000).

Sample entropy measures generally range between 0 and 2,
where higher values indicate more uniform dispersion of data val-
ues (less structured). Our results were robust over a wide range
of choices for m and r. In the present analysis, we used parame-
ter values of m = 3 and a tolerance of r = 1 SD, which were both
comfortably within that robust range. Sample entropy has the
advantage over approximate entropy because it is less biased (i.e.,
the procedure does not include self-matches), and more robust
over a range of input parameters (see Lake et al., 2002).

RESULTS
DESCRIPTIVE STATISTICS
The means and standard deviations pertaining to each of the mea-
sured variables are presented in Table 1 for both task conditions. As
expected, participants in the difficult condition produced slower
and less accurate movements than participants in the easy task
condition. In the difficult condition, participants also produced
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Table 1 | Means and standard deviations of the measured variables in

the difficult and easy condition.

Task condition

Difficult Easy t (28)

Harmonicity (SD) 0.40 (0.16) 0.96 (0.05) −13.32**

Movement time (SD) 655 ms (117) 201 ms (66) 13.04**

Accuracy (SD) 32.4% (18.2) 78.1% (25.4) −5.66**

Fractal dimension MT (SD) 1.28 (0.08) 1.23 (0.09) 1.60

Fractal dimension MA (SD) 1.33 (0.12) 1.29 (0.07) 1.17

Sample entropy MT (SD) 0.49 (0.13) 0.41 (0.15) 1.53

Sample entropy MA (SD) 0.37 (0.11) 0.51 (0.12) −3.37**

**p < 0.01.

less harmonic oscillating behavior, as expected given the conflict-
ing speed–accuracy constraints involved. The FD of movement
time and movement amplitude, and the sample entropy of move-
ment time, were lower on average in the easy condition, but not
reliably so. The sample entropy of movement amplitude series was
higher in the easy condition, which is likely an artifact of the larger
movement amplitude tolerance in the easy condition.

NON-PARAMETRIC CORRELATIONS
We used one-tailed Spearman correlations to relate the 15 pairs
(individual participant scores) of each combination of the mea-
sured variables in both task conditions. This implies separately
ranking the individual values within and across their scale of
observation. We first discuss the contingencies among variables
within each scale of performance, before proceeding to the vertical
couplings among the levels themselves.

Within scales of performance
Within the observational level of single movement outcomes,
the speed and accuracy measures traded off reliably between-
subjects in the difficult condition (movement time and hit rate
were positively correlated, ρ = 0.84, p < 0.01). In the easy task
condition, however, no speed–accuracy trade-off was observed
between-subjects (ρ = −0.10, p = 0.36). Intriguingly, the manip-
ulation of task difficulty had the same effect on the observed
long-range dynamics. In the difficult condition, temporal (move-
ment times) and spatial (movement amplitude) sources of 1/f
scaling traded off reliably (ρ = −0.64, p < 0.01), as did the entropy
values (ρ = −0.84, p < 0.01).

In the easy task condition, however, no trade-offs were observed
between spatial and temporal streams of 1/f scaling. To the con-
trary, the FDs of movement time vs. movement amplitude were
positively correlated (ρ = 0.63, p < 0.01), indicating that partici-
pants who exploited a wider range of scale-free variability in their
temporal performance, also showed clearer fractal-like patterns of
variability in their spatial performance. This win–win vs. loose–
loose situation was not reliably countered by measures of sample
entropy, however (ρ = 0.40, p = 0.07).

Across scales of performance
From the previous paragraph it remains to be answered how
our finest scale of observation (movement kinematics) fits into

the equation. This question, however, pertains to contingencies
across timescales because the harmonicity index primarily reflects
the trade-off of energy dissipation of the moving arm against
the imposed speed and accuracy constraints, rather than a pure
“within-timescale” trade-off.

As expected, the Index of Harmonicity (H ) was contingent
upon the balance of speed and accuracy in the difficult condition.
In the difficult condition, participants who showed shorter move-
ment times produced higher values of H (ρ = −0.90, p < 0.01),
and vice versa, slower participants showed less harmonic move-
ments. More surprisingly, H was equally contingent on the
observed long-range dynamics (see Table 2). Clearer harmonic
motion in participants’ back and forth oscillations went with
clearer 1/f scaling in movement times (FD of Movement Time
ranged from 1.14 to 1.42), but with less clear 1/f scaling in move-
ment amplitudes (FD of Movement Amplitude ranged from 1.12
to 1.52). Vice versa, less harmonic performances yielded less clear
1/f scaling in movement times, but clearer 1/f scaling in movement
amplitude. These fairly strong relations were confirmed by the
entropy measures at every turn. In the easy condition, in contrast,
none of these relations were reliable.

Given the former results, it comes as no surprise that speed and
accuracy themselves are closely tied to the long-range dynamics
observed in goal-directed behavior. That is, in the difficult condi-
tion, faster participants showed more 1/f scaling in the movement
time series (the positive relation indicates that low values of Move-
ment Time are associated with low values of FD of Movement
Time), and less 1/f scaling in their movement amplitude series (the
negative relation indicates that low values of Movement Time are
associated with high values of FD of Movement Amplitude), while
more accurate participants showed less 1/f scaling in their move-
ment time series (hence, the positive correlation between accuracy
and FD Movement Time), but more 1/f scaling in their movement
amplitude series (hence, the negative correlation between accuracy
and FD Movement Amplitude), as shown in Table 2. Also these
relations were confirmed by the sample entropy measures. And
most importantly, each of these relations was absent in the easy
condition.

DISCUSSION
The present experiment builds upon a long line of research
addressing the relation between movement speed and accuracy in
goal-directed movements, the kinematics of the movement trajec-
tory itself, and their mutual relation. It was designed to replicate the
relation between Fitts’ law (Fitts, 1954) and Hooke’s law (Hooke,
1678) and to extend this coupling to another lawful physical phe-
nomenon: the presence of fractal dynamics in the behavior of
complex, biological systems (Mandelbrot, 1982; Bak et al., 1987).
Our hypothesis was that control over goal-directed movements is
not to be found at a single isolated level within an individual’s
functional architecture, but rather in an emergent, dynamic fash-
ion out of the ongoing interaction between processes taking place
at multiple scales simultaneously.

We investigated a perceptual-motor task at three different
scales of measurement (movement kinematics, movement time
and accuracy, and long-range dynamics) to inspect possible link-
ages within and between these performance scales. Half of the
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Table 2 | For both task conditions, Spearman’s rho is shown for the

vertical couplings (across timescales) between the measured

variables; harmonicity at the finest timescale, movement time and

accuracy at the aggregate level of whole movements, and fractal

dimension (FD) and sample entropy (SampEn) of the slower

timescales, found in movement time (MT) and movement amplitude

(MA) series.

Harmonicity Movement

time

Accuracy

Difficult

condition

FD MT −0.61** 0.52* 0.70**
SampEn MT −0.66** 0.45* 0.74**

FD MA 0.50* −0.45* −0.48*

SampEn MA 0.75** −0.64** −0.74**

Easy

condition

FD MT −0.13 0.00 0.15
SampEn MT −0.12 0.03 0.05

FD MA −0.31 0.33 0.30

SampEn MA 0.03 −0.08 0.33

**p < 0.01, *p < 0.05, one-tailed.

participants were presented with a challenging task condition that
was designed to yield incompatible speed–accuracy constraints, so
that more accurate participants would be slower performers and
faster participants less accurate performers. With the challeng-
ing constraints imposed, as expected, faster participants produced
more harmonic oscillations than more accurate but slower par-
ticipants. These measures (harmonicity, revealing details about
within-movement kinematics, and movement time and accuracy,
revealing the outcomes of whole movements), each at their own
scale of observation, were tightly coupled with the long-range
dynamics of movement times and movement amplitudes. This
third scale of observation pertained to a measurement window
ranging from less than a second up to minutes of performance.

In the difficult task condition a close coupling was revealed
among measured values probing the different scales of per-
formance. Participants who predominantly emphasized speed,
showed more harmonic limb oscillations and clearer 1/f scal-
ing in their produced movement time series (but more random
spatial long-range dynamics). More accurate participants, in con-
trast, showed less harmonicity and clearer 1/f scaling in their
produced movement amplitude series (but more random tem-
poral long-range dynamics). A clearer presence of 1/f scaling
thus hinges on the task requirement emphasized by the partici-
pant. This pattern of couplings among embodied timescales was
accompanied by a trade-off between the long-range dynamics
of movement time and movement amplitude that was contin-
gent upon the speed–accuracy trade-off. Corresponding sample
entropy statistics paralleled the correlations with fractal statistics
at every turn.

The observed cross-scale dependencies within an individual’s
performance confirmed our initial suspicion that task-specific
constraints affect performance measures regardless of the scales
of measurement to which they pertain. When faced with incom-
patible task requirements, the predominant performance mode of
the participants (either the speed or the accuracy side of the trade-
off) was equally expressed by movement kinematics, average speed

and accuracy, and spatial and temporal long-range dynamics. This
suggests that near the limits of coordination, human performance
has the tendency to only use a narrow set of solutions, specific
to the emphasized task requirement, and regardless of measure-
ment scale, more autonomy (a wider set of solutions) is sacrificed
to gain control. The source of consistent trade-offs at different
measurement scales may simply be that these solutions are dis-
tributed across the measurement scales of embodied constraints,
rather than within a particular scale.

None of the systematic relations found in the difficult condi-
tion were reliable in the contrasted easy condition, however. For
instance, the lack of trade-off in the aggregate speed and accuracy
measures was absent in the corresponding long-range dynamics
(the sign of the trade-off actually conversed in the easy condition).
The lack of systematic relations among the different measurement
scales in the easy condition may be a consequence of the restriction
of range within the measured variables, since harmonicity, speed,
and accuracy were all dispersed relatively close to their ceiling
values in the easy condition.

It is not unconceivable, however, that, under these less stringent
constraints, human performance becomes more flexibly organized
as synergies that can be formed over a wider range of degrees
of freedom, what Gelfand and Latash (1998) called the principle
of abundance. Abundant controllable degrees of freedom make it
possible to be fast and accurate at the same time in easy conditions,
which would also yield performances close to their ceiling values.
For instance, in face of compatible speed–accuracy constraints,
harmonious oscillations can energetically self-sustain themselves
by exploiting the elasticity of the muscles and the joints. Con-
sequently there is little need for the kinematics to be so tightly
constrained by the other requirements of task performance. The
cross-scale coupling among these factors is thus hidden by the
fluid ease and skill with which performance is enacted. Hence, the
fluid accommodation of the task masks the nature of the coupling
across scales by which it is accomplished, and in this respect the
conflict between task constraints of speed and accuracy provided
a means to test this hypothesis.

The observation that a restricted dispersion of measurement
values reduces or even masks the relations between long-range
dynamics and other performance measures is consistent with
other studies (e.g., Torre and Balasubramaniam, 2011; Wijnants
et al., 2012). These observations do not imply, however, that every
timescale is controlled separately in more manageable task set-
tings. By contrast, it is conceivable that at the limits of a behavior
where errors and other qualitative changes can be observed, a
complex system simply reveals itself in most detail (e.g., Kelso,
2003). That said, we do not want to rule out the possibility that
another set of observables with a less restricted data range could be
defined in easy conditions that would still exhibit rich cross-scale
relationships.

The close coupling of performance outcomes observed in the
difficult condition (either serving the speed or the accuracy side
of the trade-off) enabled for improved performance along the
emphasized task requirement; at the cost of loosing control over
the other, however. The fact that this was paralleled by clearer
1/f scaling in the variable that pertained to that task requirement
suggests that interdependent timescales mutually constrain their
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respective degrees of freedom, rather than that every scale is con-
trolled separately. This illustrates how system components may
interact so completely that one can no longer parse their indi-
vidual contributions in the collective activity of the whole. While
performance at each measurement scale may contribute its own
potentials and constraints in shaping this collective activity, the
activity at each scale is strongly interdependent with the activities
at other scales.

Based on traditional approaches in the Fitts paradigm, observ-
ing 1/f scaling and consistent changes in its presence may run
against standard intuitions, and certainly when it is tied so strongly
to other functional variables of a performance, because trial to trial
performances are typically assumed to fluctuate randomly from
trial to trial. The assumption that movement variability is a prod-
uct of unstructured, white neuromotor noise superimposed on a
deterministic signal traces back to Fitts and was built on the tenets
of information theory (Shannon, 1949), which treats variability as
random “errors,” which to some extent contaminate an underly-
ing deterministic (average) signal in the information processing
stream (Fitts, 1954; Broadbent, 1958). As a consequence, standard
approaches to the speed–accuracy trade-off are often limited to an
exchange rate for the disparate units of speed and accuracy at their
fixed measurement scale (i.e., without making predictions about
movement trajectories).

In the 1960s and 1970s of the twentieth century, motor con-
trol theorists began to adopt the language of control theory to
account for the specificities of the trajectories themselves. As
one example, Meyer’s optimal control model (Meyer et al., 1988)
captured movement variability as a function of the velocity of
sub-movements, thereby extending the relevant scales of analysis
in a speed–accuracy trade-off to movement kinematics. Substan-
tial theoretical developments have followed (For a review see, e.g.,
MacKenzie, 1992; Plamondon and Alimi, 1997; Elliot et al., 2004),
leading eventually to the recognition that a trial movement time
can be modeled from the kinematics as an emergent property (e.g.,
Bootsma et al., 1998; Bootsma et al., 2004).

Our main message is that a second round of progress in the
Fitts paradigm is apt, which steps beyond identifying causal rela-
tions between movement kinematics and movement durations, by
accepting the challenges imposed by fractal scaling and sponta-
neous entropy reduction in well-coordinated performances. Gag-
ing 1/f scaling and entropy extends beyond the usual scales of
analysis, and reveals nonetheless cognitive structure that was pre-
viously hidden, but equally sustains (and is constrained by) a given
task performance and a participants’ emphasis therein. So, while
the observed relation between kinematics vs. speed and accuracy is
not new, our study clearly builds upon the long history of research

in the Fitts paradigm by adding the measurement scale of long-
range dynamics. The consistent changes in 1/f scaling in different
task performances suggest that it is far too simplistic for kinematic
features at their fast timescale, defined by a task condition, to
“cause” a corresponding average movement time and movement
amplitude at a coarser scale, because basic features of a perfor-
mance cannot simply be averaged out to obtain unicausal features
at longer time scales (i.e., up to long-range dynamics).

That is, far from being a statistical or functional nuisance, a
consistent coupling of scales appears to be a signature of strongly
emergent coordination (cf., Van Orden et al., 2003; Buzsàki, 2006;
Kello et al., 2007; Diniz et al., 2011). Emergent coordination allows
slower timescale dynamics to supply specific constraints on the
possible changes at faster timescales. Faster timescales in turn
can act as intermittent sources of perturbations and change to
the slower timescale dynamics (if they are amplified in positive
feedback), which amounts to a circular, nested, or downward influ-
ences among timescales of constraint. The result is emergent and
system-wide control that is economical in the sense that it reduces
the number of variables that must be independently specified in
the coordination of a given performance (Van Orden et al., 2003;
Turvey, 2007; Kello and Van Orden, 2009; Wijnants et al., 2009).

The observation that a constituent part of a performance con-
strains the efficient functioning of the same system’s other parts
through cross-scale contingencies raises the broader question of
fractal dynamics in human control. The specific meaning of 1/f
scaling that we have hypothesized refers in itself to activity across
interlinked timescales. Here we accompanied this statistical regu-
larity with actual empirical cross-scale observables that pertain to
intra-individual modes of coordination to satisfy task demands.
Previous widespread findings associate change in scaling expo-
nents, in the direction of α = 1 of 1/f scaling, with fluid task per-
formance (e.g., Goldberger et al., 2002; Kello et al., 2007; Werner,
2010; Diniz et al., 2011; Van Orden et al., 2011; Wijnants, 2012).
The present findings add to these observations and suggest that
control is delegated across interdependent embodied scales that
exploit the natural constraints imposed on peripheral muscle sys-
tems (i.e., springlike properties) as well as emergent patterns of
coordination (i.e., 1/f scaling), to situate task performance within
the particular demands of task contexts.
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