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Vascular aging is a key process determining health status of aged population. Aging is an
independent cardiovascular risk factor associated to an impairment of endothelial function,
which is a very early and important event leading to cardiovascular disease. Vascular aging,
formerly being considered an immutable and inexorable risk factor, is now viewed as a
target process for intervention in order to achieve a healthier old age. A further knowledge
of the mechanisms underlying the age-related vascular dysfunction is required to design
an adequate therapeutic strategy to prevent or restore this impairment of vascular func-
tionality. Among the proposed mechanisms that contribute to age-dependent endothelial
dysfunction, this review is focused on the following aspects occurring into the vascular
wall: (1) the reduction of nitric oxide (NO) bioavailability, caused by diminished NO synthe-
sis and/or by augmented NO scavenging due to oxidative stress, leading to peroxynitrite
formation (ONOO−); (2) the possible sources involved in the enhancement of oxidative
stress; (3) the increased activity of vasoconstrictor factors; and (4) the development of a
low-grade pro-inflammatory environment. Synergisms and interactions between all these
pathways are also analyzed. Finally, a brief summary of some cellular mechanisms related
to endothelial cell senescence (including telomere and telomerase, stress-induced senes-
cence, as well as sirtuins) are implemented, as they are likely involved in the age-dependent
endothelial dysfunction, as well as in the lower vascular repairing capacity observed in the
elderly. Prevention or reversion of those mechanisms leading to endothelial dysfunction
through life style modifications or pharmacological interventions could markedly improve
cardiovascular health in older people.
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The concept that a man (or a woman) is as old as his arteries
are, coined by Georges Canabis and reformulated by Sir William
Osler more than 100 years ago, can be considered nowadays quite
a valid approximation. Vascular aging represents the process that
more importantly impacts on the health status of elderly people.
The aging process is the main risk factor for the development of
cardiovascular diseases (CVD), explaining 50% of clinical CVD
present in the elderly. In fact, aging is associated with complex
structural and functional changes in the vasculature independently
of other risk factors, such as hypertension, diabetes, or hypercho-
lesterolemia (Barodka et al., 2011). The old vision of vascular aging
considers it as an inevitable process generated through a series of
inexorable mechanisms. These thoughts have evolved to the cur-
rent position that assumes that the knowledge of the molecular
mechanisms involved in the age-related vascular dysfunction will
contribute to understand the extent and nature of these alterations.
Therefore, strategies to attenuate the effect of aging in the vascula-
ture could be potentially developed, preserving the quality of life,
and alleviating CVD in the elderly population (Najjar et al., 2005).
Furthermore, preservation of vascular function in aging should

not only reduce deaths and disabilities secondary to cardiovascu-
lar events but it also should influence other aspects of the aging
process that leads to loss of function and/or disability. In fact, loss
of cardiovascular health is associated to increased risk of defective
motor capacity and cognitive frailty (Panza et al., 2006; Kim et al.,
2011; Watson et al., 2011). Thus, it seems to be now quite clear that
robustness in advanced age cannot be achieved without preser-
vation of vascular function. Dominant aspects of vascular aging
include increased arterial stiffness, dilation of central elastic arter-
ies, and endothelial dysfunction (Kotsis et al., 2011),although there
is increasing evidence suggesting that all these processes are closely
related (van Bussel et al., 2011). The present work will briefly
review the most important mechanisms that have been related to
the development of the age-dependent endothelial dysfunction.

VASCULAR DYSFUNCTION ASSOCIATED TO THE AGING
PROCESS
Vascular aging is characterized by functional and structural
changes of the endothelium and smooth muscle cells that form the
vascular wall, as well as by alterations of the communication routes
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between these two cell layers. Functional disturbances, together
with other factors associated with aging, will contribute to the
development of structural alterations, which in turn contribute to
vascular stiffness and to an additional impairment of the endothe-
lial function. Moreover, since endothelial dysfunction is associated
with the major causes of morbidity and mortality, the maintenance
of a correct function of this vascular layer is thought to be an essen-
tial determinant of healthy aging (Virdis et al., 2010; Toda, 2012).
The evidence showing the presence of endothelial dysfunction in
the aged vasculature is very important since the late 1980s in ani-
mal models and since the middle 1990s in humans. In particular,
the reduction in the endothelium-dependent vasodilatations has
been consistently described both in vitro and in vivo in differ-
ent vascular beds from old animals and elderly humans (Matz
and Andriantsitohaina, 2003; Brandes et al., 2005; Rodriguez-
Mañas et al., 2009; Toda, 2012). These evidences demonstrated
that aging is an independent factor associated with endothelial dys-
function even in the absence of other cardiovascular risk factors
(Rodriguez-Mañas et al., 2009). The impairment of endothelial
function is a progressive phenomenon starting in the middle age
and, at present, it is considered as one of the main mechanisms
by which aging increases the risk of CVD and the development
of atherosclerosis in humans. Therefore, those approaches aimed
to preserve or improve the endothelial function would be funda-
mental for the prevention of vascular diseases in the elderly. The
reported scientific evidences indicate that the pathogenesis of the
age-dependent endothelial dysfunction is clearly multifactorial,
with several pathophysiological mechanisms contributing to the
functional deterioration of vascular endothelial cells (Figure 1).
These pathways are briefly summarized as follows.

ALTERATION OF THE NITRIC OXIDE (NO) PATHWAY
NO is the main vasodilator produced by the endothelium and
exerts a protective role on the vessel wall. The reduction of

FIGURE 1 | Mechanisms involved in the aging-induced impairment of

endothelial vasodilation.

NO availability deeply disturbs the vascular homeostasis, being
involved in the development of hypertension, atherosclerosis, or
diabetic vasculopathy (Sagach et al., 2006). NO is synthesized
from l-arginine by the enzyme NO synthase (NOS). There are
three known NOS isoforms: the constitutive endothelial (eNOS)
and neuronal (nNOS) isoforms, producing regulated NO involved
in regulatory or signaling pathways, and the inducible (iNOS)
isoform, leading to massive NO synthesis and related with inflam-
matory responses. Aging is also associated with a reduction in
the NO bioavailability, which is the result of the dynamic balance
between its synthesis and degradation. Reduced NO production
may be due to: (1) a deficiency in NOS substrates and cofactors;
(2) the presence of endogenous eNOS inhibitors; and (3) a lower
expression and/or activity of eNOS. On the other hand, enhanced
NO degradation may be mostly due to excessive amounts of reac-
tive oxygen species (ROS), such as superoxide anions (O−•

2 ) that
quench NO hampering its functional activities.

DECREASE IN L-ARGININE AVAILABILITY
The reduction of available concentration of l-arginine to be used
as eNOS substrate in aging was based on one study suggesting an
improvement in endothelial function in older subjects after oral
administration of l-arginine (Bode-Boger et al., 2003). However,
this has not been further confirmed, as no significant improve-
ment of the impaired flow-mediated dilation in the old subjects
group has been observed after the intra-braquial infusion of l-
arginine, despite a 23-fold increase of its plasmatic concentrations
(Gates et al., 2007). From a biochemical point of view, a reduction
in the availability of the substrate is difficult to sustain because the
plasmatic concentration of l-arginine is more than one order of
magnitude higher than the substrate concentration required for
the optimal function of the enzyme. Although a lower availability
could be explained by a reduction in the transport of l-arginine to
endothelial cell, there is evidence showing that age-related deteri-
oration of endothelial function is not associated to a change in the
transport of l-arginine (Ahlers et al., 2004). Other possible expla-
nation for the lower availability of l-arginine with aging could
be related to an increased expression and/or activity of arginase,
the enzyme that degrades l-arginine, leading to a decrease in
substrate availability for eNOS and the consequent reduction of
NO synthesis (Santhanam et al., 2008). In rats, an increase in the
arginase-1 activity related to age-related endothelial dysfunction
has also been proved by the use of arginase inhibitors,which restore
NO-mediated vasodilation (Santhanam et al., 2007). Recovering
of vasodilation after arginase inhibition in elderly subjects also
supports a role for this enzyme in the endothelial dysfunction
associated to human vascular aging (Holowatz et al., 2006).

THE ENDOGENOUS INHIBITOR OF NOS (ADMA)
The synthesis of NO is blocked by the inhibition of the NOS
active site with guanidine-substituted analogs of l-arginine such
as asymmetric dimethylarginine (ADMA). ADMA is a naturally
occurring amino acid found in plasma and various tissues (Yam-
agishi and Matsui, 2011). An enhanced production of ADMA has
been proposed to be a cardiovascular risk factor linked to different
pathologies involving vascular disease and hypertension (Cooke,
2005). A possible role for this compound has been proposed in

Frontiers in Physiology | Vascular Physiology May 2012 | Volume 3 | Article 132 | 2

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Vascular_Physiology
http://www.frontiersin.org/Vascular_Physiology/archive


El Assar et al. Aging-induced vascular dysfunction

the physiological process of aging, as a positive correlation has
been reported in healthy subjects between the plasmatic levels
of ADMA and age (Schulze et al., 2005). Moreover, it has been
described an ADMA accelerating effect of endothelial cells senes-
cence (Bode-Boger et al., 2005). However, other authors could
not find any relationship between the endothelial expression of
ADMA and the development of the age-related impairment of
endothelium-dependent vasodilations (Gates et al., 2007).

REDUCTION OF TETRAHYDROBIOPTERIN (BH4)
Tetrahydrobiopterin (BH4) is a cofactor essential for NOS activity.
Substantial evidence linked BH4 deficiency as a condition lead-
ing eNOS to produce less NO with the consequent deterioration
of endothelial function (Vasquez-Vivar et al., 2003). In humans,
the participation of BH4 deficiency in age-related endothelial dys-
function has been demonstrated, since the infusion of BH4 restores
the impaired endothelium-dependent vasodilation (Higashi et al.,
2006).

ENDOTHELIAL NOS
There is no doubt about the existence of a deficit in the vascular NO
bioavailability associated with aging, but a high number of stud-
ies evaluating the expression of eNOS in different vascular beds
of aged animals have not displayed definitive results. While some
authors have not observed changes of eNOS expression in mesen-
teric arteries (Sun et al., 2004), others have reported significant
increases in the aorta (Cernadas et al., 1998) or the mesenteric
arteries from old rats (Briones et al., 2005). The analysis of the
eNOS mRNA levels has shown either an increase (Barton et al.,
1997) or a decrease (Tang and Vanhoutte, 2008) in the aorta of aged
rats. In the mesenteric microvessels from healthy young and old
humans, no age-dependent changes have been detected concern-
ing eNOS mRNA levels (Rodriguez-Mañas et al., 2009). Moreover,
human endothelial cells from brachial artery and peripheral veins
do not differ significantly with age in the eNOS expression (Donato
et al., 2009).

In addition to transcriptional and translational regulations,
eNOS presents a significant regulation at post-translational level
involving PI3 kinase/Akt-dependent phosphorylation at Ser 1177,
resulting in increased activity of eNOS. Although reduced Akt-
dependent phosphorylation of eNOS in micro- and macro-
vasculature of aged animals has been demonstrated (Soucy et al.,
2006; LeBlanc et al., 2008), the involvement of reduced eNOS
phosphorylation in human vascular aging needs to be confirmed.

ENDOTHELIUM-DERIVED HYPERPOLARIZING FACTOR
Further to the release of NO and prostacyclin, the endothelium
controls vascular tone by causing hyperpolarization of under-
lying smooth muscle cells. This process is attributed to the
endothelium-derived hyperpolarizing factor (EDHF). However,
this generic term can refer to different mechanisms (with vascular
territory- and species-dependent variability) including arachido-
nate metabolites derived from COX, lipoxygenase, or cytochrome
P450 oxygenase activities, H2O2, CO, H2S, and several peptides
that can be released by endothelial cells. Furthermore, vasodilation
can be generated by Ca2+-induced hyperpolarization of endothe-
lial cell causing the opening of Ca2+-activated K+-channels (KCa)

that produce hyperpolarization and relaxation of smooth muscle
through myo-endothelial gap junction-mediated electrical cou-
pling or by K+-efflux from the endothelial KCa and subsequent
activation of inwardly rectifier K+-channels or Na+/K+-ATPase
in smooth muscle (Dora et al., 2008).

Contribution of EDHF to endothelial vasodilation of human
arteries has been demonstrated in different vascular regions such
as coronary arteries obtained from failing hearts at transplant
surgery (Nakashima et al., 1993), omental and subcutaneous
microvessels (Pascoal and Umans, 1996; MacKenzie et al., 2008),
and penile resistance arteries (Angulo et al., 2003). Impaired
EDHF-mediated vasodilation has been observed in mesenteric
(Goto et al., 2000) and renal arteries (Long et al., 2005) from aged
rats. In contrast, it has been reported that EDHF partially com-
pensates for the loss of NO- and prostacyclin-mediated cutaneous
vasodilation in old mice (Gaubert et al., 2007). These conflicting
results could reflect either species differences or regional hetero-
geneity of vascular regulation with aging. In human gastroepi-
ploic arteries, EDHF-induced relaxation inversely correlated with
the age of the patients from whom the arteries were obtained
(Urakami-Harasawa et al., 1997).

Age-induced decline in EDHF-mediated vasodilation seems to
be related to an up-regulated renin-angiotensin system (RAS)
since chronic angiotensin converting enzyme (ACE) inhibition,
as well as angiotensin-II type 1 (AT1) receptor blockade, recov-
ered EDHF-mediated responses in mesenteric arteries from old
rats (Goto et al., 2004). In this sense, the impairment of EDHF-
induced vasodilation in mesenteric arteries from middle aged
rats (46 weeks old) is associated with increased AT1 receptor
expression and reduced angiotensin-II type 2 (AT2) receptor and
ACE expression, which were prevented by antioxidant treatment
with red wine polyphenols (Idris Khodja et al., 2012). As occurs
in angiotensin II (Ang II)-induced hypertension (Hilgers and
Webb, 2007), age-related impairment of the EDHF component
of endothelial vasodilation is likely due to reduced expression of
small and intermediate conductance KCa (SKCa and IKCa; Idris
Khodja et al., 2012). A decline on the responses mediated by large
conductance KCa (BKCa) has been reported in coronary arter-
ies from aged rats which can be recovered by exercise training
(Albarwani et al., 2010).

CONTRACTILE FACTORS
COX PATHWAY ALTERATION
Cyclooxygenase (COX) plays an important role in the regula-
tion of vascular tone under normal conditions by the synthe-
sis of different vasoactive factors, which are particularly rele-
vant since both vasodilators (prostacyclin, PGI2) or vasocon-
strictors (thromboxane A2, TXA2) could be produced, those fac-
tors being in tight balance. During aging, a shift in the balance
in favor of increased contractile factors occurs and, therefore,
endothelium-dependent contractions increase. In humans, the
lack of prostaglandin (PGI2)-mediated vasodilatation has been
reported in vivo (Schrage et al., 2007) and in mesenteric microves-
sels in vitro (Rodriguez-Mañas et al., 2009), while the existence
of COX-derived vasoconstrictor factors associated with aging has
been described in vivo by using plethysmographic studies (Tad-
dei et al., 1997; Vanhoutte et al., 2005) and in vitro studying
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isolated mesenteric arteries (Rodriguez-Mañas et al., 2009). The
implication of the COX pathway in the endothelial dysfunction
associated with aging is reinforced by the improvement of the
impaired endothelium-dependent relaxations produced by TP-
receptor antagonists (Rodriguez-Mañas et al., 2009). In humans,
the nature of the endothelium-dependent vasoconstrictor factor
is not entirely determined but thromboxane A2 and prostaglandin
H2 are clear candidates. In aged hamsters, endothelial-dependent
contractions are mediated by PGF2α produced by COX-2 (Wong
et al., 2009). A role for O−•

2 is also possible, as these ROSs have
been described as COX activity-derived endothelium-dependent
vasoconstrictors (Vanhoutte et al., 2005).

No consensus has so far been established regarding the COX iso-
form responsible for the age-related vasoconstrictions (Matz and
Andriantsitohaina, 2003). The pre-incubation with the selective
COX-1 inhibitor valeryl salicylate reduced the contractile response
observed in the femoral artery form old rats (Shi et al., 2008), while
the COX-2 inhibitor NS-398 improved endothelial dysfunction in
the aged rat aorta and mesenteric arteries (de Sotomayor et al.,
2005). However, other authors did not find an improvement of
endothelial dysfunction by this same compound in mesenteric
arteries from aged rats (Matz et al., 2000).

Controversial results have been also reported concerning the
COX protein expression in the vasculature of old animals (Heymes
et al., 2000; Stewart et al., 2000; Briones et al., 2005; Shi et al.,
2008). No differences related to age have been detected in the
expression of mRNA for COX-1 and COX-2 isoforms in human
mesenteric microvessels (Rodriguez-Mañas et al., 2009). How-
ever, protein expression may be not the only factor accounting
for COX-mediated effects, as the existence of post-translational
changes in the activity of these enzymes cannot be ruled out.
Thus, there is an important regulation of COX activity by NO
and ONOO− (Upmacis et al., 2006). Furthermore, a physiological
binding interaction between COX-2 and iNOS has recently been
reported, bringing NO or ONOO−to activate COX-2 in a syn-
ergistic molecular interactions between these two inflammatory
pathways (Kim et al., 2005).

THE RENIN-ANGIOTENSIN SYSTEM
The RAS is critical for cardiovascular control, impacting normal
physiology and disease pathogenesis. Its major actions are medi-
ated by Ang II, acting through its AT1 and AT2 receptors (Stegbauer
and Coffman, 2011). At present, it is clear that both the increased
generation of cellular ROS and activation of redox-sensitive signal-
ing cascades are critical events involved in Ang II actions (Touyz,
2003). After binding to its AT1 receptors, Ang II triggers intracellu-
lar superoxide production by activating NAD(P)H (Kimura et al.,
2005) and uncoupling endothelial NOS (eNOS; Mollnau et al.,
2002). Under normal physiological conditions, Ang II-mediated
signaling pathways are closely regulated. However, increased renin-
angiotensin system activity is implicated in several vascular disor-
ders and there is evidence for increased vascular expression of Ang
II and ACE with aging (Rajagopalan et al., 2002; Wang et al., 2003).
Furthermore a role for the angiotensin system in the vascular
aging-related endothelial dysfunction has been observed. Indeed
Ang II is a potent inducer of endothelial dysfunction and vascular
oxidative stress (Idris Khodja et al., 2012). Moreover, treatment

of rats with either an ACE inhibitor or an AT1 receptor antago-
nist improved endothelial dysfunction (mediated by the NO and
the EDHF component) in aged blood vessels, in part, by decreas-
ing oxidative stress (Goto et al., 2000; Kansui et al., 2002; Mukai
et al., 2002). A recent study done by Benigni and associates showed
that mice lacking AT1A receptors had prolonged life span com-
pared to genetically matched wild-type controls; this enhanced
longevity was associated with improved cardiovascular morphol-
ogy, reduced ROS production, attenuated mitochondrial loss,
and enhanced levels of nicotinamide phosphoribosyltransferase
(Nampt) and sirtuin-3 (Sirt3; Benigni et al., 2009). However, losar-
tan, an AT1 receptor antagonist, had no effect on brachial flow-
mediated dilation in older adults, despite reducing blood pressure
and circulating inflammatory markers (Rajagopalan et al., 2002)
while other AT1 receptor antagonist, valsartan, improved vascular
compliance in healthy normotensive elderly individuals without
affecting flow-mediated dilation (Rajagopalan et al., 2006).

ENDOTHELIN-1
Endothelin-1 (ET-1) is the most potent vasoconstrictor protein
synthesized and released by endothelial cells (Yanagisawa et al.,
1988). ET-1 exerts vascular actions through activation of two dis-
tinct ET-1 receptor subtypes: ETA, localized exclusively in vascular
smooth muscle, and ETB which are expressed in smooth muscle as
well as endothelium (Masaki et al., 1991). Both ETA and ETB recep-
tors are coupled to phospholipase C activation leading to increased
cytosolic calcium and myosin kinase phosphorylation that results
in long-lasting contraction of smooth muscle (Lüscher and Bar-
ton, 2000) and vasoconstriction (Seo et al., 1994; Haynes et al.,
1995). Activation of ETB receptors by ET-1 would increase intra-
cellular calcium in endothelial cell promoting eNOS activation
and vasodilation (Tsukahara et al., 1994).

Increased contractile responsiveness to ET-1 has been demon-
strated in arteries from aged rats (Donato et al., 2005; Korzick
et al., 2005) while ETA blockade has been shown to reverse
the impairment of endothelium-dependent relaxation in carotid
arteries from old mice (Donato et al., 2009). Aging is also asso-
ciated with elevated plasma concentrations of ET-1 in humans
(Maeda et al., 2003; Donato et al., 2009). In humans, ETA/ETB

antagonists produced larger leg blood flow increases in healthy
sedentary old subjects than in young subjects, suggesting elevated
ET-1-mediated vasoconstrictor tone in peripheral arteries from
aged humans (Thijssen et al., 2007). Similarly, forearm vasocon-
striction induced by ET-1 was blunted in older sedentary subjects
while ETA blockade only increased resting forearm blood flow
in old sedentary subjects but not in young (Van Guilder et al.,
2007). Furthermore, endothelium-dependent forearm vasodila-
tion in older subjects negatively correlates with the expression
of ET-1 in endothelial cells (Donato et al., 2009). Interestingly,
exercise training decreases plasma ET-1 in old women (Maeda
et al., 2003) and reduces ET-1-mediated increase in vascular tone
in elderly subjects (Thijssen et al., 2007; Van Guilder et al., 2007).

OXIDATIVE STRESS
It is now clear that ROS are physiologically produced into the
vascular wall in a controlled regulated manner. Under normal con-
ditions, the endogenous antioxidant defense mechanisms, both
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enzymatic, such as the manganese and copper/zinc superoxide
dismutase (SOD), glutathione peroxidase (GP), catalase, and non-
enzymatic, vitamin C, vitamin E, uric acid, inactivate ROS and
repair the possible developed tissular damage. Indeed, together
with NO, physiological ROS function as cell signaling initiators
by their ability to introduce reversible post-translational protein
modifications (Valko et al., 2007). Nevertheless, under patho-
logical conditions, increased ROS levels lead to accumulation of
damaged/misfolded proteins, increased mutagenesis rate, inflam-
mation, and endothelial dysfunction (Malinin et al., 2011). This
enhanced oxidative stress can consequence of either an increased
ROS production and/or a reduction in the antioxidant defenses.

ROS AND VASCULAR DAMAGE
The implication of oxidative stress in the genesis of vascular dam-
age has been described in several pathologies, including diabetes
or hypertension, and also in aging process (Ungvari et al., 2008).
A large body of evidence indicates that oxidative stress and ROS
production are increased during the aging process (Ungvari et al.,
2010b). The results obtained from studies in which antioxidant
defense levels were determined were contradictory. While some
authors observed an age-related decrease in the SOD and GP
activities and a decline of plasma antioxidant capacity (Goraca,
2004), others found an increase in the plasma activity of SOD and
GP (Mecocci et al., 2000). The first consequence of the increase in
O−•

2 levels is a decrease of the NO availability, leading to a decrease
in the endothelium-dependent relaxations (Pacher et al., 2007). In
human mesenteric microvessels, this age–related endothelial dys-
function is improved by scavenging O−•

2 with SOD or TEMPOL,
which correlates with an increase in O−•

2 levels in these same vessels
(Rodriguez-Mañas et al., 2009).

NO INACTIVATION
Accelerated degradation of NO by oxidative stress and especially by
O−•

2 is one of the most widely accepted mechanisms involved in the
alteration of the NO pathway. The diffusion-controlled reaction
between NO and O−•

2 leads to the formation of the peroxyni-
trite anion (ONOO−; Yang et al., 2009a). Thus, the NO produced
in vascular cells from eNOS or iNOS reacts rapidly with O−•

2 to
form ONOO−, which is termed as a reactive nitrogen specie (RNS)
because of its high reactivity with proteins, DNA, and lipids. Unlike
O−•

2 , ONOO− can easily penetrate into the cell causing oxida-
tive modifications of macromolecules, especially lipids, DNA, and
proteins via direct oxidative reactions through the nitrosylation
of tyrosine and cysteine residues or via indirect radical-mediated
mechanisms. These reactions trigger cellular responses ranging
from subtle modulations of cell signaling to overwhelming oxida-
tive injury, committing cells to necrosis or apoptosis. Indeed,
nitrotyrosine levels reflect the impact of ONOO− on proteins
and constitute a cellular marker of oxidative stress. There are
convincing data showing a substantially enhanced cardiovascular
ONOO− formation during aging process (Francia et al., 2004),
whereas increased nitrosative stress has been demonstrated in
arteries from aged animals (van der Loo et al., 2000). Higher lev-
els of nitrotyrosine have been found in endothelial cells obtained
from brachial artery from aged subjects, while nitrotyrosine lev-
els were inversely related to flow-mediated dilation (Donato et al.,

2007). In human mesenteric microvessels, an age-dependent for-
mation of nitrotyrosine has been reported, while the endothelial
dysfunction associated to elderly is partially restored by scavenging
ONOO− with uric acid (Rodriguez-Mañas et al., 2009). All these
evidences suggest that the relevant changes related to age that are
observed in the vascular wall are driven, at least partially, by these
highly reactive molecules.

SOURCES OF OXIDATIVE STRESS
There are several main systems proposed to be the sources for
the ROS increase production in the human vasculature, namely
NADPH oxidase, xanthine oxidase, uncoupled NO synthase, and
the mitochondrial respiratory chain (Cai and Harrison, 2000;
Loscalzo, 2000; Guzik et al., 2002; Brandes et al., 2005; Lassegue
and Griendling, 2010). Increased expression of the Nox-4 sub-
unit of NADPH oxidase has been demonstrated in mesenteric
microvessels from aged humans without other known cardio-
vascular risk factors; furthermore, the NADPH oxidase-derived
ROS produced in these arteries impact vascular function, since
the NADPH oxidase inhibitor apocynin improves the age-related
endothelial dysfunction (Rodriguez-Mañas et al., 2009). In the
aorta from aged rats, other authors noted that oxidative stress
associated with aging might be related to the increased activity
of the enzyme xanthine oxidase (Newaz et al., 2006). However,
the role of this enzyme as a source of oxidative stress in vascu-
lar aging has not been confirmed in humans; thus, its expression
in vascular endothelial cells from older subjects is not altered
while in vivo inhibition of this enzyme with allopurinol does not
improve aged-dependent endothelial dysfunction (Eskurza et al.,
2006).

NOS uncoupling is a possible source for O−•
2 in vascular

aging (Cai and Harrison, 2000; Brandes et al., 2005), which
has been described after a decline in BH4 bioavailability that
is consequence of its oxidation to BH2 by O−•

2 or peroxyni-
trite (ONOO−; Milstien and Katusic, 1999; Laursen et al., 2001;
Schiffrin, 2008). As BH4 efficiently inhibits superoxide genera-
tion from the heme group at the oxygenase domain of eNOS, it
can act as O−

2 a redox switch in the catalytic mechanism of the
enzyme, which may have important consequences in the phys-
iology of the endothelium (Vasquez-Vivar et al., 2003). High
O−•

2 not only reduces NO bioavailability, but the ROS and RNS
also oxidize proteins and lead to eNOS uncoupling (Munzel
et al., 2005). Moreover, ONOO− further uncouples eNOS by
oxidizing the zinc-thiolate complex (Zou et al., 2002). Mam-
malian target of rapamycin (mTOR)/SK61 signaling activation
has been demonstrated to cause eNOS uncoupling in HUVEC
and endothelial dysfunction in aged rats (Rajapakse et al., 2011).
Interestingly, although most reports point to eNOS as the iso-
form that can be uncoupled, producing O−

2 (Brandes et al., 2005),
the inducible iNOS isoform can also serve as a source of in
the absence of sufficient substrate or BH4 (Loscalzo, 2000). In
addition, treatment of isolated mesenteric arteries from healthy
aged subjects with BH4 results in significant recovery of dysfunc-
tional endothelium-dependent relaxations, suggesting that the
enhancement of the intracellular levels of BH4 would prevent NOS
uncoupling and O−•

2 production, in this case likely involving the
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inflammatory inducible iNOS isoform (Rodriguez-Mañas et al.,
2009).

Another source for oxidative stress in the aging process is
mitochondria. Under physiological conditions, the mitochondria
continually produce large amounts of O−•

2 and H2O2, so that the
mitochondrial DNA (mtDNA) is particularly exposed to oxidative
damage. In aging there is a reduction in the number of mitochon-
dria and an increase in the generation of dysfunctional proteins,
which leads to a depletion in the energy supply and even to an
increase in the O−•

2 production (Pang et al., 2008). Whatever the
mechanism involved in the mitochondrial dysfunction, as it is the
case for insulin-resistance (Abbatecola et al., 2011), the decline
in mitochondrial dysfunction is able to enhance ROS production
and further damage the mtDNA (Cui et al., 2012). An additional
important link between mitochondrial oxidative stress and car-
diovascular aging is the induction of programmed cell death.
The available evidence suggests that age-associated increase in
oxidative stress causes an increased rate of endothelial apopto-
sis (Ungvari et al., 2010b). Furthermore, recent studies show that
mitochondria-derived ROS, in addition to causing oxidative dam-
age, play an important role in activating numerous redox-sensitive
transcription factors, including NF-κB and AP-1 (Ungvari et al.,
2010b).

ANTIOXIDANT THERAPY IN ELDERLY HUMANS
Although some conflicting results showing ineffectiveness of vit-
amin E ingestion to improve endothelial function in older adults
exist (Simons et al., 1999), more recent clinical evidences point
to beneficial effects of antioxidant therapy on endothelial dys-
function related to aging. A recent clinical trial has shown the
acute reversal of endothelial dysfunction in the elderly after oral
administration of an antioxidant cocktail (vitamin C + vitamin
E + α-lipoic acid; Wray et al., 2012), confirming previous results
showing the recovery of exercise induced vasodilation of brachial
artery in elderly men after administration of the same antioxi-
dant cocktail (Donato et al., 2010). Administration of ascorbic
acid has been reported to reverse vasoconstriction and improve
resting leg blood in healthy older men (Jablonski et al., 2007)
as well as to augment reflex cutaneous vasodilation in aged sub-
jects (Holowatz et al., 2006). These clinical evidences demonstrate
that oxidative stress may be an important target for recovering
endothelial function in aging.

INFLAMMATION
In addition to oxidative stress, the development of the so-called
low-grade chronic inflammatory state is another phenomenon
linked to the aging process. This has been referred as “inflamm-
aging” that could be caused by a continuous antigenic load
and stress (Franceschi et al., 2000). Molecular inflammation is
described as an underlying mechanism of aging and age-related
diseases, which may constitute the link between normal aging and
age-related pathological processes. Normal aging (“usual aging”)
is associated with higher levels of cytokines, especially TNF-α,
IL-1β, and members of the super family of IL-6, as well as ele-
vations of C-reactive protein (CRP) and fibrinogen (Ferrucci
et al., 2005) that contribute to a pro-inflammatory microenvi-
ronment and facilitate the development of vascular dysfunction.

Interactions between inflammation and oxidative stress occurs, as
different redox-sensitive transcriptional factors such as AP-1 and
NF-κB are activated by ROS, increasing the gene expression of
cytokines (TNF-α, IL-1, and IL-6), adhesion molecules (ICAM,
VCAM), and pro-inflammatory enzymes (iNOS, COX-2; Yu and
Chung, 2006). Supporting the clinical relevance of these findings
in humans, epidemiological data suggest an association between
elevated inflammatory cytokines and mortality in the elderly peo-
ple (Harris et al., 1999; Volpato et al., 2001). Inflammatory cells
could also play a role in vascular dysfunction associated to aging.
In this sense, in healthy subjects older than 55 years, neutrophil,
eosinophil and monocyte count (within the normal ranges) as
well as myeloperoxidase activity inversely correlated with forearm
blood flow responses, which were improved after BH4 administra-
tion (Walker et al., 2010). This suggests that moderate increment
of inflammatory cells through myeloperoxidase activity would
reduce BH4 availability compromising NO-mediated vasodilation.

In experimental models, there is clear evidence concerning the
relationship between age and vascular inflammation (Chung et al.,
2002; Csiszar et al., 2003; d’Alessio, 2004; Ungvari et al., 2004). An
age-related up-regulation in TNF-α has been described in coro-
nary arteries, increasing endothelial cells apoptosis and leading
to endothelial dysfunction (Csiszar et al., 2004). Many of the
characteristics of vascular aging, including endothelial dysfunc-
tion, oxidative stress, increased apoptosis, and pro-inflammatory
gene expression profile, can be mimicked by recombinant TNF-
α (Csiszar et al., 2007). Moreover, chronic TNF-α inhibition
improves flow-mediated arterial dilation in resistance arteries
of aged animals, while reduced ICAM-1 and iNOS expression
(Arenas et al., 2006).

The induction of the inflammatory iNOS isoform can be
also related to the endothelial dysfunction associated with aging.
Previous reports in rats suggest an age-dependent enhanced vas-
cular expression of iNOS (Cernadas et al., 1998; Csiszar et al.,
2002). Studies in human peritoneal mesothelial cells indicated an
age-dependent enhancement of iNOS expression (Nevado et al.,
2006), while in mesenteric microvessels from aged subjects there
is an increased expression of mRNA for iNOS (Rodriguez-Mañas
et al., 2009). Furthermore, the selective inhibition of this iso-
form partially restored the age-dependent endothelial dysfunction
(Rodriguez-Mañas et al., 2009). The iNOS isoform generates high
amounts of NO; therefore, its rapid reaction with O−•

2 generates
high levels of ONOO−. As the inducible iNOS isoform has much
higher catalytic activity than eNOS and consumes more substrate
and cofactors, this isoenzyme is also an important source of O−•

2
when uncoupled (Loscalzo, 2000).

During the last years, there is increasing evidence in humans
confirming the relation between age and low-grade inflamma-
tion. The expression and activity of the inflammatory tran-
scription nuclear factor-κB (NF-κB) is augmented in human
peritoneal mesothelial cells accordingly to age (Nevado et al.,
2006). Moreover, a pro-inflammatory profile has been reported
in the grossly normal, aged, human aortic wall (Wang et al.,
2007). Aging is also associated with greater nuclear NF-κB, lower
IκBα, and increased expression of pro-inflammatory cytokines
in vascular endothelial cells from healthy humans, which cor-
relates with age-related endothelial dysfunction (Donato et al.,
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2007, 2008, 2009). Furthermore, an in situ age-dependent NF-
κB activation has been demonstrated in the vascular wall of
human mesenteric microvessels from aged subjects by Southwest-
ern histochemistry techniques, which clearly correlates with the
development of endothelial dysfunction (Rodriguez-Mañas et al.,
2009).

SENESCENCE AND ENDOTHELIAL DYSFUNCTION
REPLICATIVE SENESCENCE
In the early 1960s, Hayflick and Moorhead defined cellular senes-
cence as a condition where the cells lose its ability to proliferate,
although it can be metabolically active. The underlying mecha-
nism for this phenomenon is the telomere length shortening that
occurs during each cell division until a critical length is exceeded.
Without telomeres, genetic material would be lost every time a
cell divides. DNA polymerase requires a RNA primer with a 3′
hydroxyl donor group to initiate DNA replication, during which
the “end-replication problem” arises. Telomeres and telomerase
ameliorate this problem by providing a repetitive template for
enzymatic repair of the ends of chromosomes, thereby limiting
the loss of genetic information during mitosis. When the telom-
eres are too short, cell signaling is triggered for the arrest of cell
proliferation, senescence, and apoptosis. In addition to the lack of
cell replication, senescent cells acquire distinct phenotypic char-
acteristics associated to aging and age-related diseases (Ungvari
et al., 2010a). Some of these phenotypic changes are related to
the regenerative and angiogenic capacity of the vascular endothe-
lium and involved in the development of atherosclerosis during
aging (Erusalimsky, 2009). Indeed, more elastase and fibronectin
are observed in senescent vascular smooth muscle (Minamino and
Komuro, 2007).

Although senescence has been comprehensively characterized
in cell culture, there is increasing evidence of the senescent phe-
notype in vivo, and its relevant pathophysiological implications,
particularly in the cardiovascular system (Erusalimsky and Kurz,
2005). Thus, it has been described that telomere length is short-
ened in the endothelial cells from cadaveric samples of thoracic
and iliac arteries, as well as from abdominal aorta, accordingly to
the age of the patients (Aviv et al., 2001). On the other hand,
telomere length is an independent predictor of heart disease
related events, as its shortening is more pronounced in arteries
derived from elderly patients with coronary disease and associated
to endothelial dysfunction (Ogami et al., 2004; De Meyer et al.,
2011). Telomere dysfunction and vascular senescence are related
to enhanced ROS, decreased NO, and increased pro-inflammatory
molecules, such as adhesion molecules (Minamino et al., 2004;
Minamino and Komuro, 2007). In fact, ROS generation acceler-
ates telomere shortening and senescence in HUVEC (Kurz et al.,
2004).

In a search for biomarkers of CVD, the leukocyte telomere
length has been related to several physiological or pathological
conditions. Thus, cross sectional studies have shown that subjects
with increased arterial stiffness have shorter leukocyte telom-
eres, indicating this may be an indicator of biological vascular
aging in men (Benetos et al., 2001). It has been also reported
that the leukocyte telomere length is shorter in a population
of hypertensive patients than in the normotensive peers and

the patients with shorter telomeres were more likely to develop
atherosclerosis 5 years after (Yang et al., 2009b). Moreover, the
rate of leukocyte telomere shortening predicts mortality from
CVD in elderly men (Epel et al., 2009). Some criticism still
exists, however, concerning the relations between telomere length
and CVDs, as not always adequate correlations are found, nei-
ther an accepted pathophysiological link (Calado and Young,
2009).

STRESS-INDUCED SENESCENCE
Stress-induced senescence of endothelial cells can be produced
as a result of various insults, including those causing intra-
cellular oxidative stress and inflammation (Calado and Young,
2009; Erusalimsky and Skene, 2009). ROS are potential candi-
dates responsible for senescence through varied actions but also
by compromising NO availability since NO inhibits senescence
in endothelial cells (Hayashi et al., 2006). In fact, ROS-induced
senescence of HUVEC is antagonized by interventions result-
ing in increased eNOS activity (Ota et al., 2007). It has been
suggested that inflammation may be a telomere-independent
mechanism producing vascular cell senescence in human ather-
osclerotic plaques (Minamino et al., 2004). Exposure to AGE-
modified proteins induces senescence of HUVEC without affect-
ing telomeres length or telomerase activity (Patschan and Golig-
orsky, 2008). This type of stress-induced senescence would be
secondary to ROS generation, lysosomal permeability and dys-
regulation of autophagy (Patschan et al., 2008). Oxidative stress
seems to be involved in the genesis of both replicative and high
glucose-induced senescence leading to dimethylaminohydrolase
inactivation and ADMA accumulation which inhibits NO pro-
duction (Scalera et al., 2008; Yuan et al., 2010). In addition,
activation of Akt/mTOR pathway has been reported to con-
tribute to vascular senescence associated to obesity (Wang et al.,
2009).

SENESCENCE OF EPCs
Special relevance deserves the senescence occurring in the
endothelial progenitor cells (EPCs), which are considered to
contribute to endothelial repair (Griese et al., 2003; Takamiya
et al., 2006; Kirton and Xu, 2010; Briasoulis et al., 2011), a
phenomenon that is less efficient in aging (Williamson et al.,
2012). However, although it is widely accepted the capacity
of EPCs to promote neovascularization, the role of EPCs in
regeneration of endothelial cells remains controversial (Pasquier
and Dias, 2010; Sanchez-Guijo et al., 2010; Resch et al., 2011).
Thus, advanced age is known to impair neovascularization, a
process known to depend on the function of highly prolifera-
tive EPCs. There are evidences clearly demonstrating that aging
impairs the function of ex vivo expanded EPCs (Keymel et al.,
2008). The loss of EPCs associated to aging may be mediated
by an imbalance between factors promoting growth, migration,
and survival against those enhancing oxidative stress and pro-
moting senescence (Chang et al., 2007). In this sense, hypoxia
inducible factor-1α (HIF-1α) induces the expression of stromal
cell-derived factor-1 (SDF-1) that enhances the recruitment of
EPCs in injured or ischemic tissues in mice (Karshovska et al.,
2007). There are evidences demonstrating that the levels or activity
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of HIF-1α decreases with aging and thereby leads to reduced lev-
els of SDF-1 (Hoenig et al., 2008). Telomere length declines with
age in EPCs from healthy men (Minamino et al., 2004; Kush-
ner et al., 2009). Moreover, EPCs senescence is accelerated in
both experimental hypertensive rats and patients with essential
hypertension (Imanishi et al., 2005b). There is also a prema-
ture senescence in EPCs from diabetic patients (Rosso et al.,
2006).

TELOMERASE
To avoid the attrition of telomeres, germinal cells and some
somatic cells produces telomerase, an enzyme that catalyze DNA
synthesis to maintain telomere length. Human endothelial cells
and vascular smooth muscle express telomerase activity, which is
activated by mitogen stimuli via PKC, this activity being reduced
with age (Minamino and Komuro, 2007). Introduction of telom-
erase into EPCs extends life span and improves vasculogenesis
of these cells (Minamino et al., 2004). It has been also described
that NO activates telomerase in endothelial cells, delaying senes-
cence (Vasa et al., 2000; Farsetti et al., 2009). Then, strategies
aimed to increase endothelial NO bioavailability could be con-
sidered as possible therapies to prevent endothelial cell senes-
cence associated with aging (Hayashi et al., 2008). By the con-
trary, angiotensin II-mediated oxidative stress (Imanishi et al.,
2005a; Morris, 2005) and pro-atherogenic factors, like TNFα (Bre-
itschopf et al., 2001),are major inducers for endothelial senescence,
by inducing telomerase inactivation through an Akt-dependent
mechanism. Antioxidants may prevent this telomerase inactiva-
tion by inhibiting the nuclear export of the catalytic subunit of the
telomerase (Haendeler et al., 2004). The inactivation of telomerase
induced by angiotensin II-mediated oxidative stress is related to
the presence of nitrotyrosine, suggesting the involvement of per-
oxynitrite (Imanishi et al., 2005a; Morris, 2005). Interestingly, the
endothelial cells senescence evoked by glycated collagen and the
premature vascular senescence observed in type 2 diabetic rats
can be prevented with peroxynitrite scavengers (Chen et al., 2002,
2007).

SIRTUINS
During the past decade, research on aging, based initially on
simple laboratory organisms, has identified important genes and
pathways that contribute to longevity. Among these is a family
of nicotinamide adenine dinucleotide (NAD)-dependent proteins
termed sirtuins, which can extend the life span in model organisms
and are important in mediating the beneficial effects of low-
calorie diets (Guarente, 2011). There are seven identified sirtuins
in mammals (Sirt1 to Sirt7), which main function might be to
promote survival and stress resistance, resulting in longevity (Sed-
ding and Haendeler, 2007; Guarente, 2011). At present, endothelial
dysfunction in arteries from aged mice and humans is associ-
ated with a reduction of vascular expression of Sirt1 (Donato
et al., 2011) and there is increasing evidence that the beneficial
effects produced by caloric restriction on endothelial function
in aged animals are related, at least in part, by up-regulation
of Sirt1 (Rippe et al., 2010; Weiss and Fontana, 2011). In fact,
increased Sirt1 expression in cultured endothelial cells was driven
by serum from aged rats under restricted calorie intake (Csiszar

et al., 2009). In human endothelial cells, over-expression of Sirt1
prevented oxidative stress-induced senescence, while its inhibi-
tion leads to premature senescence-like phenotype. Interestingly,
immunosuppressant drugs, like sirolimus and everolimus, induce
endothelial cellular senescence via Sirt1 down-regulation (Ota
et al., 2009). By the contrary, moderate over-expression of Sirt1
in mice hearts confers stress resistance to the heart in vivo, retard-
ing aging phenotype (Alcendor et al., 2007). It has been suggested
that NO upregulate Sirt1 in human endothelial cells, therefore
inhibiting oxidative stress-induced premature cell senescence (Ota
et al., 2008; Potente and Dimmeler, 2008). By the other hand,
Sirt1 inhibition in HUVEC results in reduced eNOS activity and
senescence-like phenotype while Sirt1 induction increases eNOS
activity and prevents ROS-induced senescence (Ota et al., 2007).
Sirt1 plays an important role in endothelial homeostasis by regu-
lating eNOS activity; therefore, the Sirt1/eNOS axis may be quite
relevant as a potential target against vascular senescence, endothe-
lial dysfunction, and atherosclerosis (Ota et al., 2010). Moreover,
Sirt1 enhancement inhibits the expression of AT1 receptors in
vascular smooth muscle cells (Miyazaki et al., 2008), reducing cell
hypertrophy and neointima formation following vascular injury
(Li et al., 2011a,b). All the available data suggest that sirtuins can be
a unique class of proteins exerting important effects on age-related
CVDs and a promising target for drug development (Guarente,
2011).

CONCLUSION
The better understanding of the molecular and cellular mech-
anisms involved in vascular aging, as well as their potential
interactions, provides a growing list of factors that can be tar-
gets for specific interventions aimed at preventing and delaying
the vascular aging. The NO pathway and endothelial dysfunc-
tion, oxidative stress, inflammation, telomerase, and sirtuins are
among the principal mechanisms likely involved in the vascular
aging process, both in healthy and pathological conditions. A bet-
ter comprehension of the complex interactions between them is
an important objective for future research. Changes in lifestyle,
dietary changes, loss of weight (if overweight), and particularly
aerobic exercise may prevent or delay the onset of endothe-
lial dysfunction. The pharmacological approaches could also be
important tools for intervention throughout the aging process,
either preventing endothelial dysfunction, or treating advanced
stages of endothelial dysfunction, or even acting on structural
alterations already evident in the vascular wall. Although we
need more data in human beings about the role of telomerase
and sirtuins in healthy aging and in disease, both may be new
promising targets, in addition to mechanisms already investigated,
including the activation of the NO pathway or the COX inhibi-
tion, or the interference with pro-oxidant and pro-inflammatory
pathways.
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