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The ability to breathe air represents a fundamental step in vertebrate evolution that was
accompanied by several anatomical and physiological adaptations. The morphology of the
air-blood barrier is highly conserved within air-breathing vertebrates. It is formed by three
different plies, which are represented by the alveolar epithelium, the basal lamina, and the
endothelial layer. Besides these conserved morphological elements, another common fea-
ture of vertebrate lungs is that they contain a certain amount of fluid that covers the alveolar
epithelium.The volume and composition of the alveolar fluid is regulated by transepithelial
ion transport mechanisms expressed in alveolar epithelial cells. These transport mech-
anisms have been reviewed extensively. Therefore, the present review focuses on the
properties and functional significance of the alveolar fluid. How does the fluid enter the
alveoli? What is the fate of the fluid in the alveoli? What is the function of the alveolar fluid
in the lungs? The review highlights the importance of the alveolar fluid, its volume and
its composition. Maintenance of the fluid volume and composition within certain limits is
critical to facilitate gas exchange. We propose that the alveolar fluid is an essential element
of the air-blood barrier. Therefore, it is appropriate to refer to this barrier as being formed
by four plies, namely (1) the thin fluid layer covering the apical membrane of the epithelial
cells, (2) the epithelial cell layer, (3) the basal membrane, and (4) the endothelial cells.

Keywords: alveoli, alveolar fluid, alveolar fluid transport, breathing, gas exchange, air-blood barrier, three-ply,
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OXYGEN UPTAKE IN VERTEBRATES
The transition from water to land constitutes a fundamental step in
vertebrate evolution. This transition brought new challenges that
required development of strategies to cover the oxygen demand
needed for respiration in order to utilize the production of ATP. In
all vertebrates specific surface structures were developed to facil-
itate the uptake of oxygen (Figure 1). The basic requirements
of these structures are defined by (1) compartmentalization to
increase the surface that is exposed to the breathing medium, (2) a
barrier sufficiently thin to facilitate gas diffusion, and (3) increased
vascularization of the gas-exchanging regions (Maina, 2002). The
first two requirements reflect adaptations to basic physical princi-
ples imposed by diffusion of molecules. The relationship between
these parameters that determine the rate of particle (gas) diffusion
across a layer (body surface) follows the Fick’s laws of diffusion
(Fick, 1855).

In aquatic vertebrates the exchange of breathing gases is com-
monly facilitated by gills, which represent specialized evaginations
of the body surface area (Maina, 2002), as illustrated in Figure 1.
Lungs were developed during the water-land transition as an adap-
tion to air-breathing. They represent invaginations of the body
surface area (Figure 1). Invagination of the gas-exchanging body
surface was a crucial step to avoid desiccation resulting from the
extensive loss of water by evaporation. This is a problem faced by all
organisms that live on land (including plants); only few organisms
can tolerate desiccation to equilibrium with air (Alpert, 2006).

The main advantage of breathing air is the expanded access
to oxygen, with constant levels of oxygen at different altitudes.
Furthermore, compared to water, air is a more suitable breathing

medium for various reasons: (1) the viscosity of air is much lower
than that of water, facilitating ventilation; (2) the concentration of
O2 is higher in air than in water; (3) the diffusion rates of O2 are
greater in air than in water. These differences reflect basic physical
principles between different states of aggregation (air/gas ←→
water/fluid) but they also represent constrains for covering the
oxygen demand under certain living conditions. For instance, it
has been demonstrated that air-breathing vertebrates can survive
by breathing oxygen-enriched liquids (Kylstra, 1974), although
ventilating liquid consumes much more energy than ventilating air
(Maina, 2000). In contrast, gills can take up oxygen, although they
adhere, and collapse when they are exposed to air. Their architec-
ture is not adapted to withstand the physical constraints imposed
by air (Maina, 2002). This becomes evident when fish are exposed
to air; they die from asphyxiation in spite of the fact that the oxy-
gen content of air is much higher than that of water. The cause
of death is desiccation of the gills that leads to adherence of the
gill filaments, which ultimately results in a gradual decrease of the
gas-exchanging surface area.

Regardless of the anatomical differences, gills and lungs rep-
resent specialized parts of the body surface area with particular
features that represent adaptations to living conditions. In the
sections that follow we discuss these requirements and adaptations
for the function of the lung as a gas-exchange organ.

EPITHELIAL CELLS FORM THE BODY SURFACE AREA OF THE
LUNGS
The surface of the lung is formed by a continuous layer of epithelial
cells, which are sealed together at their apical side (air-facing) by
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FIGURE 1 | Gas exchange can occur across the body surface simply by

diffusion. This is the case in small animals and microorganisms. In
vertebrates the diffusion rate across the body surface does not cover the
entire oxygen demand that is needed to facilitate metabolism. Therefore
parts of the body surface have been developed that are adapted for gas
exchange. A particular feature of these surfaces is represented by
compartmentalization to ensure sufficient gas diffusion. In water living
vertebrates the body surface area is enlarged toward the environment
whereas in air-breathing vertebrates the surface is invaginated to avoid
desiccation.

tight junctions. Correlating with their location and specific func-
tion, pulmonary epithelial cells exhibit different anatomical and
morphological properties. In general, one can differentiate air-
way epithelial cells and alveolar epithelial cells. Airway epithelial
cells, for example, have columnar/cuboidal shape and the bulk of
them are ciliated (Jeffery and Reid, 1975; Pack et al., 1981). By
contrast, alveolar epithelial cells lack cilia and their shape is opti-
mized to facilitate gas exchange. Accordingly, these cells are very
thin (0.1–0.2 μm) and elongated (Matthay et al., 2002). In mam-
malian lungs, two different types of alveolar epithelial cells have
been identified and named type I, and type II. Type I cells cover
almost 95% of the alveolar surface area, although they constitute
only 1/3 of the total number of alveolar epithelial cells (Stone et al.,
1992). By contrast, type II cells are relatively small and cuboidal.
They are more numerous than type I cells, although they cover
only the remaining 5% of the alveolar surface area (Stone et al.,
1992). From an evolutionary perspective the prototype of alve-
olar cells within air-breathing vertebrates is represented by cells
that are similar to type I alveolar epithelial cells. For instance, in
amphibian lungs only cells having a shape similar to that of alveolar

epithelial type I cells are found (Okada et al., 1962; Dierichs,
1973; Meban, 1973; Fischer et al., 1989). Type II cells, as found in
mammalian lungs, can be considered an adaption to the miniatur-
ization of the alveoli. These cells produce surfactant, which avoids
collapsing of the alveoli – a problem which is a consequence of
miniaturization (Daniels et al., 1994; Goerke, 1998). Therefore,
it can be hypothesized that the primary alveolar epithelial cells
developed during the transition from water to land were type I-
like epithelial cells. The differentiation of alveolar epithelial cells
(type I and type II), as observed in mammalian lungs, is likely
a consequence of alveolar miniaturization that occurred later in
evolution.

Interestingly, the basic architecture of the gas-exchanging
region in the distal parts of the lung is highly conserved within air-
breathing vertebrates (Amphibia, Reptilia, Aves, and Mammalia).
The architecture of this region has been referred to as the“three-ply
design” (Maina and West, 2005). This three-ply model consists of
three basic elements: (1) epithelial layer, (2) the basal membrane,
and (3), the endothelial cells (Figure 2).

Besides these three elements, the apical side of the epithelial
cells is entirely covered by a thin fluid layer (Figure 2). In the
airways this fluid layer is usually referred to as “airway surface
layer,” whereas in the distal lung region it is called “alveolar lining
fluid” (ALF). The present review focuses on the ALF in the distal
(gas-exchanging) regions of the lungs. We discuss the functional
significance of this fluid layer for proper lung function and pro-
pose that it should be considered as a fourth ply of the air-blood
barrier of air-breathing vertebrates.

WATER IN THE DISTAL LUNG
An example illustrating the fact that our lungs are “fluid-filled” is
the everyday life observation that breathing against a cold window
will immediately result in misted windows. The phenomenon is
due to condensation of exhaled water originating from the lungs.

How much fluid our lungs have? The fluid content in the lungs
is distributed in three different compartments: (1) capillaries, (2)
interstitial space, and (3) alveolar airspace (Figure 3). The capillar-
ies contain ∼65 ml fluid (Levis et al., 1959) and the extravascular
fluid is estimated to be <500 ml (Lindert et al., 2007). The bulk
extravascular fluid fills the interstitial spaces, whereas only a small
fraction is localized in the alveoli. The fluid within the alveoli,
often referred to as alveolar fluid, is part of the alveolar surface
network (Scarpelli, 2003). This network within the alveoli can be
envisaged as a foam made of surfactant and water. The foam forms
a network within the alveoli and has a gas:fluid volume ratio of
900:1 (Scarpelli, 2003). Part of the fluid of the alveolar surface net-
work covers the entire apical surface of the alveolar epithelial cells
(Bastacky et al., 1995) as illustrated in Figure 2, whereas another
portion of the fluid flows through nanometer-thin tunnels formed
by the surfactant (Scarpelli, 2003), as illustrated in Figure 3.

The intermediate surface area of the human lung is ∼130 m2

(Weibel, 2009) and is mostly constituted by the alveolar region.
The average fluid surface height in the alveoli is ∼0.2 μm (Bastacky
et al., 1995). From these values (surface area and fluid height) the
alveolar fluid content can be estimated to be ∼36 ml. It has been
suggested that most of this fluid covers the apical alveolar surface
of the epithelial cells (Figure 3). This might be an underestimation
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FIGURE 2 | Diagram illustrating a cross section of the distal part of a

vertebrate lung displaying the elements forming the air-blood

barrier. The diagram is based on an original electron micrograph of a
cross section of a lung of Xenopus laevis (Fischer et al., 1989). The
Air-blood barrier is formed by the epithelium, the basal lamina, and the

endothelium. The apical side of the epithelium is covered with a fluid
layer (alveolar fluid, blue color). AF, alveolar fluid; EDC, endothelial cell;
EPC, epithelial cells; RBC, red blood cell. The box represents a
magnification of the air-blood barrier depicting the distinct layers. The
basal lamina (BL) is clearly visible.

since there is additional fluid flowing through the tunnels of the
alveolar surface network (Scarpelli, 2003), which is not considered.

It is estimated that approximately one fourth of the daily water
requirements of a human being are used up by water loss during
respiration (Kleiner, 1999). Thus, assuming that a 70-kg human
needs ∼2900 ml of water per day (Kleiner, 1999) ∼725 ml/day
of this water will be lost due to respiration. This water fraction
originates primarily from fluid in the alveoli and yet the alveo-
lar fluid volume is kept constant. This indicates that the alveolar
fluid volume is replaced ∼20 times/day. Clearly, water loss due

to respiration and its replacement from the internal water body
content is a dynamic process that must be tightly regulated.

Where does this water come from? What is its functional
significance?

EVOLUTIONARY ORIGIN
The ALF might be regarded as an evolutionary vestige from the
origin of life in water (Weibel et al., 1993; Bastacky et al., 1995;
Daniels and Orgeig, 2003). In fact, from fish to mammals, the lungs
of air-breathing vertebrates contain water, part of which forms a
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FIGURE 3 | Circular flow of water in the lung. The water within the alveoli
originates from the pulmonary capillaries. The bulk of fluid in the mammalian
lung is supposed to be localized in the interstitial space of the lung. From here
the greatest part is drained (1) via the pulmonary lymphatic system and thus
returned to the vascular system. A small portion of the fluid within the

interstitial space enters the alveoli (2). From the fluid inside the alveoli one
part evaporates and is exhaled during respiration (3). In order to balance the
fluid content in the alveoli, another part of the alveolar fluid is reabsorbed (4)
by the activity of the alveolar epithelial cells back to the interstitial space from
where it can be drained (1) back to the vascular system.

thin layer covering the entire epithelia in the gas-exchange regions
of the lungs (Daniels and Orgeig, 2003). A possible explanation
of why this fluid is “conserved” during vertebrate evolution is the
well-known fact that living eukaryote cells (including pulmonary
epithelial cells) can only survive in an aqueous milieu. Water is nec-
essary for electrolyte equilibrium, the assembly of proteins as well
as the integrity of the lipid bilayer that forms the cell membrane
(Billi and Potts, 2002). If pulmonary epithelial cells were directly
exposed to air, they would die from desiccation within minutes.
At this point we must consider that body surfaces directly exposed
to air (e.g., the human skin) are usually formed by a multi-layered
epithelium, which outermost layer consists of dead cells.

PHYSIOLOGICAL ORIGIN
As mentioned earlier, a significant amount of water is exhaled dur-
ing respiration and needs to be replaced from the body interior.
Two different mechanisms have been proposed to explain water
movement into the alveoli: (1) A pressure gradient between the
capillaries/interstitium and the alveolar airspace (which equals
more or less the atmospheric pressure). This gradient leads to
filtration of fluid into the alveoli. According to Starling’s basic
concept, the movement of water across a capillary is determined
by pressure and osmotic gradients between the capillaries and
the interstitium (Aukland, 1984). The same principle(s) might
account for the flux of water from the interstitium to the alveo-
lar airspace. Water transport in this context has been suggested to
occur via paracellular pathways, the rate-limiting step being the

resistance of the tight junctions. The concept of osmotically dri-
ven or hydrostatic pressure-driven water flux into the airspace
is supported by the fact that alveolar water accumulation can
be observed as a consequence of an increased pressure gradient
and/or a leaky epithelial barrier – a pathological situation known
as pulmonary edema. This is evident in patients having increased
pulmonary blood pressure, e.g.,due to heart failure (Murray,2011)
or hypoxic pulmonary vasoconstriction at high altitudes and/or
low oxygen levels (Maggiorini, 2006), or tissue damage with dis-
ruption of the alveolar-capillary barrier (Murray, 2011) – both
being factors leading to the development of edema.

(2) Water is secreted by the alveolar epithelial cells. There is
evidence that Cl– secretion by alveolar epithelial cells is accompa-
nied by water flow from the interstitium to the airspace (Lindert
et al., 2007). However, the mechanisms by which water is trans-
ported across alveolar epithelial cells leading to the formation of
alveolar fluid are not understood. There is evidence that water can
be transported even against osmotic gradients (Zeuthen, 2010) by
coupling its movements to the transport of a substrate that ener-
gizes its uphill transport. Likely molecules for such a mechanism
are the Na+/K+/2Cl– cotransporter NKCC1 (Hamann et al., 2010)
and some K+/Cl– cotransporters (Zeuthen, 2010). The activity of
the basolaterally localized NKCC1 of alveolar epithelial cells could
mediate the uptake of water into the epithelial cells, a hypothesis
that needs to be tested. The exit pathway in the apical membrane,
at least in type I cells, could be AQP5 known to be expressed in
the apical membrane of these cells (Verkman, 2007). Other pos-
sible candidates are the K+/Cl− cotransporters but so far there
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is no evidence for their expression in these cells. At present, the
mechanisms by which water is transported into the alveolar air-
space remains to be elucidated. None of the possible mechanisms
considered above are mutually exclusive. Mechanisms of water
transport across alveolar epithelial cells are further discussed below
in Section “Transepithelial Routes for Water Transport From the
Airspace to the Interstitium.”

WHAT IS THE FATE OF THE WATER IN OUR ALVEOLI?
As already mentioned, part of the water from the surface of
the lungs evaporates and leaves the body during exhalation. The
amount of water exhaled is estimated to be ∼700 ml/day. To main-
tain the amount of water covering the alveolar surface constant,
the water loss by exhalation must be replaced with water from
the capillaries and/or interstitium. Independently of the mecha-
nisms by which water is transported to the alveolar surface (see
Physiological Origin), two questions arise: (1) how alveolar water
content is sensed? and (2) which are the mechanisms that keep the
alveolar water at constant levels? i.e., how alveolar water content is
regulated and maintained at a constant level?

The first question has a simple answer: we do not know! The
only thing that is clear is that alveolar water originates from
the interstitial space and from the pulmonary blood capillaries
(Figure 3). As for the second question: fluid reabsorption from
the alveolar airspace, i.e., the apical side of the alveolar epithelium,
is a possible mechanism involved in regulating the content of water
in the alveoli. There is a convincing body of evidence demonstrat-
ing that Na+ absorption is a major function of alveolar epithelial
cells (Hollenhorst et al., 2011). The vectorial transport of Na+
across the alveolar epithelium generates an osmotic gradient which
causes the reabsorption of water from the apical side to the intersti-
tium (Dobbs and Johnson, 2007). Control of Na+ reabsorption by
regulating the activity of the involved proteins (Na+ channels and
the Na+/K+-ATPase) allows regulation of both the osmotic gradi-
ent and the rate of water transport across the epithelium. Most of
the reabsorbed fluid in the interstitial space is drained by the pul-
monary lymphatic system (Staub, 1970; Aukland and Reed, 1993;
Murray, 2011). Thus, ion transport by alveolar epithelial cells,
Na+ reabsorption in particular, represents a major mechanism
in alveolar fluid balance. In sum, alveolar water either evaporates
through exhalation, or it is reabsorbed by the alveolar epithelium
and eventually drained through the pulmonary lymphatic system
(Figure 3).

FUNCTION, MALFUNCTION, REGULATION, AND TRANSPORT
ROUTES OF THE ALVEOLAR FLUID
From the previous sections of this review we conclude that the
fluid volume in the alveoli must be tightly regulated. Now we
focus on the functions of the alveolar fluid and its importance for
pulmonary physiology. We further discuss the basic mechanisms
underlying alveolar fluid regulation and water reabsorption across
the alveolar epithelium.

FUNCTIONS OF THE ALVEOLAR FLUID
(1) The alveolar fluid functions as a protection layer. The fluid

represents the outermost layer of the alveolar surface that is
directly exposed to air and thus to the environment. Alveolar

fluid prevents desiccation of the epithelial cells and also func-
tions as a physical protection barrier against inhaled particles
and irritants. These functions of the alveolar fluid cannot be
overemphasized considering that we breathe more than 7000
liters of air per day – including pollution particles and a variety
of pathogens (Martin, 2000).

(2) Alveolar fluid also works as a solvent for various factors and
compounds that are crucial for lung function such as the mol-
ecules that constitute the surfactant, antimicrobial peptides,
or cytokines (Figure 4). The pulmonary surfactant in partic-
ular has been considered as “. . .the key to the evolution of
air-breathing. . .” (Daniels and Orgeig, 2003). The surfactant
reduces the alveolar surface tension at the air-liquid interface.
Such surface-active agents have been identified in the lungs
of all air-breathing vertebrates (Orgeig et al., 2007) including
air-breathing fish (Daniels et al., 2004). The development of a
surfactant system is thus crucial for air-breathing. As pointed
out in Section “Epithelial Cells Form the Body Surface Area
of the Lungs” of the present review, the compartmentaliza-
tion and miniaturization of lungs during vertebrate evolution
would have not been possible without those molecules. Con-
versely, the alignment of the amphiphilic surfactant molecules,
which is necessary to fulfill their function as part of the alveo-
lar surface network and to minimize lung compliance, would
not be possible without water in the alveoli.

(3) Alveolar fluid also plays a critical role in the immune system
intrinsic to the lungs; it constitutes the environment of alve-
olar macrophages (AMs), as illustrated in Figure 4. AMs are
part of the innate immune system in the distal lung (Lam-
brecht, 2006) where they are covered by the alveolar fluid
(Bachofen and Schurch, 2001). They phagocytose inhaled par-
ticles that are trapped by the alveolar fluid thereby keeping it
sterile (Ng et al., 2004). To be able to carry their function, AMs
need to move and this is only possible in a liquid environment.
Besides AMs, there are various substances in the alveolar fluid
that are part of the innate pulmonary immune system. These
include the immune-reactive surfactant proteins A and D, β-
defensin, as well as pro- anti-inflammatory cytokines that are
produced and released either by AMs or by the epithelial cells
(Ng et al., 2004), as illustrated in Figure 4. The function of
these antimicrobial proteins is also determined by the com-
position of the alveolar fluid. For instance, a change in pH of
the alveolar fluid is sufficient to influence the innate immune
response (Ng et al., 2004). Further, the activity of defensins
depends on the ionic composition of the alveolar fluid (Ganz,
2003).

(4) Alveolar fluid mediates gas transfer (Figure 4); as a fluid layer
at the apical side of the alveolar epithelial cells it contributes
to the diffusion distance for breathing gases. Increasing the
amount of water of the ALF, for example, will increase its
height (volume). This also increases the diffusion distances
for O2/CO2, which affects – in accordance to Fick’s law of
diffusion – the rates of diffusion of these gases (Weibel et al.,
1993; Sznajder, 2001; Hoschele and Mairbaurl, 2003). In addi-
tion, the diffusion rate of gases can be influenced by the
chemical composition of the alveolar fluid and the surfactant
(Ladanyi et al., 1992; Connor et al., 2001). Furthermore, there
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FIGURE 4 | Scheme that illustrates the interrelationship of alveolar

fluid transport and the physiological functions related to the

composition and volume of the alveolar fluid (AF). The volume and
composition of the AF is regulated by transepithelial ion transport
processes. The fluid volume and the composition of the AF is a critical
factor that influences gas exchange as well as innate immunity responses
in the lung. This is due to the fact that the volume of the AF influences gas

exchange since the fluid is part of the diffusion distance for the breathing
gases. In addition, there is evidence that the surfactant molecules within
the AF affect the diffusion of gasses. Further, the composition of the AF
influence the activity of different factors that dissolved in the AF and these
factors are part of the innate immune system in the lung (e.g., surfactant,
antimicrobial peptides, defensins, cytokines as well as the immune cells
such as alveolar macrophages).

is evidence that the rate of water evaporation is also influenced
by the composition of the alveolar fluid (Rantamaki et al.,
2011).

MALFUNCTIONS OF THE ALVEOLAR FLUID
The functions of alveolar fluid are disturbed by changes in its water
volume. There are several pathologic conditions associated with
malfunction of alveolar fluid. For example, the accumulation of
alveolar fluid occurring under pulmonary edema (independent
of its cause) leads to inefficient blood oxygenation and thus to
hypoxia (Althaus et al., 2011). Interestingly, the formation and/or
resolution of pulmonary edema are tightly linked to transepithe-
lial ion transport processes of alveolar epithelial cells. For example,
there is evidence that hypoxia (e.g., as observed in high altitudes, or
as a consequence of edema formation) correlates with a decreased
expression of ion transport proteins in alveolar epithelial cells
(Planes et al., 1996, 2002; Mairbaurl et al., 1997; Wodopia et al.,
2000). Independent of the cause of “water flooding” epithelial
ion channels and transporters are major targets of new therapeu-
tic interventions in patients with pulmonary edema (Davis and
Matalon, 2007).

By contrast to conditions leading to pulmonary edema, the
hyperabsorption of ions, and fluid by the alveolar epithelial cells
is also critical. Although there are no studies demonstrating
that decreased volume of the alveolar fluid is associated with
pathological conditions, this is evident in the airway disease cystic
fibrosis. In these patients a mutated Cl− channel, Cystic Fibrosis

transmembrane conductance regulator (CFTR; Riordan et al.,
1989) causes thickening of the airway surface layer due to dehy-
dration (Clunes and Boucher, 2007). This results in impaired
mucociliary clearance. Although the mechanisms underlying alter-
ations in ion transport function at the onset and progression of
cystic fibrosis lung disease are still under debate, it is evident that
mucus dehydration due to impaired ion transport mechanisms is
a prerequisite for the onset of the disease (Clunes and Boucher,
2007; Stoltz et al., 2010).

Although the above example describes the situation in the
airways and not in the alveoli, it is reasonable to assume that dis-
turbances in ion transport mechanisms in patients with cystic
fibrosis also affect lung functions in the alveolar region. Con-
sistent with this idea, increased inflammation of the distal lung
regions has been observed in transgenic animals that develop
cystic fibrosis lung disease (Mall et al., 2004; Stoltz et al., 2010;
Kimura et al., 2011). Two possibilities might explain the increased
inflammation in the distal lungs of these transgenic animals: (1)
decreased mucociliary clearance in the airways resulting in accu-
mulation of pathogens in the distal lung; or (2) alterations in
volume and composition of the alveolar fluid that influence the
activity of AMs (Ganz, 2003; Ng et al., 2004). Given that ALF is
critical for innate immune defense (see Functions of the Alveolar
Fluid), it is reasonable to hypothesize that the innate immune
response within the alveoli is also affected by changes in the
alveolar fluid composition in patients with cystic fibrosis lung
disease.
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REGULATION OF ALVEOLAR FLUID COMPOSITION: ION TRANSPORT
MECHANISMS REGULATE THE WATER CONTENT IN THE ALVEOLI
Based on the evolutionary origin of alveolar fluid as well as its
physiological and pathophysiological importance for lung func-
tion, it seems obvious to assume that the evolution of vertebrate
lungs was accompanied by the development of epithelial ion trans-
port mechanisms. These mechanisms are crucial in controlling the
volume and composition of the alveolar fluid. Active ion trans-
port processes in alveolar epithelial cells generate transepithelial
osmotic gradients that provide the driving force for passive dif-
fusion of water (Matthay et al., 2002; Hollenhorst et al., 2011),
as illustrated in Figure 5. Alveolar epithelial cells are charac-
terized by their ability to reabsorb Na+ from the alveolar fluid
by a two-step process: an electrochemical gradient ensures Na+
influx via Na+ permeable channels such as Epithelial Na+ Chan-
nel (ENaC). These channels are localized in the apical membrane
of the epithelial cells. Subsequently, Na+ is extruded across the
basolateral membrane via the Na+/K+-ATPase (Figure 5), a mech-
anism identified by Koefoed-Johnsen and Ussing (1958) in frog
skin preparations. This regulatory principle for balancing ion
homeostasis is highly conserved in evolution; it has been identified
in annelids (Weber et al., 1993; Krumm et al., 2005) and facilitates
electrolyte and water transport and balance in multiple vertebrate
organs, such as kidneys or the colon (Garty and Palmer, 1997).

Although the mechanisms of Na+ reabsorption by the con-
certed activity of ENaC and the Na+/K+ ATPase are well described
in alveolar epithelial cells, relatively little is known about the dis-
tinct contribution of Cl− and K+ channels. For example, data
concerning the role of CFTR in the distal lung epithelium are
conflicting. Some authors suggest that CFTR participates in Cl−
uptake and thus Cl− reabsorption (Fang et al., 2006), whereas

others have demonstrated that CFTR is involved in Cl− secretion
(Lindert et al., 2007; Sommer et al., 2007). These discrepancies
might be due to the use of different models and techniques. Nev-
ertheless, these examples show the need of further studies to clarify
the contribution of CFTR and Cl− transport in the regulation of
alveolar fluid.

A long-neglected but likely decisive factor for balancing Na+
reabsorption (Wilson et al., 2006; Greenwood et al., 2009) and Cl−
secretion (Mall et al., 2000, 2003) are K+ channels. K+ channels
regulate the membrane potential of the epithelial cells and con-
sequently the driving force for electrodifussional Na+ influx and
Cl− efflux. Until now, a tremendous heterogeneity of K+ chan-
nels (transcripts of ∼40 different types of K+ channels) has been
identified in the lung (Bardou et al., 2009). Paradoxically, our
knowledge about the physiological role of K+ channels in pul-
monary epithelial cells is limited to their role in the maintenance
and control of the membrane potential. The question arises as to
why pulmonary epithelial cells need so many different types of K+
channels.

The above examples on the role of CFTR and K+ channels
in alveolar epithelial cells make evident that the machinery of
transepithelial ion transport processes in the alveoli is poorly
understood. Furthermore, our picture about these processes is
based primarily on functional electrophysiological studies per-
formed under quiescent conditions. However, the lung is a highly
dynamic organ whose cells are permanently exposed to different
physical forces (e.g., strain and shear stress). There is preliminary
evidence that physical forces that appear under normal breath-
ing conditions can also influence ion transport processes in the
alveolar region (Bogdan et al., 2008) and in the airways (Tarran
et al., 2006).
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FIGURE 5 | Scheme illustrating the main ion transport proteins of

alveolar epithelial cells (alveolar type I: AT I in red and alveolar type II: AT

II in yellow) participating in transepithelial ion transport. Findings
depicted in this figure are primarily derived from studies investigating the
expression/presence of the molecules. ENaC, epithelial Na+ channel; CNG,
cyclic-nucleotide-gated channel; Kv, voltage-gated potassium channels;
Na+/K+-ATPase, sodium/potassium ATPase; Kir, inward rectifying K+ channel;

KCa, calcium-activated potassium channel; CFTR, cystic fibrosis
transmembrane conductance regulator; ClC, voltage-sensitive Cl- channels;
GABAA, γ-aminobutyric acid type A Cl- channel; NKCC, sodium/potassium
two chloride cotransporter; AE, anion exchanger). AT I cells are similarly
equipped with ion transporting proteins. In addition these cells express
aquaporin 5 (AQP5) in the apical membrane. The molecular identity of the K+

channel described is unknown (Figure modified from Hollenhorst et al., 2011).
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TRANSEPITHELIAL ROUTES FOR WATER TRANSPORT FROM THE
AIRSPACE TO THE INTERSTITIUM
The mechanisms of water transport across alveolar epithelial cells
are poorly understood. Some of the possible water transport routes
and mechanisms were discussed in Section “Physiological Origin.”
Here we further discuss two of these mechanisms.

(1) Water is absorbed from the airspace by a transcellular route via
aquaporins. Identification of aquaporins in alveolar epithelial
cells suggested that this might be a mechanism for alveolar
water transport. Indeed, high levels of aquaporin 5 have been
identified in the apical membrane of alveolar epithelial cells
(Johnson et al., 2006; Verkman, 2007; Figure 5). However,
to date, no water channel has been identified on basolateral
membranes of alveolar epithelium. Moreover, the results from
studies using aquaporin-deficient mice do not clarify the role
of these channels in fluid homeostasis; aquaporin-deficient
mice did not exhibit the expected severe phenotypes with
regard to distal lung fluid homeostasis (Verkman, 2007).

(2) Water can be absorbed through paracellular,“transjunctional”
pathways driven by local osmotic and electrical gradi-
ents (Fischbarg, 2010). A major argument in favor of
this view is the fact that only small effects on water
transport were detected in aquaporin-deficient animals

(Verkman, 2007). This means that the water transport capacity
of epithelial tissues in these animals was not significantly
affected, whereas their cell membrane permeability for water
was drastically decreased (Fischbarg, 2010).

SUMMARY AND CONCLUSION
We conclude that: (1) the alveolar fluid is highly conserved within
all air-breathing vertebrate classes and that it is a characteristic
and crucial element of the blood-gas barrier; (2) the alveolar fluid
originates from the inside of the body and it is necessary for sev-
eral physiological functions enabling effective gas exchange. (3)
Conditions accompanied by impaired alveolar fluid content and
composition are associated with severe diseases. (4) There are ion
and water transport mechanisms that regulate and maintain the
water content of the alveolar fluid. However, these mechanisms are
far from being understood. Clearly, the alveolar fluid is an anatom-
ically and physiologically essential part of the alveolar-capillary
barrier. We suggest that the air-blood barrier in air-breathing ver-
tebrates is formed by four plies instead of three, as suggested in
recent models.
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