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Extrasynaptic neurotransmission is an important short distance form of volume transmis-
sion (VT) and describes the extracellular diffusion of transmitters and modulators after
synaptic spillover or extrasynaptic release in the local circuit regions binding to and acti-
vating mainly extrasynaptic neuronal and glial receptors in the neuroglial networks of the
brain. Receptor-receptor interactions in G protein-coupled receptor (GPCR) heteromers
play a major role, on dendritic spines and nerve terminals including glutamate synapses, in
the integrative processes of the extrasynaptic signaling. Heteromeric complexes between
GPCR and ion-channel receptors play a special role in the integration of the synaptic and
extrasynaptic signals. Changes in extracellular concentrations of the classical synaptic neu-
rotransmitters glutamate and GABA found with microdialysis is likely an expression of the
activity of the neuron-astrocyte unit of the brain and can be used as an index ofVT-mediated
actions of these two neurotransmitters in the brain. Thus, the activity of neurons may be
functionally linked to the activity of astrocytes, which may release glutamate and GABA to
the extracellular space where extrasynaptic glutamate and GABA receptors do exist.Wiring
transmission (WT) and VT are fundamental properties of all neurons of the CNS but the
balance between WT and VT varies from one nerve cell population to the other. The focus
is on the striatal cellular networks, and the WT and VT and their integration via receptor
heteromers are described in the GABA projection neurons, the glutamate, dopamine, 5-
hydroxytryptamine (5-HT) and histamine striatal afferents, the cholinergic interneurons, and
different types of GABA interneurons. In addition, the role in these networks ofVT signaling
of the energy-dependent modulator adenosine and of endocannabinoids mainly formed in
the striatal projection neurons will be underlined to understand the communication in the
striatal cellular networks.

Keywords: extrasynaptic, neurotransmission, receptor–receptor interactions, volume transmission, G protein

coupled receptors, striatal networks, heteromers, wiring transission

INTRODUCTION
The discovery of the central dopamine (DA), noradrenaline (NA),
and 5-hydroxytryptamine (5-HT) pathways was made in 1963–
1965 with the Falck-Hillarp technique (Falck et al., 1962) and rep-
resented my thesis work (see Fuxe, 1965; Fuxe et al., 2007a). These
monoamine brainstem systems were unique in having ascend-
ing monosynaptic connections with the tel- and diencephalon
including the cerebral cortex giving rise to global networks all
over the tel- and diencephalon with collaterals forming terminal
networks in the lower brainstem. They also produced descending
connections to the spinal cord innervating its entire gray matter

at all rostro-caudal levels. The locus coeruleus built up of NA cell
bodies could even send out both ascending and descending NA
projections as well as NA projections to the cerebellum resulting
in a global modulation of the entire central nervous system (CNS)
from a single nerve cell nucleus through the vast NA nerve terminal
plexa formed. This unique architecture of the central monoamine
neurons gave thoughts on if in fact these neurons communicated
via synaptic transmission.

In 1969–1970 we observed the appearance of extraneuronal
diffuse (catecholamine) fluorescence around midbrain DA nerve
cell bodies after amphetamine, a catecholamine releasing drug,
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in reserpine-nialamide-L-dopa treated rats (Fuxe and Ungerstedt,
1970a). In parallel, a similar diffuse extraneuronal 5-HT fluo-
rescence was found among the 5-HT cell bodies of the dorsal
raphe nucleus after 5-HT uptake blockade with chlorimipramine
in reserpine and nialamide pretreated rats (Fuxe et al., 1970b).
We did not, in the beginning, understand these observations but
we asked the question if they reflected a communication different
from the synaptic one. We also observed that microinjected DA
in the striatum could diffuse (Ungerstedt et al., 1969). This obser-
vation was confirmed in 1992 with DA immunohistochemistry
(Agnati et al., 1992).

Such observations and the existence of global monoamine
terminal networks together with several other observations in
the literature, especially the demonstration of non-junctional
monoamine varicosities by Descarries et al. (1975) led Agnati et al.
(1986) to propose the concept of volume transmission (VT). The
major observation in this paper was the failure to see a correla-
tion between the regional distribution of central encephalin and
beta-endorphin immunoreactive terminal networks and of central
opioid receptors. The existence of two main modes of intercellular
communication in the CNS was proposed and called wiring trans-
mission (WT; prototype: synaptic transmission) and VT (Agnati
et al., 1986). The major criterion for this classification was the dif-
ferent characteristics of the communication channel with physical
boundaries well delimited in the case of WT (axons and their
synapses; gap junctions) (Froes et al., 1999; Ozog et al., 2002; Ben-
nett et al., 2003; Duan et al., 2004; Schools et al., 2006) but not
in the case of VT (the extracellular fluid (ECF) filled tortuous
channels of the extracellular space (ECS) and the cerebrospinal
fluid (CSF) filled ventricular space and sub-arachnoidal space).
Of special importance for us was the demonstration of relative
transmitter-receptor mismatches in the opioid peptide systems
(Agnati et al., 1986; Fuxe et al., 1988c). In parallel, Descarries et al.
(1991) developed his concept of diffuse transmission based on the
existence of non-junctional monoamine varicosities which is in
line with our concept of VT.

VOLUME TRANSMISSION
Volume transmission is defined as “A widespread mode of inter-
cellular communication that occurs in the ECF and in the CSF of
the CNS with VT signals moving from source to target cells via
energy gradients leading to diffusion and convection.” The com-
munication channels are diffuse; there exists a reserved or private
communication mainly mediated via high affinity G protein-
coupled receptors (GPCRs); the safety of communication is low as
a result of the diffusion process and the connectivity of the diffu-
sion channels is dynamic from open to closed (see Fuxe and Agnati,
1991b; Agnati et al., 2000, 2006; Chen et al., 2002a; Fuxe et al., 2005,
2007a). There may exist three subtypes of VT: extrasynaptic fast
VT (100 msec-sec), the long-distance slow VT (sec-hour), and
the roamer type of VT-mediated via microvesicles (Agnati et al.,
2010a; Fuxe et al., 2010a). Two modes of microvesicle release exist
namely the exocytosis of internal luminal vesicles formed in the
multivesicular bodies (exosomes) and the direct budding of small
vesicles from the plasma membrane (shedding vesicles). Exosomes
represent a subclass of such membrane vesicles which are released
by cells upon fusion of the multivesicular bodies with the plasma
membrane (Guescini et al., 2012).

Migration (diffusion and flow) of VT signals (transmitters,
modulators, trophic factors, ions, etc.) takes place via concentra-
tion gradients, temperature gradients, and pressure waves.

Wiring transmission, the prototype being synaptic transmis-
sion is characterized by private channels (axons) and a private or
reserved communication mainly mediated by ion-channel recep-
tors and operates with high speed (msecs); the safety is high and
the connectivity static and/or dynamic. One subtype of WT is the
gap junction the communication of which has no privacy but can
be described as having a broadcasting character.

The overall evidence indicates that vast majority of neurons pos-
sess the fundamental property of operating via both WT and VT but
the balance between them varies from one nerve cell population to
the other and with the dynamic state of the neuron. In contrast, glial
cells and endothelial cells operate exclusively via VT. The source
of the neuronal VT signal is mainly from nerve terminal networks
but also from soma and dendrites.

The ECS is characterized by three parameters (see Nicholson
and Sykova, 1998). Volume fraction is the relative size of the ECS
compared to total brain tissue volume. Tortuosity is the increase
in path length that is imposed on a migrating molecule by cel-
lular structures and extracellular matrix components. These two
parameters are unit-less. Then, there is the clearance which is a
constant that reflects the removal or disappearance of a compound
from the ECS, and has the unit per second. Also a mathematical
theory of diffusion in the brain with dual-probe microdialysis has
been developed and the theory was able to fit the experimental
data (Chen et al., 2002b; Hoistad et al., 2002). The diffusion of
3H-mannitol using dual-probe microdialysis enabled a quantifi-
cation of the classical diffusion parameters discussed above in the
rat striatum.

EXTRASYNAPTIC TRANSMISSION (A SUBTYPE OF VT)
Extrasynaptic VT including perisynaptic transmission is linked
to synaptic transmission and likely often takes place due to
incomplete diffusion barriers (transmitter spillover or extrasynap-
tic release) with the synaptic transmitter reaching extrasynaptic
domains of the pre and postsynaptic membrane of the synapse,
the astroglia, and even adjacent synapses (Vizi, 1980; Vizi et al.,
2004; Harvey and Svoboda, 2007). Other terminal varicosities fail
to form synapses and are asynaptic and release the transmitter
directly into the ECS. This subtype of VT operates at the local
circuit level mainly through binding and activation of extrasynap-
tic high affinity GPCRs on neuronal and glial cells (Carmignoto,
2000) but also receptor tyrosine kinase, ion-channel receptors, and
cytokine receptors are involved in linking together regulation of
gene expression, firing and trophism, blood flow, and immune
responses in the neuroglial networks of the CNS. In this inte-
grative process, receptor–receptor interactions in different types
of receptor heteromers play a major role (see Fuxe et al., 2007a;
Borroto-Escuela et al., 2010, 2011; Fuxe et al., 2010a,b; Kenakin
et al., 2010).

Extrasynaptic glutamate and GABA transmission
The classical synaptic transmitters glutamate and GABA can be
measured extracellularly with microdialysis (see Ferraro et al.,
1998) and reach receptors at surrounding astroglia, and at
neighboring synapses, modulating the synaptic transmission
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process and leading to astroglial release of glutamate being depen-
dent on the efficacy of the glial and neuronal transporters of
glutamate (see Del Arco et al., 2003; Fuxe et al., 2007b). Thus,
the extrasynaptic transmission can be blocked by glial sheaths and
extracellular matrix through their formation of diffusion barri-
ers e.g., perineuronal nets and the astrocytic isolation may change
over a short or long time-scale. The fate of escaping transmitters
is determined not only by the transporters but also by inactivat-
ing enzymes. It seems clear that one and the same transmitter, like
glutamate and GABA, can be released both as a synaptic signal and
as an extrasynaptic signal producing a rapid form of VT.

As an extrasynaptic signal, glutamate can increase calcium
mediated astroglial glutamate release via activation of astroglial
metabotropic glutamate receptors which may involve both exo-
cytosis and transporters (Del Arco et al., 2003). The increase of
extracellular glutamate levels can be detected by microdialysis (Del
Arco et al., 2003). In this way, metabolic and trophic adjustments
can develop in the neuron-astrocytic unit upon activation of its
glutamate synapses including increases in blood flow.

Recently, imaging of extrasynaptic glutamate VT has been
accomplished by Okubo et al. (2010) during synaptic activity. The
glutamate optical sensor (EOS) is a hybrid-type fluorescent indi-
cator consisting of the glutamate-binding domain of the AMPAR
subunit GluR2 and a fluorescent small molecule conjugated near
the glutamate-binding pocket. EOS changes its fluorescence inten-
sity upon binding of glutamate, for which it has both high affinity
and high selectivity. The electron microscopy analysis indicated
that labeled K716A-EOS was distributed throughout the extra-
cellular surface of cells without any accumulation in the synaptic
cleft, and that > 97% of the indicator molecules were present
extrasynaptically. They imaged the K716A-glutamate optical signal
(EOS) fluorescence at various depths of the brain slice in response
to parallel fiber stimulation. The magnitude and duration of the
extrasynaptic dynamics were adequate for the activation of the
extrasynaptic glutamate receptors and crosstalk between synapses
was established (Okubo et al., 2010; Okubo and Iino, 2011).

Extrasynaptic 5-HT transmission
Double immunolabeling of 5-HT immunoreactivity (IR) in nerve
terminals and 5-HT2A IR in apical dendritic shafts of pyramidal
nerve cells of the cerebral cortex have demonstrated their rela-
tionships (Jansson et al., 2001). In the horizontal sections, the
mean distance from a 5-HT2A-IR apical dendrite to the clos-
est 5-HT-IR terminal-like varicosity was calculated to be 7.7 μm.
Thus, these observations indicate the existence of an extrasy-
naptic 5-HT2A mediated VT in the cerebral cortex. The 5-HT
terminal-extrasynaptic 5-HT receptor subtype relationships have
been reviewed by Jansson et al. (2002). These observations are
in line with the early work of Fuxe et al. (1970b) on 5-HT dif-
fusion in the raphe dorsalis and of Descarries et al. (1975) on
the existence of large numbers of non-junctional 5-HT terminal
varicosities which vary from one region to the other (Descarries
and Mechawar, 2000). De-Miguel and Trueta (2005) have also
demonstrated extrasynaptic exocytosis of 5-HT involving multiple
mechanisms including both clear vesicles and dense core vesicles.
Somatic exocytosis of 5-HT in cultured leech neurons takes place
exclusively from dense core vesicles (Trueta et al., 2003). It is of

substantial interest that 5-HT released from cultured leech neu-
rons produces inhibition of the firing of the 5-HT neurons through
activation of 5-HT autoreceptors (Cercos et al., 2009).

Extrasynaptic DA transmission
Dopamine transmitter/D1 receptor mismatches have been
observed by receptor autoradiography and dual immunolabeling
of the pre and postjunctional structures of the ascending DA neu-
rons (Fuxe et al., 1988a,b). Thus, release of DA is often observed
not to be in strict contiguity with postsynaptic membranes, and
a high incidence of non-junctional DA terminal varicosities is
observed in the neostriatum (Descarries et al., 1996; Descar-
ries and Mechawar, 2000). The ultrastructural analysis, based on
transmitter and receptor immunocytochemistry, has repeatedly
demonstrated short distance transmitter/receptor mismatches for
the DA transmitter with the major part of the D1 and D2 receptor
labeling being outside the DA synapses in the local striatal circuits,
in which the DA synapses and/or non-junctional DA terminals are
found (Dana et al., 1989; Levey et al., 1993; Sesack et al., 1994;
Smiley et al., 1994; Hersch et al., 1995, 1997; Yung et al., 1995;
Caille et al., 1996; for review see Jansson et al., 2002). The evi-
dence therefore indicates that DA mainly acts as a VT transmitter
being directly released into the ECF or reaching it via leaking DA
synapses (Fuxe and Agnati, 1991a,b; Zoli and Agnati, 1996; Fuxe
et al., 2007a). Rice and Cragg (2008) have modeled DA spillover
after quantal release based on a large number of experimental
data. In the updated DA synapse the DA release is unconstrained
by the extrasynapic dopamine transporter (DAT), the diffusion
process being too fast for the DAT which mainly increases clear-
ance of DA and thus its half-life. A cloud of DA is formed and
can reach the extrasynaptic DA receptors which are in majority.
Thus, the primary mode of DA communication is VT. The effective
radius for high affinity DA receptors is 7–8 μm which is compati-
ble with extrasynaptic VT. This is the extrasynaptic short distance
subtype of VT. The spheres obtained would encompass tens to
thousands of synapses and the action of DA involves the activa-
tion of extrasynaptic receptors on terminals, dendrites, soma, and
axons.

The D2 receptors are of special interest since the KiH (the dis-
sociation constant of the high affinity state of the receptor) value
for DA at [3H] raclopride-labeled D2-like receptors in dorsal stria-
tum was 12 nM (Marcellino et al., 2011), and this can help explain
PET findings that amphetamine-induced increases in DA release
can produce an up to 50% decrease of [11C] raclopride binding
in the dorsal striatum in vivo (Dewey et al., 1993; Laruelle, 2000;
Seneca et al., 2006). These combined results give indications for
the existence of striatal D2-like receptor-mediated extrasynaptic
form of DA VT at the local circuit level in vivo in the human stria-
tum (Marcellino et al., 2011). However, in Parkinson disease also
a long-distance form of DA VT likely develops due to the devel-
opment of DA receptor supersensitivity (Fuxe et al., 2003, 2010c).
Thus, larger distances of diffusion of released DA can still maintain
DA transmission since the supersensitive DA receptors are sensi-
tive to very low concentrations of DA. Parkinson disease develops
when too few DA terminal networks remain and distance from
the DA release site to the vast majority of DA becomes too distant
for DA receptor activation (Fuxe, 1979). At this stage l-DOPA

www.frontiersin.org June 2012 | Volume 3 | Article 136 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Membrane_Physiology_and_Biophysics/archive


Fuxe et al. Extrasynaptic neurotransmission on the striatal neuronal–glial networks

treatment and/or D2 receptor agonist treatment are introduced
producing antiparkinson actions through activation of the super-
sensitive striatal DA (Fuxe et al., 2003, 2010c). Thus, this treatment
substitutes for the loss of DA VT in Parkinson disease.

Extrasynaptic noradrenaline transmission
The low synaptic incidence of cortical NA nerve terminal plexa
has been demonstrated in the rat and monkey being in the order
of 7–18% (Seguela et al., 1990; Aoki et al., 1998), which is clearly
lower than the synaptic incidence in cortical (56–92%) and neos-
triatal (30–40%) DA nerve terminal plexa in the rat (Descarries
and Mechawar, 2000).

The relationships of NA nerve terminal to extrasynaptic adren-
ergic receptors have been established (Aoki et al., 1998). Dual
immunolabeling of β-adrenergic receptors and CA nerve termi-
nal networks in the cerebral cortex using electron microscopic
immunocytochemistry have demonstrated membrane contacts
between CA nerve terminals rich in vesicles and β-adrenergic IR
astrocytes, giving evidence for neuroglia communication via VT
(Aoki, 1992; Aoki and Pickel, 1992). It was of interest that these
β-adrenergic receptor IR astrocytes also surrounded asymmetric
axo-spinous synapses, where the astroglia β-adrenergic receptors
may modulate e.g., glutamate spillover by modulating the activ-
ity of the glial glutamate transporters and/or the permeability
of the astroglial gap junctions, and thus the sphere of astroglia
activation (Aoki, 1992). In another study with similar techniques,
Aoki et al. (1998) also demonstrated that prefrontal NA terminal
networks can interact via VT with astroglia, dendritic shafts, and
axon terminals through their α2-adrenergic receptors as well as via
synaptic transmission through α2-adrenergic receptors located in
postsynaptic membranes at spines of pyramidal cells.

A dysfunction of the locus coeruleus NA system together
with meso-cortical DA system may contribute to attention deficit
hyperactivity disorders (ADHD). High levels of D4 IR have been
found in many cortical regions like motor, somatosensory, tempo-
ral association, and cingulate cortices with synaptic and extrasy-
naptic locations (Rivera et al., 2008). In addition, these receptors
have a high affinity for NA (Newman-Tancredi et al., 1997), and
the D4 IR is in fact more closely related to the widespread NA ter-
minal plexa than the restricted DA terminal plexa (mainly limbic
cortex).

It should therefore be considered that CAs may be released
from the cortical NA nerve terminals and may, via extrasynaptic
VT, reach and activate dopamine D4 receptors located on pyrami-
dal and non-pyramidal nerve cells in many regions of the cerebral
cortex (Rivera et al., 2008). Thus, methylphenidate drugs used in
the treatment of ADHD are known to release DA and NA and
may therefore act in part by restoring synaptic and extrasynaptic
DA and NA transmission in the cerebral cortex (see Smiley et al.,
1992; Smiley et al., 1997) involving not only classical D1, D2, and
adrenergic receptors but also D4 receptors which may be activated
also by extrasynaptic NA transmission (Rivera et al., 2008).

Extrasynaptic acetylcholine transmission
Widespread plexa of cholinergic nerve terminals exist in the CNS
with high densities especially in the striatum and have, like the
NA and 5-HT nerve terminal networks, been found to have a

low synaptic incidence in the cerebral cortex and neostriatum and
thus mainly operate via volume (diffuse) transmission (Descar-
ries and Mechawar, 2000). This was in the beginning found to
be surprising since acetylcholinesterase was believed to quickly
degrade acetylcholine in the synaptic cleft. The explanation is
that this effective degradation is performed by the A12 isoform
of acetylcholinesterase while brain acetylcholinesterase mainly
consists of the G4 isoform (Gisiger and Stephens, 1988) as dis-
cussed by Descarries et al. (1997). Thus, the extrasynaptic form
of VT can develop but long distance VT is prevented by the brain
acetylcholinesterase.

Extracellular monoamine and acetylcholine transmission and
vesicular glutamate transporters
Large numbers of monoamine and acetylcholine neurons have
been shown to contain a vesicular glutamate transporter (VGLUT;
see El Mestikawy et al., 2011) which may have relevance for
extrasynaptic monoamine and acetylcholine transmission. Thus,
the VGLUT is mainly driven by the vesicular transmembrane
potential component of the proton gradient which leads to more
acidified vesicles. This allows the vesicular monoamine transporter
(VMAT2) and vesicular acetylcholine transporters (VAChT) to
accumulate higher amounts of monoamines and acetylcholine,
respectively since these transporters are mainly dependent on the
pH gradient over the vesicular membrane (El Mestikawy et al.,
2011). Three types of VGLUT exist namely VGLUT1, VGLUT2,
and VGLUT3 and are present in central monoamine and acetyl-
choline neurons besides GABA and glutamate neurons. This has
led to discussions on whether glutamate can be co-transmitter in
these neurons enabling glutamate co-release. It has been especially
discussed if glutamate in DA neurons is linked to the formation
of junctional DA terminals (synapses; Descarries et al., 2008).
However, it appears to be largely a developmental feature since
double labeling of tyrosine hydroxylase (TH) and VGLUT2 in
DA terminals is hardly observed in adult rats. It is of substan-
tial interest that a heterogeneity in DA, 5-HT and acetylcholine
terminals may exist with regard to co-expression of VGLUTs and
VMAT2 or VAChT (see El Mestikawy et al., 2011). In some of
them it seems possible that there may exist synaptic vesicles con-
taining both VMAT2 and VGLUT2 (DA varicosity), VMAT2 and
VGLUT3 (5-HT varicosity), and VAChT and VGLUT3 (acetyl-
choline varicosity). In fact, evidence exists that the presence of
VGLUT can lead to so-called vesicular synergy meaning increased
accumulation of the primary transmitter (monoamine or acetyl-
choline; Gras et al., 2008; Amilhon et al., 2010; Hnasko et al., 2010).
The molecular mechanism for vesicular synergy is likely that the
VGLUT is driven by the vesicular transmembrane potential with
the accumulation of glutamate (acid) leading to an acidification
of the vesicle. In view of the fact that the VMAT2 and VAChT
is dependent on a pH gradient over the vesicular membrane this
will allow increased amounts of monoamines and acetylcholine
to accumulate in the monoamine and acetylcholine vesicles (El
Mestikawy et al., 2011). This is likely of relevance for the extrasy-
naptic monoamine and acetylcholine transmission since higher
amounts of transmitter can be released into the ECF directly or
via synaptic spillover from these varicosities and a larger volume
can be reached with sufficient concentrations of monoamines and
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acetylcholine to activate their extrasynaptic high affinity receptors.
Increased quantal contents of vesicles of the primary transmitter
with increased release has in fact been shown for VGLUT3 in 5-HT
and acetylcholine neurons (Gras et al., 2008; Amilhon et al., 2010).
Thus, an increase in extrasynaptic transmission is obtained. The
VGLUT research will represent an exciting field for understanding
VT in the CNS.

LONG DISTANCE VT
1. Long distance DAVT up to 30–50 μm may also exist in the stria-

tum of the intact rat. Thus,we have observed substantial D1-TH
terminal mismatches (in the maximal range of 30–50 μm) in
the nucleus accumbens shell with D1 rich areas surrounded by
highly dense DA nerve terminal plexa (Jansson et al., 1999).
It may be that here the existence of energy gradients, espe-
cially temperature gradients created by the uncoupling protein
2 (UCP2) in the DA terminal regions, increase the migration of
DA into the D1 rich and TH poor region (Rivera et al., 2006).
UCP2 produces a disappearance of the H+ gradient in the
mitochondria with generation of heat leading to a temperature
gradient vs. the D1 receptor rich cellular network. This may
lead to mass movement of the ECF (flow) carrying DA into the
mismatch region which is more rapid than DA diffusion alone.
It should be mentioned that DA can also be released into the
portal blood vessels from the tuberoinfundibular DA neurons
(Fuxe, 1963, 1964; Fuxe et al., 1967; MacLeod and Lehmeyer,
1974; Andersson et al., 1981) to activate the D2 receptors on
the prolactin cells of the anterior pituitary. Thus, DA can act as
a synaptic transmitter, VT transmitter, and as a hypothalamic
hormone.

2. Long distance peptide VT and CSF VT

Peptide neurons likely operate via long distance VT with distances
over 1 mm involving also flow in the CSF (Fuxe et al., 2010a). One
of the best examples is CSF delivered beta-endorphin (2500 pmol
in 5 μl) which could accumulate in nerve cell body subpopulations
and their dendrites all over the paraventricular hypothalamus as
seen 15 min after the CSF injection (Agnati et al., 1992; Bjelke
and Fuxe, 1993). The likely mechanism is that beta-endorphin is
internalized into discrete subependymal and periventricular nerve
terminal plexa and then undergoes retrograde transport to the
nerve cell bodies developing beta-endorphin IR. These results indi-
cate that beta-endorphin CSF VT may exist which – via opioid
receptors located on periventricular nerve terminal plexa – may
become internalized and retrogradely transported to potentially
modulate the gene expression and firing of such neurons (Agnati
et al., 1992). Striatally microinjected beta-endorphin can also reach
the CSF as an intact peptide as shown with mass-spectrometry
(Hoistad et al., 2005). So, beta-endorphin may not only employ
long distance diffusion in the ECF but also CSF mediated VT
as a complementary communication pathway, to also reach and
activate distant opioid receptors. These results are in line with
the work of Duggan’s group on beta-endorphin based on anti-
body microprobes (MacMillan et al., 1998). They observed that
beta-endorphin IR could be detected in CSF and remote brain
areas lacking beta-endorphin IR terminals, like the cerebral cortex,

60–90 min after the initial stimulation of the arcuate nucleus where
the beta-endorphin cell bodies are located.

These results taken together give strong indications that beta-
endorphin could migrate for long distances in the ECF and CSF
after its release from beta-endorphin IR nerve terminal networks.

These results are also of relevance for understanding cotrans-
mission in monoamine neurons often containing neuropeptides
(see book by Hökfelt et al., 1986). The release of neuropep-
tides may allow the monoamine neurons to send VT signals to
cellular networks further away from the monoamine terminals.
Peptides and proteins may have a high stability and/or act via
active peptide fragments which make long distance VT possible
involving also CSF VT (Fuxe et al., 2010a and see above). The
temporal code of VT related to dynamic changes in release of
transmitters is likely to exist especially at short distances, while
with long distances of diffusion/convection observed with pep-
tides/proteins the dynamic changes in VT modulating the wired
networks may be less pronounced. However, it seems likely that
peptide release may be exceptionally enhanced with burst firing
based on the work of Lundberg (1991) indicating that long-
distance peptides/protein VT can be markedly increased under
specific physiological conditions.

In the case of monoamine/peptide co-storing neurons it thus
seems likely that the co-released monoamines and peptides from
the same nerve terminal networks only interact via receptor-
receptor interactions in the range of short diffusion distances.
At long distances the migrating peptides/proteins probably along
preferential VT channels (paravascular ECF channels or ECF chan-
nels along myelinated fiber bundles) instead activate receptors
which interact with receptors stimulated by transmitters belonging
to other types of neurons.

UNDERSTANDING THE ROLE OF EXTRASYNAPTIC AND LONG DISTANCE
VT IN THE FUNCTIONAL MODULES (NEURONAL NETWORKS) OF THE
CNS GIVING RISE TO THE NEURONAL CIRCUITS
The neuronal–astroglial networks form functional modules which
give rise to several outputs/efferents that is several types of axon
bundles forming fiber tracts that influence in various ways other
functional modules linked to it. The resulting activity changes
in these functional modules will, by forming dynamic brain cir-
cuits, have an impact on brain function e.g., behavioral changes. A
major role of the VT signals is to modulate the WT, especially the
synaptic transmission, in the neuronal networks forming the func-
tional modules. In this way, via changes in VT, it becomes possible
for the same neuronal network to change the balance of activity
in its different projection neurons to other functional modules
(neuronal networks) and thus in their brain circuits and in brain
function. The mechanism involved is likely the ability of the diffus-
ing VT signals in ECF to upregulate and/or downregulate synaptic
transmission in different parts of the neuronal network via activa-
tion of e.g., monoamine, acetylcholine, and/or peptide receptors
mainly located in the local circuits of the neuronal–astroglial net-
work. Both neuronal extrasynaptic and long distance VT signaling
can be involved and the architecture of the diverse high affinity
receptor distributions on the neurons and glia will determine the
outcome on the balance of activity in the different types of pro-
jection neurons from the functional module. These neuronal VT
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signals can be released from terminal networks within the func-
tional module with nerve cell bodies located outside the functional
module or from interneurons within the module. Also the projec-
tion neurons of the module can mainly via recurrent collaterals
give rise to VT signals. There also exists soma-dendritic extrasy-
naptic exocytosis of VT signals within the neurons of the module
contributing inter alia to the activation and regulation of the high
affinity soma-dendritic autoreceptors at this level (see De-Miguel
and Trueta, 2005). Finally, VT signals arise also from the glial
cells of the module like adenosine (Ferre and Fuxe, 2000) and
kynurenic acid (Schwarcz and Pellicciari, 2002) from the astroglia.
The major molecular mechanism appears to be the modulation of
synaptic receptors through activation of extrasynaptic receptors
by VT signals which modulate the synaptic receptors via allosteric
receptor–receptor interactions in receptor heteromers built up of
synaptic and extrasynaptic receptors (Agnati et al., 2010a; Fuxe
et al., 2010a). The formation of receptor heteromers by synap-
tic ion-channel receptors like NMDA and GABA receptors and
GPCRs have been demonstrated by Fang Liu and colleagues (see
Liu et al., 2000; Lee et al., 2002; Liu et al., 2006). In addition, also
VT signals can interact and integrate their signaling via GPCR–
GPCR interactions in heteromers e.g., A2A-D2 heteromers at the
extrasynaptic level (Fuxe et al., 1998, 2010b).

EXTRASYNAPTIC AND LONG DISTANCE VOLUME TRANSMISSION IN
THE NEURONAL–ASTROGLIAL NETWORKS OF THE MATRIX OF THE
DORSAL STRIATUM
Projection neurons
The analysis of this striatal network gives a beautiful example of
the interplay of synaptic transmission and VT in the regulation of
the neuronal–astroglial networks of the CNS. Around 95% of the
nerve cells represent projection neurons, the so-called GABAergic
medium spiny neurons (MSN). There exist mainly two subtypes:
The enkephalin containing striato-pallidal GABA neurons (indi-
rect pathway; external globus pallidus) and the dynorphin and
substance P containing striato-entopeduncular (internal globus
pallidus) and striato-nigral GABA neurons (direct pathway). The
MSN GABA neurons give rise to axon collaterals which may have
a significant feedback effect with a reduction of the overall activity
in the striatal matrix through GABA synapses (Tepper et al., 2008).

Opioid peptides. The axon collaterals of the striato-pallidal
GABA neurons forming junctional and non-junctional varicosities
likely release enkephalins into ECF extrasynaptically or via synap-
tic spillover (Agnati et al., 1986; Fuxe et al., 1988c), to activate mu
and delta opioid receptors located on terminals (mainly delta opi-
oid receptors) and dendrites (mainly mu opioid receptors) of the
striatal local circuits including the DA nerve terminals (Eghbali
et al., 1987; Arvidsson et al., 1995). Enkephalin immunoreac-
tive terminals in double immunolabeling experiments are closely
associated with these two types of opioid receptors and therefore
the enkephalin transmission likely mainly involves extrasynap-
tic VT (Arvidsson et al., 1995). It is of substantial interest that
D1-mu-opioid receptor heteromers have been demonstrated in
cellular models (Juhasz et al., 2008) and morphine induced loco-
motion requires D1 receptor activation (Hnasko et al., 2005). In
view of the fact that the vast majority of the D1 receptors exist

in the striato-entopeduncular/nigral GABA neurons (direct path-
way) lacking D2 receptors one important function of the released
enkephalins from the axon collaterals, and possibly dendrites of the
striato-pallidal GABA neurons, may be to diffuse to and enhance
signaling in the D1-mu-opioid receptor heteromer located in the
dendrites of the direct pathway increasing its activity. D1 and mu
opioid receptors are also co-located in the striatum (Juhasz et al.,
2008). Thus, the extrasynaptic enkephalin signaling of the striato-
pallidal GABA neurons causing motor inhibition may inter alia
facilitate cross-modulation of the adjacent neurons of the direct
pathway which increases motor initiation. In this way the unbal-
ance of activity in the two main efferent pathways will be reduced
and assisting in counteracting excessive motor inhibition. There
may exist also D4-mu opioid receptor heteromers in the striatum
especially in the striatal islands (striosomes) where the D4 and mu
opioid receptors are enriched and co-located (Gago et al., 2007;
Fuxe et al., 2008c; Rivera et al., 2008) with D4 activation markedly
antagonizing morphine induced transcription factor expression in
the striatum (Gago et al., 2011).

In contrast, the dynorphin immunoreactive terminals of the
direct pathway are in proximity with the dendritic kappa opioid
receptors (Elde et al., 1995) likely representing a kappa opioid
receptor-mediated extrasynaptic dynorphin transmission. It can
be speculated that this partially represents a reciprocal regulation
by the direct pathway of the indirect pathway, the striato-pallidal
GABA neurons which are enriched in D2 receptors and may
possess kappa opioid receptors. It seems likely that these dynor-
phin immunoreactive terminals also may contain substance P
immunoreactivity (Bolam et al.,1983) and also operate via extrasy-
naptic substance P transmission. There does also exist a DA D1-D2
receptor heteromer signaling pathway in dynorphin/enkephalin
MSN but they have a low incidence in the caudate putamen
(Perreault et al., 2010; Hasbi et al., 2011).

Neurotensin peptides. The striatal NT tissue IR and mRNA levels
are increased by antipsychotic drugs through their D2 recep-
tor blocking actions (see Frey et al., 1986; Augood et al., 1991).
These results indicated that the acute administration of D2 DA
receptor antagonists increased NT levels in the striatum and nuc.
accumbens, and that antipsychotic drugs (clozapine, fluperlapine)
showing a relative lack of extrapyramidal side effects may be char-
acterized by a failure to maintain increased NT levels in the basal
ganglia upon long-term treatment in contrast to chronic haloperi-
dol, chlorpromazine, and sulpiride (Frey et al., 1986). Instead, the
D1 receptor antagonist 23390 acutely reduced the striatal NT tis-
sue levels (Frey et al., 1986). The signs of increased NT storage and
synthesis in the striatum – at least after long-term treatment with
haloperidol – have been found to be associated with reduced NT
IR efflux into the ECF in the ventral striatum (Gruber et al., 2002).
The NT mRNA signals as studied with in situ hybridization are
normally sparsely distributed (Schiffmann and Vanderhaeghen,
1993) and markedly increased by D2 antagonist treatment in the
MSN representing the projection neurons (Augood et al., 1991).
Thus, NT peptides may be synthesized and released from the D2
enriched striato-pallidal and D1 enriched striato-nigral GABA
neurons to activate NTS1 receptors through extrasynaptic trans-
mission. Antagonistic NTS1-D2 receptor–receptor interaction in
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putative NTS1-D2 heteromers have been repeatedly demonstrated
in the striatum (Agnati et al., 1983a; Von Euler and Fuxe, 1987;
von Euler, 1991; Li et al., 1994b; Diaz-Cabiale et al., 2002) located
on the striatal DA terminals (NTS1-D2 autoreceptor interactions,
Tanganelli et al. (1989)) and at the postjunctional level (Fuxe
et al., 1992, 1995; Tanganelli et al., 1994; Li et al., 1995a) as indi-
cated from microdialysis studies. A major achievement by Ferraro
et al. (1995, 2011, 2012) has also been the discovery that NT
peptides – via facilitatory NTS1-NMDA receptor-receptor inter-
actions – can enhance the synaptic glutamate transmission. In this
way, extrasynaptic and synaptic signals can become integrated as
previously shown by Liu and colleagues through demonstration
of D5-GABAA, D1-NMDA, and D2-NMDA heteromer forma-
tion and their receptor-receptor interactions (Liu et al., 2000; Lee
et al., 2002, 2005). Specifically, the NT peptides when released can
enhance the glutamate synaptic signaling onto the striato-pallidal
GABA neurons through the enhancing NTS1-NMDA receptor–
receptor interaction (Tanganelli et al., 2012). This increased acti-
vation of the striato-pallidal GBA neurons is further strengthened
by the antagonistic D2-NTS1 receptor–receptor interactions at the
postjunctional level of the DA transmission reducing D2 signal-
ing and its inhibitory action on the striato-pallidal GABA neurons
(Tanganelli et al., 2012). The antagonistic NTS1-D2 autoreceptor
interaction at the DA terminal level in contrast will increase DA
release which via diffusion can increase D1 receptor signaling in
the direct pathway since antagonistic D1-NTS1 receptor–receptor
interactions do not exist. The net result of the NT extrasynap-
tic signaling will therefore be an increase in the activity of the
striato-pallidal GABA neurons. This leads to increased motor
inhibition balanced by increased activity of the direct pathway
mediating motor initiation via increasing D1 receptor activity in
the striato-entopeduncular-nigral GABA pathway.

It seems that cholecystokinin (CCK) peptides from glutamate
synapses and NT peptides from MSN have similar functional and
neurochemical actions by reducing and signaling of the D2 pro-
tomers in putative CCK2-D2 and NTS1-D2 heteromers, respec-
tively but with the difference that NTS1 may also form heteromers
with NMDA receptors. In line with these observations, threshold
doses of CCK and NT peptides have been found to produce syn-
ergistic effects on D2 receptor affinity and DA release as seen in
microdialysis studies (Tanganelli et al., 1993).

Afferents
Cortico-striatal and thalamo-striatal glutamate synapses.
These glutamate synapses have a major impact on the firing of the
striatal projection neurons and the striatal interneurons (Bennett
and Bolam, 1994; Surmeier et al., 2007; Tepper et al., 2007; Gerfen
and Surmeier, 2011). It is of interest that CCK immunoreactiv-
ity exists in the cortico-striatal glutamate neurons (Morino et al.,
1994). CCK peptides may therefore be released from these gluta-
mate synapses via spillover or extrasynaptic release to modulate the
activity of the striatal local circuits via extrasynaptic transmission.
In view of the demonstration of antagonistic CCK2-D2 receptor–
receptor interactions in putative CCK2-D2 heteromers (Fuxe et al.,
1981, 1983; Agnati et al., 1983b; Li et al., 1995b; Dasgupta et al.,
1996) in the striato-pallidal GABA neurons (postjunctional CCK2
receptors) and on the striatal DA afferents (Tanganelli et al., 1990,

2001) one role of the CCK peptides released upon firing of the
cortico-striatal neurons may be to enhance glutamate signaling on
the D1 enriched direct pathway versus the D2 enriched striato-
pallidal GABA pathways eliciting motor inhibition. The existence
of striatal nerve cells coexpressing CCK2 and D2 receptor mRNAs
have in fact been demonstrated (Hansson et al., 1998). Thus,
CCK2 activation by the diffusing CCK peptides in the local circuit
will increase DA release by inhibiting the signaling over the D2
autoreceptor and the postjunctional D2 but not D1 signaling will
be reduced. This will result in increased D1 signaling in the D1
enriched direct pathway favoring motor initiation.

It is of substantial interest that DA D1 receptors are involved
in the modulation of DA D2 receptors induced by CCK receptor
subtypes in rat neostriatal membranes (Li et al., 1994a), in view
of the recent demonstration of DA D1–D2 heteromers by George
and O’Dowd (2007) operating via a calcium signaling pathway.
They have now been shown to exist in DA D1 expressing neurons
especially in nuc accumbens (20–30%) and in the globus pallidus
(59%; Hasbi et al., 2011). Our findings in 1994 (Li et al., 1994a),
which demanded the coexistence of D1 and D2 receptors in the
same striatal neurons, indicated that CCK-8 can reduce or increase
the affinity of DA D2 receptors in rat neostriatal membrane prepa-
rations depending on the activity at the D1 receptors which when
activated caused the CCK-8 to increase the affinity of the D2 recep-
tors instead of reducing it. Thus, D1 receptors exert a switching
role in the modulation of D2 receptors by CCK receptors. Our
hypothesis is that the molecular basis for this phenomenon is the
existence of CCK2-D1-D2 trimeric heteromers or trimeric recep-
tor mosaics in which the allosteric receptor-receptor interaction
between CCK2-D2 receptors becomes markedly altered through
the activation of the D1 receptor. In view of the fact that CCK2
receptor activation does not alter the binding characteristics of the
D1 receptors it may be that the receptor mosaic has a triangular
geometry.

It should be noticed that antipsychotic drugs, after subchronic
treatment, increase the CCK octapeptide tissue levels in striatum
and the meso-limbic system and remain increased even 4 weeks
after cessation of treatment (Frey, 1983). Thus, the blockade of
the D2 receptors results in a sustained increase in the expression of
CCK peptides which if leading to increased release may reduce the
affinity of the D2 receptors which may assist in the maintenance
of antipsychotic actions (see Fuxe et al., 2009).

DA, 5-HT and histamine afferents. The highly dense DA nerve
terminal plexa in the dorsal striatal cellular network originate from
the substantia nigra in the ventral midbrain (see Anden et al., 1964;
Fuxe et al., 1970b,c, 2007a), the moderately dense 5-HT nerve ter-
minal plexa from the midbrain raphe (Anden et al., 1965, 1966; see
Fuxe et al., 1970b,c, 2007a) and the histamine nerve terminal plexa
from the tubero-mammillary nucleus in the hypothalamus (Haas
and Panula, 2003). These three terminal networks originating from
the brainstem mainly operate via extrasynaptic transmission to
modulate the dorsal striatal cellular networks using various sub-
types of dopamine (D1–D5), 5-HT (Di Matteo et al., 2008) and
histamine (mainly H2–H3) receptors with extrasynaptic recep-
tors in dominance, see special issue on the basal ganglia (Fuxe
et al., 2008a). These receptors are located both on projection
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neurons and interneurons as well as on the afferent nerve ter-
minal networks. The DA and 5-HT signals can in part become
integrated via the existence of D2-5-HT2A heteromers (Borroto-
Escuela et al., 2010; Lukasiewicz et al., 2010; Albizu et al., 2011)
mainly located in the striato-pallidal GABA neurons. We found
that the 5-HT2AR-mediated phospholipase C (PLC) activation
was synergistically enhanced by the concomitant activation of the
D2LR and costimulation of D2LR and 5-HT2AR within the het-
eromer led to inhibition of the D2LR functioning, thus suggesting
the existence of a 5-HT2AR-mediated D2LR trans-inhibition phe-
nomenon (Borroto-Escuela et al., 2010). Furthermore, 5-HT2AR
expression is required to obtain the complete blockade of the
D2R antagonist haloperidol on the MK-801-induced increase in
locomotion (Albizu et al., 2011).

The DA and histamine signals can instead become integrated by
the existence of DA D1-histamine H3 receptor heteromers giving
a selective link to MAPK signaling in the striato-entopeduncular-
nigral GABA neurons forming the direct striatal pathway (Moreno
et al., 2010).

Through these different types of brainstem afferents, the
sensory-motor regulation of the dorsal striatum can obtain infor-
mation from a motor system favoring movements (the nigral
DA system), from an emotional system favoring an elevation
of mood (midbrain raphe 5-HT system), and from a sleep-
wakefulness system favoring arousal (the tubero-mammillary
histamine system).

Interneurons
Cholinergic interneurons. The large aspiny cholinergic interneu-
rons represent 1–3% if the striatal neurons and give rise to
highly dense nerve terminal plexus all over the cellular net-
works of the striatum and possess a slow firing tonic in nature
(for recent reviews see Pisani et al., 2007; Oldenburg and Ding,
2011). This plexus mainly operates via extrasynaptic transmis-
sion (Descarries and Mechawar, 2000) and modulates the trans-
mission of the medium spiny GABA projection neurons, the
different types of striatal interneurons and the striatal afferents
mainly via five subtypes of muscarinic receptors (M1–M5) but
also via nicotinic receptors (Figure 1). The striatal M1 recep-
tors are mainly present in the two major projection neurons, the
D2 enriched striato-pallidal GABA neurons and the D1 enriched
striato-entopeduncular-nigral GABA neurons (direct pathway).
It is mainly coupled to Gq/11 and signal by increasing intracel-
lular Ca levels and PLC and protein kinase C (PKC) activities.
In contrast, M4 is predominantly expressed in the direct path-
way and coupled to Gi/o reducing calcium channel activity and
activity in the AC-PKA-CREB intracellular pathway. M1 excites
the MSN and enhance their spiking by modulating potassium
and Cav channels and M4 differentially shapes these actions in
the striato-nigral GABA pathways by inhibiting the Cav chan-
nels (see Oldenburg and Ding, 2011). In addition, M2 and
M3 receptor activation on glutamate synapses modulates the
glutamate release in an inhibitory way also reducing the M1
induced excitatory effects on MSN. M4 receptors together with
M2 receptor, which is linked to Gi/o as well, are also located on
the cholinergic interneurons where they function as inhibitory
autoreceptors.

The role of endocannabinoids. It is of substantial interest that
another type of extrasynaptic transmission mediated by endo-
cannabinoids is involved in mediating the actions of M1 mediated
transmission of the cholinergic interneurons. Thus, long-term
synaptic depression in MSN is modulated by cholinergic interneu-
rons (Wang et al., 2006). M1 mediated actions at dendritic spines
of MSN leads to reduced activity of Cav1.3 channels which brings
down the formation and subsequent migration of endocannabi-
noids potentially located in microvesicles (Agnati et al., 2010a)
with reduced activation inter alia of the extrasynaptic CB1 recep-
tors on the glutamate terminals. In this way the synaptic glutamate
excitatory transmission is increased. However, DA extrasynaptic
transmission via D2 mediated inhibitory control of the cholin-
ergic interneurons will restore the activation of the retrograde
endocannabinoid signaling and LTD. The mGluR1/5 mediated
extrasynaptic transmission of glutamate also plays an important
role for LTD development since this receptor – through Gq/11
coupling leading to increased IP3 levels – will increase intracel-
lular Ca levels followed by activation of PLC and DAG lipase,
and increased formation of endocannabinoids and reduction of
excitatory glutamate transmission.

The complexity of the M1 mediated cholinergic actions on for-
mation of endocannabinoids, however, should be noticed since
at inhibitory GABA synapses located on the shafts of MSN the
M1 receptor activation leads to an increase in formation of endo-
cannabinoid 2-arachidonoylglycerol (2-AG) with increased CB1
receptor activity at the GABA synapses and suppression of synap-
tic GABA transmission (Narushima et al., 2007). The reason is
likely that in these microdomains the M1 excitatory coupling to
PLC and DAG lipase dominates and here also M1 likely acts syner-
gistically with mGluR1/5 to enhance 2-AG formation and thus the
retrograde inhibitory signaling on the GABA synapses (see Uchi-
gashima et al., 2007). It should be underlined that CB1 receptors
also exist in the striato-pallidal GABA neurons and in the striato-
entopeduncular-nigral GABA neurons (Martin et al., 2008) and
endocannabinoids can therefore exert direct actions on these neu-
rons reducing inter alia D2 signaling in the striato-pallidal GABA
neurons through participation in CB1-D2 heteromers and CB1-
D2-A2A trimers (Fuxe et al., 2008b; Marcellino et al., 2008). This
may be part of an inhibitory feedback since D2 receptor activa-
tion leads to an increased formation of anandamide (see Piomelli,
2003).

Recently muscarinic acetylcholine receptor homo- and hetero-
dimerization has been observed in live cells (Goin and Nathanson,
2006). The existence of high affinity M1–M2, M2–M3, and M1–
M3 mAChR heterodimers could be demonstrated and an increased
agonist induced downregulation of M3 developed when present
as a protomer in M2–M3 heteromers. Based on these findings it
will be of interest if in fact M2–M3 heteromers exist in the striatal
glutamate terminals where they are collocated. We are presently
studying to which extent striatal DA and cholinergic transmis-
sion can become integrated through the formation of different
types of heteromers of DA and muscarinic receptors, especially
D1-M4 (Figure 1), D2-M1, and D2-M4 heteromers. Such discov-
eries would open up new possibilities for treatment of Parkinson
disease and improve the use of muscarinic receptor antagonists
in the treatment of this disease based on an increased activity of

Frontiers in Physiology | Membrane Physiology and Biophysics June 2012 | Volume 3 | Article 136 | 8

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Membrane_Physiology_and_Biophysics
http://www.frontiersin.org/Membrane_Physiology_and_Biophysics/archive


Fuxe et al. Extrasynaptic neurotransmission on the striatal neuronal–glial networks

FIGURE 1 | Schematic representation of the postulated D1-M4 receptor

heteromers in the local striatal circuits of the striato-entopenduncular-

nigral GABA neurons. The D1-M4 receptor heteromers probably mainly exist
in an extrasynaptic location on the dendritic spines and on the dendritic shafts
of these neurons where inputs from striatal dopamine and cholinergic

transmission can become integrated through the formation of this
heteromers. The D1-NMDA receptor mosaics in the glutamate synapses are
also indicated. Thus, dopamine may diffuse into glutamate synapse to
modulate NMDA signaling unless D1 exclusively binds to extrajunctional
NMDA receptors.

the cholinergic neurons related to a reduced activation of the D2
receptors located on these neurons (Pisani et al., 2007). It has been
proposed that the adaptive changes taking place in PD involves an
increase in the formation of RGS4, a regulator of G protein signal-
ing which reduces the coupling of the M4 autoreceptor to the Cav2
calcium channels and to the potassium cannels leading to overac-
tivity of these interneurons (Ding et al., 2006; Pisani et al., 2007).
A new hypothesis may be that the disruption of the M4 autorecep-
tor function may be caused by dysfunction of a D2-M4 heteromer
located on the striatal interneurons due to the abnormal reduction
of D2 signaling in the D2 protomer in Parkinson disease.

The reason that anticholinergic drugs like scopolamine can
block catalepsy induced by both D2 and D1 receptor antago-
nists was in 1988 explained within the frame of the hypothesis
of different striatal efferent pathways one being D2 enriched and
the other D1 enriched (Ogren and Fuxe, 1988). The mechanism

may be the preferential enrichment of inhibitory M4 recep-
tors in the striato-entopeduncular-nigral GABA neurons vs. the
striato-pallidal GABA neurons both of which are enriched in exci-
tatory M1 receptors (see above). The results from the overall phar-
macological analysis of the catalepsy obtained, including the use
of benzodiazepine antagonists (Ogren and Fuxe, 1988), could be
explained on the basis of a circuitry involving D2 regulated striato-
pallidal GABA pathways and a D1 regulated circuitry involving D1
regulated nigro-thalamic GABA pathways. DA release and diffu-
sion in the zona reticulata of the substantia nigra may take place
from dendrites of nigral DA nerve cells via extrasynaptic transmis-
sion reaching inter alia D1 receptors on the striato-nigral GABA
terminals enhancing the release of GABA with increased inhibition
of the nigro-thalamic GABA pathway setting free the excitatory
thalamo-cortical system from the motor thalamus (Ogren and
Fuxe, 1988).
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GABA interneurons. The calcium binding protein parvalbu-
min positive aspiny GABAergic interneurons exist mainly in two
classes: the fast spiking interneurons and the low threshold spike
(LTS) interneurons (Kawaguchi, 1995; Tepper et al., 2008). They
are driven by cortico-striatal glutamate synapses and project to
the MSN and mediate powerful feed-forward inhibition of the
MSN via GABAergic synapses. These are striatal interneurons
where synaptic high speed GABA transmission dominates and
can profoundly bring down spiking in the MSN and controlling
its timing.

Other striatal GABAergic interneurons instead coexpress also
somatostatin, neuropeptide Y (NPY), and neuronal nitric oxide
synthase (NOS) and likely operate via both synaptic (GABA) and
VT (somatostatin, NPY, and NOS; see Figure 2).

They are evenly dispersed all over the striatum with wide-
spread collaterals and are neurophysiologically characterized as
LTS neurons with persistent depolarization (Kawaguchi, 1995).
They receive cortical glutamate inputs and likely mediate feed-
forward modulation of the striatal networks. Somatostatin and
NPY peptides may modulate the activity of the neuronal and glial
cell populations via extrasynaptic and long distance VT through
their striatal receptor subtypes (Figure 2). Rocheville et al. (2000)
have also demonstrated that somatostatin receptor 5 (SSTR5) can
form heteromers with D2 receptors which are formed after agonist
activation (Rocheville et al., 2000). Thus, again receptor-receptor
interaction in heteromers can play a role in the integration of

signals in the neuronal and glial networks of the brain (Agnati
et al., 2010b; Fuxe et al., 2010a,b). Heteromers between NPY Y1
and alpha2 receptors have also been indicated (Fuxe et al., 2008c).

Also nitric oxide (NO) is formed in these NOS positive cells
and diffuse into adjacent nerve, glial, and endothelial cells via VT
(Fuxe et al., 2010a; Figure 2). Most of them likely express solu-
ble guanylate cyclase which indicates that they are likely targets
for NO produced by the NOS positive GABA interneurons (see
Kawaguchi, 1995). This communication upon activation by gluta-
mate synapses of these neurons modulates transmitter release and
increases blood flow according to the pattern of cortico-striatal
glutamate projection activation of these neurons. This is likely
linked to the activation of discrete populations of striatal projec-
tion neurons. In this way the assemblies of activated glutamate pro-
jection neurons can perform their tasks in cellular networks that
adapt to this task to achieve an optimal sensory-motor function.

Adenosine as a VT signal in the striatal cellular networks.
Adenosine is an endogenous nucleoside mostly formed as a degra-
dation product of adenosine triphosphate (ATP) and to a lesser
degree from S-adenosyl-L-homocysteine (SAH) metabolism and
present in all cells of the striatal cellular networks and in the
ECS (Ferre and Fuxe, 2000; Ciruela et al., 2011). Upon adeno-
sine generation in neuronal and glial cells, it can be intracellularly
phosphorylated to form AMP, react with L-homocysteine to form
SAH or be eliminated out of the cells by means of ubiquitous

FIGURE 2 | Extrasynaptic and long distance volume transmission

in the positive somatostatin, neuropeptideY, and neuronal nitric

oxide synthase striatal GABAergic interneurons. Somatostatin and
NPY peptides may via extrasynaptic and long distance VT through

their striatal receptor subtypes modulate the activity of the neuronal
and glial cell populations. Also nitric oxide (NO) is formed in these
NOS positive cells and diffuse into adjacent nerve, glial, and
endothelial cells via VT.
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nitrobenzylthioinosine-sensitive equilibrative nucleoside trans-
porters (ENTs; Cunha, 2005). In the cellular networks, extracel-
lular adenosine can also derive from ATP released from nerve and
glial cells including release from glutamate terminals together with
glutamate. Intra- and extra-cellular adenosine can be deaminated
to form inosine by the action of intra and ecto-adenosine deami-
nase, respectively. In the nervous system the extracellular concen-
tration of adenosine raises as a function of the neuronal activity, it
acts as an energy-dependent neuromodulator through combined
presynaptic and postsynaptic actions through VT (Figure 3; Ferre
and Fuxe, 2000; Sebastiao and Ribeiro, 2000; Fredholm et al., 2005;
Ciruela et al., 2011). Therefore, extracellular adenosine regulates
several functions in the brain, including neuronal viability, neu-
ronal membrane potential, propagation of action potentials, astro-
cytic functions, microglia reactivity, primary metabolism in both
neurons and astrocytes, and blood flow (Ferre and Fuxe, 2000;
Fredholm et al., 2005; Ciruela et al., 2011).

The most abundant and homogeneously distributed adenosine
receptor in the brain is the extrasynaptic inhibitory A1R, which is
functionally coupled to members of the pertussis toxin-sensitive
family of G proteins (Gi/o) and whose activation regulates the
activity of membrane and intracellular proteins such as adenylate
cyclase, Ca2+ channels, K+ channels, and phospholipase C. In
contrast, the extrasynaptic A2AR is expressed at high levels in only
a few regions of the brain, namely the dorsal striatum, the olfactory
tubercle, and the nucleus accumbens. The A2AR is mostly coupled
to Gs in the peripheral systems but mediates its effects predomi-
nantly through activation of Golf in the striatum (see Ciruela et al.,
2011).

It is of substantial interest that adenosine receptor can form het-
eromers with extrasynaptic DA receptors and glutamate receptors
to modulate striatal cellular networks (Fuxe et al., 1998; Ciru-
ela et al., 2011). A1R has been found to heteromerize with the
dopamine D1 receptor (D1R), this phenomenon being essential

FIGURE 3 | Schematic representation of the extrasynaptic

transmission in the local circuits around the striatal glutamate

synapse of the striato-pallidal GABA neurons. Focus on the
glutamate, adenosine, and dopamine signal and the postulated A2A-D2,
A2A-D2-mGluR5, and D2-NMDA receptor heteromers. Different cell types

(microglia, astrocytes) can release both adenosine triphosphate (ATP)
and adenosine. In the nervous system the extracellular concentration of
adenosine raises as a function of the neuronal activity and acts as an
energy-dependent neuromodulator through combined presynaptic and
postsynaptic actions through VT.
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for differential desensitization mechanisms and for receptor traf-
ficking (Torvinen et al., 2002). It also contributes to reduce EEG
and behavioral arousal (Fuxe et al., 2007b). The heterodimer
composed by the A1R and the metabotropic glutamate type 1α

(mGlu1α) receptor seems to play a key role in preventing glutamate
excitotoxicity (Ciruela et al., 2001).

The A2AR possesses the ability to heteromerize with the DA D2
receptor (D2R; Figure 3; Hillion et al., 2002; Canals et al., 2003).
The latter receptor–receptor interaction underlies the molecular
mechanism behind the antagonistic adenosine-dopamine interac-
tions that regulate the function of the GABAergic enkephalinergic
striato-pallidal GABA neurons and reduces behavioral arousal
(Fuxe et al., 2007b). Finally, the A2AR also heteromerizes with
the metabotropic glutamate type 5 (mGlu5) receptor, and in this
case, a synergistic functional interaction has been demonstrated at
both biochemical and behavioral levels (Ferre et al., 2002). They
also synergize to bring down D2 receptor function in A2A-D2-
mGluR5 receptor mosaics located in the perisynaptic regions of the
glutamate synapses representing integrative heteromers for extra-
cellular adenosine, dopamine and glutamate signals (Cabello et al.,
2009; Ciruela et al., 2011) as early indicated in studies on receptor-
receptor interactions (see Popoli et al., 2001; Fuxe et al., 2003).
These extrasynaptic trimeric heteromers may represent centers for
integration of VT signals. In the integration of the synaptic and
extrasynaptic signals of the striatal networks the heteromeric com-
plexes between GPCRs and ion-channel receptors in the synaptic
regions play a special role inter alia D1-NMDA and D2-NMDA
and D5-GABAA heteromers (Liu et al., 2000, 2006; Lee et al., 2002).

CONCLUSIONS
Evidence is accumulating that extrasynaptic and long distance VT
plays a major role in communication within the neuronal–glial
networks of the brain as exemplified here within the striatal cellu-
lar networks. The integration of synaptic with extrasynaptic and
long distance VT signals may take place to a substantial degree via
the formation of receptor heteromers between ion-channel recep-
tors and GPCRs in the plasma membrane of synaptic regions. The
integration among VT signals may to a substantial degree occur
via GPCR heteromers including higher order heteromers in den-
drites, axon terminals, and soma including extrasynaptic regions.
This opens up a new way of understanding communication in
the CNS.
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