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Naval sonar has been accused of causing whale stranding by a mechanism which increases
formation of tissue N2 gas bubbles. Increased tissue and blood N2 levels, and thereby
increased risk of decompression sickness (DCS), is thought to result from changes in
behavior or physiological responses during diving. Previous theoretical studies have used
hypothetical sonar-induced changes in both behavior and physiology to model blood and
tissue N2 tension

(
PN2

)
, but this is the first attempt to estimate the changes during actual

behavioral responses to sonar. We used an existing mathematical model to estimate blood
and tissue N2 tension

(
PN2

)
from dive data recorded from sperm, killer, long-finned pilot,

Blainville’s beaked, and Cuvier’s beaked whales before and during exposure to Low- (1–
2 kHz) and Mid- (2–7 kHz) frequency active sonar. Our objectives were: (1) to determine if
differences in dive behavior affects risk of bubble formation, and if (2) behavioral- or (3) phys-
iological responses to sonar are plausible risk factors. Our results suggest that all species
have natural high N2 levels, with deep diving generally resulting in higher end-dive PN2 as
compared with shallow diving. Sonar exposure caused some changes in dive behavior in
both killer whales, pilot whales and beaked whales, but this did not lead to any increased
risk of DCS. However, in three of eight exposure session with sperm whales, the animal
changed to shallower diving, and in all these cases this seem to result in an increased risk
of DCS, although risk was still within the normal risk range of this species. When a hypo-
thetical removal of the normal dive response (bradycardia and peripheral vasoconstriction),
was added to the behavioral response during model simulations, this led to an increased
variance in the estimated end-dive N2 levels, but no consistent change of risk. In conclu-
sion, we cannot rule out the possibility that a combination of behavioral and physiological
responses to sonar have the potential to alter the blood and tissue end-dive N2 tension to
levels which could cause DCS and formation of in vivo bubbles, but the actually observed
behavioral responses of cetaceans to sonar in our study, do not imply any significantly
increased risk of DCS.
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INTRODUCTION
It has been suggested that anthropogenic sound, such as naval
sonar, might lead to development of tissue N2 gas bubbles and
decompression sickness (DCS; Jepson et al., 2003), and that rela-
tionships between sound and DCS could explain some unusual
whale strandings (Jepson et al., 2003). Increased blood or tissue N2

tensions
(
PN2

)
could either be caused by a change in dive behavior

in response to sonar (Jepson et al., 2003), by changes in physi-
ological responses to diving (Hooker et al., 2012) or directly by
an acoustically enhanced bubble growth (Crum and Mao, 1996).

While logistical and ethical constraints have prevented physiolog-
ical studies on large whales, gas exchange models have indicated
that the cardiac output, blood flow distribution, and pulmonary
shunt are important variables that determine the level of blood
and tissue PN2 (Fahlman et al., 2006, 2009). Theoretical stud-
ies have also indicated certain behavioral changes that may affect
risk (Houser et al., 2001; Zimmer and Tyack, 2007; Hooker et al.,
2009). It has been suggested that N2 loading is managed by the
animals through different physiological trade offs, and if a behav-
ioral response to an unanticipated acute threat (such as man-made
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noise) over-rides behaviors adapted to manage N2, the result may
be decompression injury (Hooker et al., 2012). Until recently, no
data existed on behavioral changes associated with sonar exposure.
Previous theoretical studies attempting to estimate the effect of
physiology and behavior on tissue and blood N2 levels in marine
mammals tested a range of plausible behavioral responses, such
as changes in the ascent and descent rates (Houser et al., 2001;
Zimmer and Tyack, 2007; Hooker et al., 2009), the ratio between
surface interval and dive duration (Fahlman et al., 2006), deep div-
ing (Houser et al., 2001; Zimmer and Tyack, 2007; Hooker et al.,
2009), and repetitive shallow diving (Houser et al., 2001; Zimmer
and Tyack, 2007; Hooker et al., 2009).

Recent behavioral response studies have investigated how expo-
sure to naval sonar signals affects the natural dive behavior in
a range of species: Blainville’s beaked whales (Mesoplodon den-
sirostris; Tyack et al., 2011), Cuvier’s beaked whales (Ziphius
cavirostris; Southall et al., 2011), sperm whales (Physeter macro-
cephalus), long-finned pilot whales (Globicephala melas), and killer
whales (Orcinus orca; (Miller et al., 2011; Sivle et al., submitted).
Beaked whales and sperm whales are expert deep divers which
regularly descend to depths of >1000 m for more than 60 min
(Tyack et al., 2006, 2011; Watwood et al., 2006; Sivle et al., sub-
mitted), pilot whales are intermediate divers, typically performing
dives to 300–600 m but of relatively short durations (<15 min;
Baird et al., 2002; Aguilar Soto et al., 2008; Sivle et al., submitted),
while killer whales are shallow divers that hardly ever exceed 100 m
depth and dive durations of 10 min (Baird et al., 2005; Miller et al.,
2010; Sivle et al., submitted). During these behavioral response
studies, the whale was equipped with a suction cup attached dig-
ital tag (Johnson and Tyack, 2003). Following tag attachment, the
whale was allowed to continue diving without sound exposure for
between 1 and 7 h, followed by pre-determined periods of sonar
exposures. The collected data allow comparison of the natural
dive behavior during the pre-exposure as compared with that dur-
ing sonar exposure. These data, therefore, provide species-specific
cases which can be used to estimate how changes in dive behavior
may affect blood and tissue PN2 levels.

We have used a previously published mathematical model (e.g.,
Fahlman et al., 2009) to estimate blood and tissue N2 tension

(
PN2

)

from dive data recorded from sperm-, killer-, long-finned pilot-,
Blainville’s beaked-, and Cuvier’s beaked whales before, during and
after exposure to sonar signals. Our objectives were: (1) to deter-
mine if differences in natural behavior make some species more
prone to DCS (i.e., higher end-dive PN2 levels), (2) to investigate
if the measured sonar-induced changes in dive behavior make
odontocetes vulnerable to anthropogenic disturbance, and finally
(3) to investigate how a hypothetical sonar-induced physiological
flight response, involving changes in cardiac output on top of the
behavioral response, would affect the risk of DCS.

MATERIALS AND METHODS
PERMITS
Animal experiments on sperm whales (Physeter macrocephalus,
sw), long-finned pilot whales (Globicephala melas, Gm), and
killer whales (Orcinus orca, Oo) were conducted in Norwegian
waters under permits issued by the Norwegian Animal Research
Authority to Dr. Petter Kvadsheim (permits no 2004/20607 and

S-2007/61201), and in compliance with ethical use of animals
in experimentation. The research on Blainville’s beaked whales
(Mesoplodon densirostris, Md) was conducted under permits for
marine mammal research issued by the U.S. National Marine Fish-
eries Service (NMFS) to Dr. Peter Tyack (Permit #981-1578), and
issued by the Government of the Bahamas to the Bahamas Marine
Mammal Research Organisation (Bahamas permit #01/09) and Dr.
Ian Boyd (Bahamas permit #02/07 and #02/08). The research on
Cuvier’s beaked whales (Ziphius cavirostris, Cv) were conducted
in U.S. waters under U.S. NMFS research permit (#14534), as well
as Channel Islands National Marine Sanctuary (CINMS) permit
(#2010/004) for operations within the boundaries of the CINMS.
All research protocols were also approved by the University of
St. Andrews Animal Welfare and Ethics Committee as well as
the Woods Hole Oceanographic Institution Animal Care and Use
Committee.

DIVE DATA
Dive data for this research were collected in conjunction with sev-
eral different research projects studying behavioral responses of
cetaceans to naval sonar signals using very similar methodology.
The “3S-project ” collected data on sperm whales, pilot whale and
killer whales in the Norwegian Sea, off the coast of Northern Nor-
way, in 2006–2009 (Miller et al., 2011). The “AUTEC BRS-project”
collected data on Blainville’s beaked whales off Andro’s Island,
Bahamas, in 2007–2008 (Tyack et al., 2011). The “SOCAL BRS-
project” collected data on Cuvier’s beaked whales off the coast
of California, USA, in 2010 (Southall et al., 2011). In all these
projects, time versus depth records were collected at 50 Hz sam-
pling rate using a digital tag (Johnson and Tyack, 2003) attached
to the whale by suction cups. In addition to the depth sensor the
tag also contains acoustic sensors that can be used to measure
the level of sound exposures. Following tag attachment, the whale
was allowed to continue diving without sound exposure during
a pre-exposure period of 1–7 h duration. This was followed by
pre-determined periods of sonar exposures. During exposure the
ship carrying the sonar source gradually approached the position
of the whale and/or gradually increased the transmitted source
level to achieve an escalation of the received sound pressure levels
from initial values of 60–120 dB to maximum levels of 147–180 dB
re 1 μPa (RMS values). This procedure was used to simulate an
approaching naval vessel. Complete dive profiles and details of
experimental procedures and calculations of received sonar levels
are given in Miller et al. (2011) for sperm whales, pilot whales, and
killer whales, in Tyack et al. (2011) for Blainville’s beaked whales
and in Southall et al. (2011) for Cuviers’s beaked whales. A total of
21 dive records of >8 h were gathered (Table 1). Thirteen whales
in the data set were exposed to LFAS (1–2 kHz) and/or MFAS (3–4
or 6–7 kHz) sonar signals and eight records contain undisturbed
baseline behavior only (Table 1).

GAS EXCHANGE MODEL
The dive records were entered into a gas exchange model in order
to estimate blood and tissue N2 tension throughout the dives. The
model was adapted from a previous breath-hold model which
included exchange of N2, O2, and CO2 and also the effect of
pressure on pulmonary gas exchange as previously detailed in
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Table 1 | Animal ID, species, assumed body size (Mb), total dive record duration, sonar exposure duration (LFAS and/or MFAS) and description

of behavioral responses to sonar as reported by 1Sivle et al. (submitted), 2Southall et al. (2011), or 3Tyack et al. (2011). In addition some baseline

data records without sonar exposures are also included as reported by 3Tyack et al. (2011) and 4Miller et al. (2011).

Animal ID Species Mb (kg) Tag duration

(h:m)

Sonar duration

(h:m)

Behavioral response to sonar

LFAS MFAS

Oo08_149a Killer whale 3500 15:43 0:50 1:22 1No change in dive behavior

Oo09_143a Killer whale 3500 12:54 – – 4Baseline record without exposure

Oo09_144a Killer whale 3500 11:52 0:34 0:59 1Switched from deep to shallow diving during LFAS,

and shallow dives became deeper

Oo09_144b Killer whale 3500 12:43 0:34 0:59 1Switched from deep to shallow diving during LFAS,

and shallow dives became deeper

Sw08_152a Sperm whale 43000 9:22 1:00 1:35 1No change in dive behavior

Sw09_141a Sperm whale 30000 15:23 0:40 0:52 1Shallower deep dives during LFAS

Sw09_142a Sperm whale 43000 15:08 0:44 0:33 1Deep dives with several disrupted ascents during

LFAS

Sw09_153a Sperm whale 43000 8:36 – – 4Baseline record without exposure

Sw09_160a Sperm whale 43000 14:45 0:43 0:42 1Shallower deep dives during LFAS and MFAS

Gm08_154d Pilot whale 1500 8:16 1:20 0:25 1Switched from deep to shallow diving during MFAS

Gm09_137a Pilot whale 1500 8:35 – – 4Baseline record without exposure

Gm09_137b Pilot whale 1500 8:25 – – 4Baseline record without exposure

Gm09_137c Pilot whale 1500 8:23 – – 4Baseline record without exposure

Gm09_138a Pilot whale 1500 11:02 0:32 0:35 1No change in dive behavior

Gm09_138b Pilot whale 1500 17:26 0:32 0:35 1No change in dive behavior

Gm09_156b Pilot whale 1500 17:51 0:32 0:26 1Switched from deep to shallow diving during LFAS,

and shallow dives became deeper

Zc10_272a Cuvier’s beaked whale 2050 18:20 – 0:30 2Unusual slow ascent (MFAS)

Md06_296a Blainville’s beaked whale 1150 19:23 – – 3Baseline record without exposure

Md07_227a Blainville’s beaked whale 1150 17:26 – – 3Baseline record without exposure

Md07_245a Blainville’s beaked whale 1150 17:31 – 0:15 3Unusual slow ascent (MFAS)

Md07_248a Blainville’s beaked whale 1150 17:22 – – 3Baseline record without exposure

Bostrom et al. (2008), Fahlman et al. (2009), and Hooker et al.
(2009) with the revisions for the current analysis summarized
below. The body was partitioned into four different tissue com-
partments (brain, fat, muscle, and central circulation) and one
blood compartment (arterial and mixed venous). The parame-
ters used for this model is the best available information from
literature survey for each species, when available information was
insufficient we applied information for other relevant species. In
the current study, bone was included in the fat compartment as
the bone of deep diving whales appears to be high in fat con-
tent (Higgs et al., 2010). The central circulatory compartment
included heart, kidney, liver, and alimentary tract while the mus-
cle compartment included muscle, skin, connective tissue, and
all other tissues (Fahlman et al., 2009). The size of each com-
partment was taken from Hooker et al. (2009) for beaked whales
and for the sperm whale, killer whale and pilot whale was based
on available data for the sperm whale (Omura, 1950; McAlpine,
1985; Rice, 1989). Body mass for each species was estimated
based on data recorded from stranded animals or from length-
weight equations and length estimates (beaked whale; Hooker
et al. (2009), sperm whale; Lockyer, 1991); killer whale; Clark et al.
(2000)).

Gas exchange was assumed to occur between lung and blood
and between blood and each compartment. The same assumptions
were used for the blood N2 stores as those detailed in Fahlman et al.
(2009). The total – (Qtot) and fractional blood flow to each tissue
were not fixed, and could be varied to mimic diving bradycardia
and changes in regional blood flow due to peripheral vasocon-
striction (Butler and Jones, 1997). Hence, cardiovascular changes
seen in freely diving animals could be simulated.

As in previous studies (Fahlman et al., 2006, 2009; Hooker et al.,
2009), in the instances in which we had no direct anatomical
or physiological data for the species in this study, we used data
reported for the Weddell seal (Davis and Kanatous, 1999). The
model included pulmonary shunting which varied with depth
and diving lung volume (Bostrom et al., 2008; Fahlman et al.,
2009; Hooker et al., 2009; see section below for details). For the
sperm, killer, and pilot whale, the relative size of each compart-
ment, expressed as a per cent weight of the body mass, was 3.3%
for central circulation, 0.18% for brain, 50.02% for blubber, 26.5%
for muscle, and 20% for blood. For the beaked whale the muscle
was 57%, central circulation 3%, brain 0.2%, blubber 19.8%, and
blood 20% of the total body mass. When calculating the O2 stores,
it was assumed that the lean muscle mass was 23.9% of the body
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mass for the killer, sperm, and pilot whale and 49% for the beaked
whales. The mass specific cardiac output was calculated accord-
ing to Fahlman et al. (2009) and was 80 ml O2·min−1·kg−1 for
a 43 ton sperm whale, 151 ml O2·min−1·kg−1 for a 3500 kg killer
whale, and 186 ml O2·min−1·kg−1 for a 1500 kg pilot whale. While
at the surface 31% of the cardiac output was directed to the cen-
tral circulation, 67% to the muscle, 1.3% to the brain, and 0.7%
to the blubber. During diving, the cardiac output was decreased
to half and the blood distribution was changed such that 80% was
directed to the central circulation, 1% to the muscle, 12% to the
brain, and 7% to the blubber (Fahlman et al., 2006, 2009; Hooker
et al., 2009).

TISSUE METABOLIC RATE AND GAS STORES
While we do not report the blood and tissue O2 and CO2 levels
in the current study, estimates of these parameters are included in
the model as they affect the uptake and removal of N2 from the
lungs and thereby the overall blood and tissue PN2 (Fahlman et al.,
2009). The initial lung, blood, and tissue gas stores were assumed
to be similar to those used in Fahlman et al. (2009). The meta-
bolic rates for each tissue compartment were estimated from the
data presented in Davis and Kanatous (1999). The O2 available
during a dive came from lung, blood and tissue stores (mainly
muscle, see below). The Ostwald solubility coefficient was used to
calculate the dissolved O2 content in blood and we used a value of
0.0261 l O2·l−1 blood (Weathersby and Homer, 1980). The same
solubility coefficient was used to estimate O2 content of muscle
and central circulation. For the fat and brain compartment we
used a value of 0.133 l O2·l−1 tissue.

In addition to dissolved O2, the muscle compartment was
assumed to contain a significant amount of endogenous O2 bound
to myoglobin and available for muscle metabolism. When calcu-
lating the total O2 stored in the muscle compartment, we assumed
that for the pilot whale, sperm whale, and killer whale, 23.9% of
the total M b was skeletal muscle, an estimate based on data for
the sperm whale (Omura, 1950; McAlpine, 1985; Rice, 1989). The
same parameter was estimated at 49% for the beaked whales, i.e.,
the muscle compartments for the different species were composed
of a variety of tissues. For beaked whales, we used the reported
myoglobin concentration for Hyperoodon (63 g·kg−1 muscle; But-
ler and Jones, 1997), and for pilot, sperm, and killer whales we used
the value reported for P. macrocephalus (57 g·kg−1 muscle, Dolar
et al., 1999). For all species, an O2-binding capacity of 1.34 ml O2

(STPD)·g−1 muscle tissue (Stephenson, 2005) was assumed. The
muscle was assumed to be completely saturated at the beginning of
a trial run, i.e., initial conditions. The blood was assumed to have
a hemoglobin (Hb) concentration of 0.26 kg·l−1 of blood and the
same O2-binding capacity as myoglobin (Stephenson, 2005). Ini-
tially, it was assumed that arterial blood was 97% saturated and
venous blood 87% saturated.

LUNG COMPRESSION AND PULMONARY SHUNT
The lung collapse model presented by Bostrom et al. (2008) was
used to estimate alveolar volume at depth (DVA). Initial para-
meters used to estimate DVA were: total lung capacity (TLC,
total respiratory volume), the volume of the upper respira-
tory system including trachea and bronchi (V T), and maximal

alveolar volume (V A), i.e., TLC =V T +V A. TLC was estimated
as TLC = 0.135·M b

0.92 (Kooyman, 1973; Fahlman et al., 2011). It
was assumed that gas exchange occurred only in the alveoli and
when DVA = 0, no gas exchange occurred. Dead space volume
was assumed to be 1/15 (6.7%) of TLC, the value reported for
the bottlenose whale (Kooyman, 1973). It was assumed that all
species dived with a lung volume (DVL) lower than TLC and the
reduction in gas volume was taken from the alveolar gas space.
That is, DVA = DVL − V T. For sperm, killer, and pilot whales,
we used a DVL = 26.4 ml·kg−1 estimated for the sperm whale
(Miller et al., 2004). Thus, for a 43000 kg sperm whale diving
on a DVL = 26.4 ml·kg−1: TLC = 2472 l,V T = 165 l, DVL = 1135 l,
DVA = 970 l. For Blainville’s beaked whale, we assumed a DVL

estimated for this species of 13.1 ml·kg−1 (Zimmer and Tyack,
2007).

ESTIMATED PN2
LEVELS DURING DIVING

A dive was defined as a submergence for >10 s to a depth >1 m.
Dives were categorized as shallow (depth >1 m and ≤30), interme-
diate (depth >30 m and ≤200 m) or deep (depth >200 m) based
on the maximum depth of the dive. These categories were based on
the assumption that shallow dives <30 m may serve to reduce PN2

and be potentially helpful as decompression dives (Fahlman et al.,
2007). Intermediate dives are dives where there is still significant
gas exchange and thus N2 is being absorbed by the body (Kooy-
man and Sinnett, 1982; Fahlman et al., 2008, 2009; Hooker et al.,
2009) because of the hydrostatic pressure, whereas during deep
dives the alveoli will most likely be collapsed and gas exchange will
have ceased (Kooyman and Sinnett, 1982; Fahlman et al., 2008,
2009; Hooker et al., 2009). Within these categories we present
average maximum dive depth (the maximum depth reached dur-
ing the dive), average dive depth (the average depth of the dive),
and average dive duration (the time spent submerged; Table 2).

Tissue and blood partial pressure of N2 were estimated
throughout the entire duration of each dive series. As the N2 equi-
librium state of a diving whale is not known at the start of a dive
trace, the starting tissue and blood N2 must therefore be assumed
(Zimmer and Tyack, 2007). Alternatively, the dive trace needs to
be long enough such that a “quasi-equilibrium” is reached, which
depends on the size of the animal and the specific dive behav-
ior (Hooker et al., 2009). The time to equilibrium was shown to
be approximately 4 h for a 1000 kg whale and 13 h for a 5000 kg
whale. Consequently, none of the dive series used in this study
were long enough for the sperm whales to reach equilibrium. For
that reason, we initialized all tissues to two times the surface PN2 ,
which provided us reasonable equilibrium values for all tissues.
This was based on testing a range of starting PN2 -values, were we
determined that initializing the blood and tissue PN2 to two times
ambient minimized variability of the model output. Dive records
with less than 2 h of pre-exposure data still had to be removed
from the analysis as the pre-exposure PN2 estimates became too
uncertain.

RISK OF DECOMPRESSION SICKNESS (R)
The end-dive PN2 values were extracted for each dive category
(shallow–intermediate–deep) as the average value of the first
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10 s after the animal reached the surface. Risk of DCS follow-
ing each dive was estimated as the instantaneous mixed venous
supersaturation level (R):

R = (
PN2 (mixed venous) − PN2 (ambient)

)
(1)

where PN2 is given in Atmospheres Absolute (ATA) corresponding
to the pressure at the sea surface (1 ATA = 101.3 kPa). The mixed
venous PN2 levels were chosen because they represent the overall
saturation level of the animals and have previously been used as
a measure of risk of DCS in other species (Berghage et al., 1979)
including humans (Weathersby et al., 1984). R was extracted for
each dive during the pre-exposure period and compared to the esti-
mated R-levels during LFAS and MFAS sonar exposure. This tested
the effect of potential changes in behavior on the overall risk. To
test the effect of a hypothetical physiological response to sonar, we
removed the dive response during sonar exposure and re-ran the
model. This implied that the model was run assuming that total
cardiac output and blood distribution between tissue compart-
ments were the same during diving as before diving. The change
in R was again estimated and the pre-exposure compared with the
exposure period. This tested the combined effect of changes in
both behavioral and physiological responses.

BEHAVIORAL “RESPONDERS”
Analyses of changes in dive behavior in response to sonar exposure
have been conducted on the same dataset used here to study poten-
tial changes in risk of DCS in beaked whales, sperm whales, pilot
whales, and killer whales (Table 1). The Blainville’s beaked whale
(md07_296a) and the Cuvier’s beaked whale (zc10_272a) were
both exposed at depth and responded in much the same manner.
Echolocation based foraging ceased and the animals broke off the
deep dive prematurely before performing an unusually slow ascent
to the surface (Southall et al., 2011; Tyack et al., 2011; Figure 1).
In sperm whales responses were less clear, but there was an over-
all trend that deep dives were shorter and shallower during LFAS
exposure (Sivle et al., submitted; e.g., sw09_160a in Figure 1), and
this was often associated with reduced echolocation rates (Miller
et al., 2011). Sperm whales generally performed normal deep dives
with echolocations sounds during MFAS exposure (Sivle et al.,
submitted). When killer whales and pilot whales were engaged in
deep diving foraging behavior at the time of exposure onset, they
typically ended foraging and switched to shallow diving traveling
mode. Interestingly, the shallow dives also became deeper during
exposure than the shallow resting dives performed between deep
dives prior to exposure (Sivle et al., submitted; e.g., gm09_156b
and oo09_144a in Figure 1). Animals that were already in shallow
diving traveling mode at exposure onset, just continued without
changes in the dive pattern (Sivle et al., submitted). This response
was consistent during LFAS exposure but less consistent during
MFAS exposure (Sivle et al., submitted).

In addition to the comparison of risk of DCS (R, Eq. 1) between
the exposure- and pre-exposure periods within each dive category
(shallow–intermediate–deep; Figure 3), we have also used the gas
exchange model to look at sequential changes from pre-exposure
to exposure in behavioral “responders” without considering dive
categories (Figure 4). This analysis will capture effects of subtle

behavioral change within a dive category as well as effect of behav-
ioral changes were the animal changes dive category in response to
sonar (e.g., going from deep to shallow diving). In animals which
are supersaturated even a single event of having a high R, even for
a short period might be enough to trigger a cascade of bubble for-
mation. Therefore we have calculated both average and maximum
R-values for dives during exposure and compared those values to
maximum and average values for dives during the pre-exposure
period in the behavioral “responders” (Figure 4).

RESULTS
Summary statistics for each species and dive series are presented
in Table 2. Each dive trace is indicated by the species abbreviation
(oo: killer whale, sw: sperm whale, gm: pilot whale, zc: cuvier’s
beaked whale, md: Blainville’s beaked whale) and an animal ID.

ESTIMATED BLOOD AND TISSUE PN2
DURING NORMAL DIVING

The blood and tissue end-dive PN2 as well as the variation between
tissues increased as the dive depth increased (Figure 2). This
increase in end-dive PN2 levels and tissue variance is caused by the
increase in the “fast” tissues, which has low tissue time constants
(brain and central circulation) with depth, while fat and muscle
end-dive PN2 levels were less variable with dive depth. The correla-
tion between dive depth and end-dive PN2 levels implied a higher
risk to the deep divers (sperm whales and beaked whales) than
the shallower divers (killer whales; Figure 2). Except for sperm
whales, the end-dive PN2 during shallow dives was highest for the
fat compartment (Figure 2). For deep and intermediate depth
dives, end-dive PN2 was highest for the fast tissues (central circu-
lation and brain) and lowest for the muscle compartment for all
animals (Figure 2).

CHANGES IN RISK OF DCS DURING LFAS SONAR EXPOSURE
The maximum change in risk of DCS (R, Eq.1) during exposure as
compared with the pre-exposure period is shown in Figure 3 on
the left hand panels, for shallow, intermediate, and deep dives. For
shallow dives the changes in R were not consistent and very minor
for the killer whales, pilot whales and for all but one sperm whale.
R decreased significantly for sperm whale sw08_152a during the
sonar exposure, but there is very few shallow dives in this record
and this might therefore be a coincidence. When the dive response
was removed during sonar exposure, R increased somewhat for
three of the four sperm whales, but decreased for the fourth one.
For dives to intermediate depth, R decreased for the killer whales
oo09_144a and oo09_144b, and removal of the dive response fur-
ther decreased R for oo09_144a. For the pilot whale gm08_154d
and the sperm whales sw08_152a and sw09_141a, removal of the
dive response during sonar increased R. During deep dives, the
behavior caused varying changes in R for the sperm whales and
removal of the dive response increased R.

CHANGES IN RISK OF DCS DURING MFAS SONAR EXPOSURE
For shallow dives, there was large variation in risk of DCS (R,
Eq.1), and overall R decreased during MFAS exposure (Figure 3).
However, removal of the dive response increased R for oo09_144a,
gm09_138b, gm09_156b, and sw09_141a. For intermediate dives,
the change in behavior reduced R and only a slight effect was
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FIGURE 1 |Typical examples of changes in dive behavior in response to

sonar. (A) Cuvier’s beaked whale (zc10_272a), (B) sperm whale (sw09_160a),
(C) Blainville’s beaked whale (md07_245a), (D) pilot whale (gm09_156b), (E)

killer whale (oo09_144a). The red part of the dive profile is exposure to MFAS
sonar and the green to LFAS sonar. Time is in hours GMT and depth is in
meters. Note the differences in depth scale between the different panels.

noticed in oo09_144a when the dive response was removed dur-
ing sonar exposure. For the deep dives, MFAS exposure mostly
caused a slight decrease in R in all species, but removal of the dive
response increased R, especially for sw09_160a.

CHANGES IN RISK OF DCS IN “BEHAVIORAL RESPONDERS”
Typical examples of dive records of behavioral “responders” per-
forming typical change in dive behavior in response to sonar are
presented in Figure 1 for each of the studied species. Of 13 whales
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A

B

C

FIGURE 2 | End-dive tissue and blood N2 tension following (A) shallow-

(<30 m), (B) intermediate- (>30 m but <200 m), or (C) deep (>200 m)

dives in the pre-exposure control period for killer whales (Oo),

Blainville’s beaked whales (Md), pilot whales (Gm), sperm whales (Sw),

and Cuvier’s beaked whale (Zc). Values are given for different tissue
compartments; central circulation (CC), muscle (M), brain (B), fat (F), and
mixed venous (MV). The red line at 0.75 ATA indicate 100% saturation at the
surface (i.e., no risk of DCS).
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A

B

C

FIGURE 3 | Change in risk of DCS (R, Eq. 1) during sonar exposure

as compared with pre-sonar control period during (A) shallow-, (B)

intermediate-, and (C) deep-dives for killer whales (Oo), pilot

whales (Gm), and sperm whales (Sw). The left panels are LFAS
exposures (i) and right panel MFAS exposures (ii). Open symbols
indicate model output assuming normal physiological dive response,

and solid symbols indicate model output when assuming a hypothetical
removal of the dive response (no reduction in cardiac output and no
redistribution of blood flow) in addition to the behavioral response
during sonar exposure. Risk is defined as the end-dive mixed venous
N2 tension minus the ambient N2 tension (Eq. 1). The red line indicates
zero change in risk.
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FIGURE 4 | Average (�) and maximum (©) risk of DCS (R, Eq. 1) during

pre-sonar control (solid symbols) and sonar exposure periods (open

symbols) in behavioral “responders”. LFAS (left) and MFAS (right). Killer

whales (Oo), pilot whales (Gm), sperm whales (Sw), Blainville’s beaked
whales (Md), and Cuvier’s beaked whales (Zc). Risk is defined as the end-dive
mixed venous N2 tension minus the ambient N2 tension (Eq. 1).

exposed to LFAS and/or MFAS, 10 showed a change in dive behav-
ior apparently in response to the sonar (Table 1). This response
varied from unusual slow or disrupted ascents of the deep divers to
complete shifts from deep dive to shallow dive mode seen in pilot
whales and killer whales (Figure 1). Except for the sperm whales
reported to respond to sonar by shallower deep diving, R decreased
during sonar exposure in all behavioral “responders” (Figure 4).
In sw09_141a during LFAS exposure and for sw09_160a during
both LFAS and MFAS exposure both maximum and average R
increased (Figure 4).

DISCUSSION
Our model estimates suggest that shallow (killer whales), inter-
mediate (pilot whales) and deep diving whales (sperm whales,
Cuvier’s beaked whale, and Blainville’s beaked whale) all live with
high blood and tissue PN2 levels, but the deep divers seem to expe-
rience the most extreme values (Figure 2). The deep diving sperm
whales which respond to sonar exposure by shallower but still
deep diving, were found to increase risk of DCS (R, Eq. 1), but
not beyond the normal risk range of sperm whales. We found
no systematic changes in R during sonar exposure in the other
species, thus for some animals R appeared to increase slightly,
while for others it decreased. However, the variation in R increased
with dive depth. Also, removal of the dive response during sonar
exposure increased R for most whales except in a few instances,

e.g., oo09_144a during LFAS exposure, but also increased the
variation of R.

EFFECT OF DIVE DEPTH ON END-DIVE PN2
LEVELS

We have shown that the estimated end-dive PN2 values increased
with maximum dive depth (Figure 2). The largest increase in
PN2 levels between dive categories happens between the shallow
and intermediate dives, with only a moderate further increase in
some tissues between intermediate and deep dives. Shallow dives
(1–30 m) includes the decompression depth zone where tissue
and blood PN2 exceed the ambient partial pressure of N2 and
the direction of N2 flux is therefore from the blood into the
lung (N2 removal; Fahlman et al., 2007). Intermediate dives (30–
200 m) extend into the compression depth zone where pulmonary
exchange still occurs (Hooker et al., 2009), but ambient pressure
now exceeds tissue and blood PN2 and therefore the direction of N2

flux changes and N2 is now being absorbed. However, in this region
depth related pulmonary shunting begins to impede gas exchange
(Kooyman and Sinnett, 1982; Bostrom et al., 2008). Thus, varia-
tion in dive behavior and physiological responses may cause large
variation in end-dive tissue and blood PN2 in this zone. The deep
dives (>200 m) extend into the no-compression depth zone where
lungs are completely collapsed and gas exchange ceased (Bostrom
et al., 2008; Fahlman et al., 2009). Consequently, the total body N2

load will be determined by the ratio of time spent within the com-
pression zone and the decompression zone, whereas time spent
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into the no-compression zone will not add to the total body N2

load, but may allow time for redistribution of N2 between different
tissues.

For shallow dives, end-dive mixed venous PN2 ranged between
0.8 ATA for pilot whales to values >1.5 ATA for sperm whales. For
dives to medium and deep depths, mixed venous PN2 were >1.0
ATA for all whales (Figure 2) and were close to or exceeding 2 ATA
for the sperm whale and pilot whales. Although difficult to com-
pare directly because of differences in how shallow dives where
defined, these results appear to disagree with the suggestion made
by Zimmer and Tyack (2007) that shallow dives increase the risk
of inert gas bubbles and DCS. One possible reason for these diver-
gent results could be related to the different assumptions on how
pulmonary gas exchange is altered during diving. Empirical data
in both the California sea lion and harbor seal have indicated that
a pulmonary shunt develops that is related to the dive depth and
diving lung volume (Kooyman and Sinnett, 1982). Despite this,
previous studies made the simplistic assumption that gas exchange
was perfusion limited until the alveoli collapsed, and the collapse
depth was assumed to be at a pre-determined depth, e.g., 70 m
(Fahlman et al., 2006; Zimmer and Tyack, 2007). It was suggested
that this was a conservative approach and considered a worst-case
scenario. More recent work has developed a model that predicts
air volumes in the upper and lower airways, based on the struc-
tural properties of the respiratory system (Bostrom et al., 2008).
The lung compression model was later coupled with the empiri-
cally derived pulmonary shunt data for pinnipeds (Kooyman and
Sinnett, 1982). This made it possible to include the effect of pres-
sure and diving lung volume on gas exchange (Fahlman et al.,
2009; Hooker et al., 2009). When the lung compression/pulmonary
shunt model was included in gas exchange models, the models out-
put agreed well with measured blood and tissue N2, CO2 and O2

levels (Fahlman et al., 2009). The differences in model estimates
vary substantially with these varying assumptions in gas exchange
models used (Fahlman et al., 2009) and may be one reason for the
divergent results.

EFFECT OF BODY MASS ON END-DIVE PN2
LEVELS

A previous study showed a positive correlation between predicted
end-dive PN2 and body mass, when the body mass was varied for
each species (Hooker et al., 2009). However, when the tissue and
blood PN2 levels were estimated with the species-specific body
mass, there were little differences in predicted N2 levels between
species. It was suggested that these results may indicate behav-
ioral adjustments within each species that limits the end-dive PN2

(Hooker et al., 2009). In the current study, there were no clear
differences in end-dive blood or tissue PN2 with animal size (body
mass), not even between the expert deep divers (sperm whale and
beaked whales). However, the variation in estimated values was
much greater in sperm whales at all depths (Figure 2).

CHANGES IN RISK OF DCS DUE TO BEHAVIORAL RESPONSES TO SONAR
The behavioral responses to sonar differed both within species and
between the species in this study. The beaked whales (Md and Zc)
displayed an unusually slow ascent from the deep dive (Southall
et al., 2011; Tyack et al., 2011), while sperm whales tended to con-
tinue deep diving during exposure, but shallower than before (Sivle

et al., submitted). Pilot whales are intermediate divers and killer
whales shallow divers as compared with the expert deep diving
sperm- and beaked whales. Pilot whales typically perform bouts
of relatively deep dives in between periods of very shallow diving
(Sivle et al., submitted). Sonar responses in killer whales and pilot
whales that were in deep diving mode prior to exposure typically
involved a shift to shallow diving mode, but the shallow dives also
became deeper than during normal undisturbed shallow diving
(Sivle et al., submitted). These differences in response is probably
largely explained by differences between species, but could also
partly be explained by differences in the experimental procedures.
Sperm whales, pilot whales and killer whales were all exposed using
the same protocol (Miller et al., 2011), involving multiple expo-
sures in a random behavioral context (feeding, resting, traveling)
using a moving source. The beaked whales were exposed using a
different and stationary source, and exposures were always con-
ducted in a fixed behavioral context during deep feeding dives
(Southall et al., 2011; Tyack et al., 2011).

BEAKED WHALES
Zimmer and Tyack (2007) reported that increased ascent rates
from deep dives would decrease end-dive PN2 . The actual observed
response of Zc and Md to sonar was an unusually slow ascent
(Southall et al., 2011; Tyack et al., 2011; Figure 1), and this could
increase R because of the additional time spent in the compression
zone. However, theoretical studies have suggested that a reduced
ascent rate in the decompression zone coupled with a pre-surface
tachycardia may reduce end-dive PN2 by as much as 45% (Fahlman
et al., 2006). Our results indicate that even without this physiolog-
ical adjustment the actual observed decrease in ascent rate resulted
in a slightly decreased R (Figure 4).

SPERM WHALES
Sperm whales sw09_141a and sw09_160a were both reported to
respond to the LFAS by continuing to perform deep dives, but the
deep dives became shallower (Sivle et al., submitted; Figure 1). In
the two animals which responded this way the shallower deep dives
implied switching from dives at maximum depth of 1200–1500 m
pre-exposure to about 300–400 m during exposure in sw09_160a
(Figure 1), and from 250–400 m pre-exposure to only 50 m, dur-
ing exposure in sw09_141a (Miller et al., 2011). Both these animals
showed an increased R during LFAS exposure (Figures 3 and 4),
while for the other two sperm whales, which did not respond
by shallower deep dives, R did not increase (Figure 3). During the
MFAS exposure,again the sw09_160a responded by shallower deep
diving (Sivle et al., submitted) and again R increased (Figure 4),
while for the other three, who did not display shallower deep div-
ing, R did not increase. For sw09_160a the shallower deep dives
during sonar exposure were still deep enough to extend well into
the no-compression zone (300–400 m), but the descent phases
of these dives were much slower than for the deep dives during
pre-exposure (Figure 1). The increase in R is thereby explained
by the increased time spent in the compression zone during the
descent phase of these dives. The shallower deep diving response
of sw09_141a to the LFAS exposure is similar to the hypotheti-
cal response described to result in higher R also in beaked whales
by Zimmer and Tyack (2007). This animal switched from dives
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to depth well within the no-compression zone (250–400 m) to
shallower dives during sonar exposure where most of the time
was spent in the compression zone and never extended into the
no-compression zone, and therefore resulted in increased R.

It has been proposed that the deep diving species are more at
risk of suffering from decompression injury than shallower diving
species (Hooker et al., 2009). Our results support this hypothesis.
Even though the increase in R during sonar exposure was within
the normal risk range of sperm whales, it is still a conspicuous
observation that this increase happened in all three cases where
the whales also changed dive behavior. Deep divers such as beaked
whales and sperm whales probably push the physiological limits
of diving in mammals and this might make them more vulnerable
to human disturbance such as naval sonar (Hooker et al., 2012).
Dysbaric osteonecrosis progressing with age has been reported
in sperm whales (Moore and Early, 2004), and a recent study by
Bernaldo de Quirós et al. (in press) showed that at necropsy of
stranded animals there was a higher prevalence of gas bubbles in
deep divers compared to non-deep divers.

KILLER WHALES AND PILOT WHALES
The change from deep dive mode to shallow diving mode in
response to sonar seen in killer whales and pilot whales (Sivle et al.,
submitted; Figure 1), did not seem to increase the R (Figures 3
and 4). Indeed, an increase in R is not expected from such behav-
ioral change since it implies that animals spend more time in
the decompression zone, where N2 may be removed, instead of
in the compression zone, where N2 is taken up. However, the
deeper shallow dives which were also associated with this response
could potentially increase R if they extended into the compression
zone. Even if the dives were deeper (Sivle et al., submitted), they
were still quite shallow (<10 m) and therefore probably still within
the decompression zone. Thus, our results showed no consistent
change in R in killer and pilot whales. The responses seen in the
behavioral “responders” indicate that R was actually reduced.

CHANGES IN RISK OF DCS DUE TO HYPOTHETICAL PHYSIOLOGICAL
RESPONSE TO SONAR
It was previously suggested that the dive response may be useful to
reduce N2 uptake during diving and thereby minimize R (Fahlman
et al., 2006). The results in this study concur, as R increased for
most whales when the dive response was hypothetically removed
during sonar exposure, thereby increasing N2 uptake during the
dive. Still, in a few occasions the elevated cardiac output reduced
R. This agrees with more recent work that indicate that the diving
bradycardia does not always reduce N2 levels during repeated div-
ing, but that there are certain tissue time constants (τ) that should
be avoided to reduce N2 levels (Fahlman et al., 2007; Hooker et al.,
2009). Inert gas loading is probably managed through complex
trade offs between physiological and behavioral responses (Hooker
et al., 2012). If a behavioral response to an unanticipated acute
threat (such as man-made noise) is perceived as more immediately
critical than management of N2, it might result in decompression
injury (Hooker et al., 2012). For example, metabolic demand lim-
its the ability to adjust blood flow, and there is therefore a trade-off
between the need to supply sufficient O2 and reducing CO2 and N2

accumulation. As the cardiac output and blood flow distribution

alter the tissue time constant (see Eq. 3 in Fahlman et al., 2006),
studies are required to determine the physiological responses in
deep diving whales both during undisturbed condition and during
sonar exposure.

METHODOLOGICAL CONSIDERATIONS
Using mathematical models to investigate complex problems
offers important insight but is also limited in scope as models
are only an abstraction of the real world. For example, the model
used in this study uses a pre-determined blood flow at the sur-
face and while diving, but it is known that the heart rate, and
therefore most likely the cardiac output, changes throughout a
dive (Thompson and Fedak, 1993; Ponganis et al., 1997). The esti-
mates for some of the physiological variables in the model are also
taken from studies on pinnipeds, and may differ for cetaceans. In
addition, understanding the effect of pressure on gas exchange is
rudimentary and recent studies have suggested that there may
be species variation in the depth-dependent pulmonary shunt
(Bostrom et al., 2008; Fahlman et al., 2011; Moore et al., 2011).
While the parameter estimates and compartment sizes for this
model were not always species specific, the model has been cali-
brated against known blood and tissue PN2 , PO2 and PCO2 values
and resulted in good agreement between observed and predicted
values (Fahlman et al., 2009). Furthermore, we have published
several studies using this model where sensitivity analyses were
conducted (Fahlman et al., 2006, 2007, 2009; Hooker et al., 2009).
These sensitivity analysis consistently show that the variables that
had the greatest impact on the model outcome were changes in rate
of pulmonary gas exchange, cardiac output, and blood flow distri-
bution with depth, all variables where data only exist in pinnipeds
and shallow diving odontocetes. The results from these previous
sensitivity analyses contributed to the hypotheses that sonar could
cause a startle response which could affect blood flow and thereby
risk of DCS. We therefore tested the effect of this potential response
in the current study.

Previous theoretical studies have used hypothetical sonar-
induced changes in both behavior and physiology to model blood
and tissue PN2 (Hooker and Baird, 1999; Houser et al., 2001;
Fahlman et al., 2006, 2009; Zimmer and Tyack, 2007), but this is
the first attempt to estimate the changes during actual behavioral
responses to sonar. The behavioral response data were collected to
determine how different species respond to anthropogenic sound.
Of special interest was to determine the behavioral responses to
LFAS and MFAS sonar signals, as studies have suggested that their
use is related to mass-strandings (Cox et al., 2006; D’Amico et al.,
2009). Jepson et al. (2003) and Fernández et al. (2005) expanded
on this correlation and suggested that sonar related strandings may
be associated with in vivo bubble formation. The large variation in
decompression risk in response to sonar exposure may partly be
due to the experimental design, with relative short pre-exposure
periods followed by short exposures. This design is chosen to
generate dose response functions, where the key is to determine
acoustic dose at the threshold of response (Miller et al., 2011; Tyack
et al., 2011). In addition, for some animals the sonar exposures to
MFAS and/or LFAS were repeated during a single tag deployment
to investigate frequency specificity of responses and habituation
or sensitization during repeated exposures (Miller et al., 2011).
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The uptake and removal of inert gas is commonly modeled
using single exponential models where the kinetics is determined
by a time constant (τ) that determines the time to equilibrium.
The time constant is physiologically relevant and related to the
solubility of the gas and the blood flow rate (see Eq. 3 in Fahlman
et al., 2006). For tissues with a high perfusion rate, e.g., heart
and brain, τ is short and time to equilibrium faster than for
other tissues. For a diving animal, this means that these tissues
may experience extreme PN2 during the dive, but removal is also
so fast that the supersaturation seldom reaches dangerous lev-
els, and the tissue soon equilibrate when the animal has reached
the surface (Kooyman et al., 1972; Fahlman et al., 2006; Houser
et al., 2010). Slow tissues such as blubber, are those where the
surface interval duration between repeated dives in a bout are
too short for the tissues to return to equilibrium with the sur-
face atmosphere. For these tissues, N2 slowly accumulates to reach
considerable levels. It has also been suggested that these tissues
may limit the length of a dive bout, and it may be those slow
tissues that put animals at risk of developing DCS (Fahlman
et al., 2007). Eventually, the animal will reach a state of quasi-
equilibrium where the saturation state is more or less constant
between dives, but the time to this equilibrium depends on the
size, physiology, and dive behavior of the animal (Hooker et al.,
2009). Thus, large animals and tissues with a long τ will take
longer time to respond but they will also show less variation
between dives. Therefore, to accurately estimate tissue and blood
N2 levels, it is important to have data sets that contain a repre-
sentative sample of the natural dive behavior and exposures that
are long enough to clearly indicate the behavioral responses. The
data used in the current study are therefore not ideal for model-
ing gas management. For the type of analysis conducted here a
more optimal design would be to increase the duration of the
pre-exposure and sonar exposure periods. In particular, larger
animals and slow responding tissues (e.g., fat) have very long

response times (Fahlman et al., 2006), and therefore short expo-
sure durations may not allow for such tissues to reach maximum
values.

CONCLUSION
We conclude that there is great variation in the behavioral
responses to sonar exposure and in most cases the response does
not increase decompression risk, but there may be certain sit-
uations where the risk is increased, such as the shallower deep
dives seen in sperm whales. The hypothetical removal of dive
response during sonar exposure increased the variation in risk of
DCS (R, Eq. 1), suggesting that physiological responses to anthro-
pogenic sound may lead to altered tissue and blood N2 levels.
Cetaceans seem to live with natural high N2 levels, and since both
behavioral and physiological responses have the potential to alter
R, we have to assume that N2 levels are managed through complex
interactions between behavioral and physiological responses. We
therefore can not rule out the possibility that a combination of
behavioral and physiological responses to sonar have the potential
to alter the blood and tissue end-dive N2 tension to levels which
could cause DCS. Our results support previous suggestions that
deep divers might be more at risk of suffering from decompression
injury than shallower diving species. As little is known concern-
ing the physiological adjustments associated with diving in large
whales, future work should improve our knowledge in these areas.
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