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Uncontrolled diabetes mellitus results in osmotic diuresis. Diabetic patients have lowered
nitric oxide (NO) which may exacerbate polyuria. We examined how lack of NO affects the
transporters involved in urine concentration in diabetic animals. Diabetes was induced in
rats by streptozotocin. Control and diabetic rats were given L-NAME for 3 weeks. Urine
osmolality, urine output, and expression of urea and water transporters and the Na-K-2Cl
cotransporter were examined. Predictably, diabetic rats presented with polyuria (increased
urine volume and decreased urine osmolality). Although metabolic parameters of con-
trol rats were unaffected by L-NAME, treated diabetic rats produced 30% less urine and
osmolality was restored. UT-A1 and UT-A3 were significantly increased in diabetic rat inner
medulla. While L-NAME treatment alone did not alter UT-A1 or UT-A3 abundance, absence
of NO prevented the upregulation of both transporters in diabetic rats. Similarly, AQP2
and NKCC2 abundance was increased in diabetic animals however, expression of these
transporters were unchanged by L-NAME treatment of diabetes. Increased expression of
the concentrating transporters observed in diabetic rats provides a compensatory mecha-
nism to decrease solute loss despite persistent glycosuria. Our studies found that although
diabetic-induced glycosylation remained increased, total protein expression was decreased
to control levels in diabetic rats treated with L-NAME. While the role of NO in urine con-
centration remains unclear, lowered NO associated with diabetes may be deleterious to
the transporters’ response to the subsequent osmotic diuresis.
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INTRODUCTION
Diabetes mellitus (DM) is one of the leading causes of death in
the United States and is the most common cause of end-stage
renal disease (Centers for Disease Control and Prevention, 2008).
Advancing diabetes results in osmotic diuresis and polyuria plac-
ing the patient at risk for hypovolemic shock. Urea transporters,
UT-A1 and UT-A3, and the Na+-K+-2Cl– cotransporter (NKCC2)
are solute transporters that are not only critical for urine concen-
tration but also control tubule osmotic pressure via regulation of
urea and sodium levels. In the inner medulla (IM), the vasopressin-
sensitive water channel aquaporin 2 (AQP2) is an important
contributor to water reabsorption. The ensuing osmotic diure-
sis and polyuria that occurs with advancing diabetes makes these
transporters of particular interest for our studies.

Evidence suggests that the decline in renal function associated
with advancing diabetes is due to a prolonged state of nitric oxide
(NO) deficiency (Huang et al., 2009). NO is generated from nitric
oxide synthase (NOS). There are three distinct isoforms of this
enzyme, all of which are expressed in the kidney: NOS1 (neuronal
or nNOS), NOS2 (inducible or iNOS), and NOS3 (endothelial
NOS or eNOS; Wu et al., 1999). Patients with deleterious poly-
morphisms of NOS3 are more susceptible to developing diabetic
nephropathy (He et al., 2011); an effect that was confirmed in
NOS3 deficient mice with diabetes (Zhao et al., 2006). The decline
in NOS activity in the renal medulla is not however, altered by
glucose-dependent osmotic diuresis alone (Lee et al., 2005).

This does not exclude NO involvement in the urine concentra-
tion mechanism. In fact, the IM, which is the primary site of urine
concentration, expresses all three isoforms of NOS and has the
highest capacity for NO synthesis compared to other nephron seg-
ments (Wu et al., 1999). Similar to uncontrolled DM, transgenic
mice with all three NOS isoforms ablated also display polyuria
(Morishita et al., 2005).

Although not extensive, there is increasing data investigat-
ing the effect of NO on the transporters involved in urine
concentration. NO stimulates a cGMP-mediated pathway that
results in phosphorylation and trafficking of AQP2 to the api-
cal plasma membrane of the inner medullary collecting duct
(IMCD) where the transporter is functional (Bouley et al.,
2005). NO inhibits NKCC2, hindering sodium transport in
the thick ascending limb (Herrera et al., 2009). Urea trans-
port does not appear to be affected by either cGMP or NO
(Nonoguchi et al., 1988). Rather, inhibition of NO produc-
tion increases concentrations of superoxide (O−

2 ) which results
in increased urea transport in the IMCD (Zimpelmann et al.,
2003).

Declining NO concentration in the diabetic kidney may
exacerbate the potential for hypovolemic shock by further dis-
turbing the urine concentration mechanism, which is already
compromised by osmotic diuresis. Therefore, the present study
was designed to investigate if the diabetes-driven compen-
satory action of various transporters involved in concentrated
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urine production is compromised in the absence of NO
production.

MATERIALS AND METHODS
ANIMALS
Animal protocols were approved by the Emory University Institu-
tional Animal Care and Use Committee. Male Sprague Dawley rats
weighing 150–200 g, were allowed free access to water and fed stan-
dard rat chow. Rats were injected (tail-vein) with streptozotocin
(62.5 mg/kg) to induce DM, as reported previously (Blount et al.,
2008). Hyperglycemia was verified 24–48 h after injection using
a Lifescan Ultra II glucometer. Control and DM rats were given
l-NAME (50 mg/kg/day) via 5 ml of drinking water for 3 weeks
following the 4-days after STZ injection. After the rat consumed
the full dose of l-NAME, the regular water bottle was provided for
ad libitum water for the remainder of that 24-h period. This was
repeated each day.

METABOLIC MEASUREMENTS
Rats from all four experimental groups were placed in metabolic
cages for 24 h before sacrifice and urine was collected under oil to
prevent evaporation. Urine osmolality was measured on Wescor
5520 Vapor Pressure Osmometer (Wescor). Urine urea concentra-
tion was determined using Infinity Urea Reagent from Thermo Sci-
entific (Thermo Fisher Scientific). Urinary nitrate/nitrite (NOx)
levels were measured in urine as nitric oxide metabolites using a
Cayman Fluorometric Assay. Blood glucose was determined before
sacrifice with the glucometer.

SAMPLE PREPARATION AND WESTERN BLOT ANALYSIS
Kidneys were removed and dissected into outer medulla (OM),
base of the IM, and tip of the IM. Tissues were placed into ice-cold
isolation buffer (10 mM triethanolamine, 250 mM sucrose, pH
7.6, 1 μg/ml leupeptin, and 40 μg/ml PMSF) and homogenized
with glass homogenizers. SDS was added to a final concentra-
tion of 1%, and the samples were sheared with a 25-gage needle.
Homogenates were centrifuged at 8,000 g for 15 min, and the
protein in the supernatant fractions was measured by a modi-
fied Lowry method (DC Protein Assay Kit; Bio-Rad). For western
blot analysis, proteins (10–20 μg/lane) were first size separated by
SDS-PAGE and then electroblotted to polyvinylidene difluoride
membranes (Millipore). Membranes were probed with primary
antibody overnight at 4˚C. Antibodies that were derived and char-
acterized in this laboratory include a COOH-terminal UT-A1
(detects UT-A1 exclusively), NH2-terminal UT-A1 (detects UT-
A1 and UT-A3 simultaneously), AQP2, and NKCC2 were used to
determine the level of respective protein abundances (Blount et al.,
2008). The secondary antibody used for detection was Alexa Fluor
680-linked anti-rabbit IgG (Invitrogen). Signal was detected with
a LI-COR system. Using LI-COR Odyssey software, densitome-
try was determined for each protein. Results reflect the ratio of
the densitometry of the detected protein to the densitometry of
β actin where β actin (antibody from Sigma Aldrich) served as a
loading control.

STATISTICAL ANALYSIS
Values are SE from each experimental group where n = 5. Densito-
metry ratios were calculated based on β actin loading controls. The

densitometries from each group of animals were averaged and the
data were presented as means ± SE for the percent change from
the control value. To test for statistical significance between the
multiple groups, we used an ANOVA followed by Newman–Keuls
test. The criterion for statistical significance was p < 0.05.

RESULTS
ADMINISTRATION OF L-NAME ALTERS METABOLIC PROGRESSION OF
DIABETES
Age-matched male Sprague Dawley rats from the following exper-
imental groups were individually placed in metabolic cages to
monitor physiological changes for 24 h: (1) control rats, (2) rats
treated with l-NAME, (3) DM rats, and (4) DM rats treated with
l-NAME (Table 1). DM animals showed elevated blood glucose
at the time of sacrifice confirming hyperglycemia. l-NAME did
not change blood glucose levels of either control or DM animals.
DM rats had a higher urine output and lower urine osmolality
than control animals. l-NAME-treated animals did not have a sig-
nificant increase in urine volume compared to control animals
however, urine osmolality was significantly decreased. l-NAME
treatment of DM animals decreased urine output compared to
untreated DM rats. These animals still produced a greater vol-
ume of urine than the control animals. Although urine osmolality
of l-NAME-treated DM animals was higher than untreated DM
rats, the reported value did not reach significance. Rats treated
with l-NAME had no change in urine urea however DM rats had
a significantly lower urine urea corresponding with the osmo-
lality decrease. l-NAME treatment of DM rats slightly increased
urine urea. While this change was not significant from DM values,
the amount of urine urea was not different than control rats. To
reflex the amount of nitric oxide excreted in the urine, we mea-
sured urinary nitrate/nitrite (NOx) levels. NOx levels were lowered
68% in rats treated with l-NAME when compared to control ani-
mals, confirming that l-NAME was inhibiting the production of
nitric oxide. Diabetic rats also had lowered urine NOx levels (77%)
compared to control rats. This is not surprising given that NO con-
centration is lower in kidneys of STZ-injected diabetic rats (Palm
et al., 2005). l-NAME treatment of DM rats reduced the already
lowered levels of NOx in the urine slightly.

ADMINISTRATION OF L-NAME REDUCED THE COMPENSATORY
UPREGULATION OF UREA TRANSPORTERS NORMALLY OBSERVED
WITH DM
UT-A1, a glycoprotein, is expressed in both the papilla and IM
base. Although the functional difference remains a mystery, abun-
dance of the two glycoproteins of UT-A1 (117 and 97-kDa) differ
based on tissue location. Western analysis of control rats detected
both glyco-forms of UT-A1 in the IM tip (Figure 1A) and the
predominant 97-kDa form in IM base (Figure 1D). l-NAME
treatment alone did not change the total protein abundance of
UT-A1 in either section of the IM nor did the inhibition of NO
change the glycosylation state (Figure 1). UT-A1 expression was
significantly upregulated in both the IM tip and base of diabetic
rats. This was largely attributable to increased expression of the
117-kDa form (Figures 1C,F). Diabetic rats treated with l-NAME
did not have a significant increase in total UT-A1 protein abun-
dance (97- or 117-kDa) in the IM tip (Figures 1B,C). In the IM
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Table 1 | Effects of L-NAME administration on control and diabetic rats.

Blood glucose (mg/dl) Urine volume (ml/24 h) Urine urea (mmol) Urine osmolality (mmol/kg) Urine NOx (μM)

Control 82.3 ± 5.7
†

19.7 ± 2.5
†

172.6 ± 25
†

1535 ± 47
†

545 ± 35
†

Control + L-NAME 70.6 ± 3.4
†

24.8 ± 3.2
†

161.4 ± 25
†

1225 ± 35*
†

176 ± 23*

DM 266 ± 11* 176 ± 10* 76.1 ± 8.2* 943 ± 22* 127 ± 3.7*

DM + L-NAME 301 ± 23* 126 ± 20*
†

93.5 ± 14 1083 ± 63* 115 ± 34*

*p > 0.05 compared to control.
†p > 0.05 compared to DM.

Newman–Keuls test.

FIGURE 1 | Upregulation of UT-A1 in diabetes is blunted by NO inhibition.

Shown is a representative western blot of inner medulla (IM) tip (A) and base
(D) probed for UT-A1 where each lane represents one rat. Densitometry was
determined for the 97-kDa (B) and 117-kDa glyco-forms (C) in IM tip and the

97-kDa (E) and 117-kDa glyco-forms (F) in IM base. The experimental
conditions were performed 5 times (n = 5) where there were 5 animals per
experimental group in each cohort. In total, 25 animals per experimental group
were analyzed. *p < 0.05 compared to control, †p < 0.05 compared to DM.

base of l-NAME-treated diabetic animals, 97-kDa UT-A1 abun-
dance was statistically increased when compared to control rats
but expression of this glycoprotein was also significantly decreased
compared to diabetic rats (Figure 1E). l-NAME treatment of dia-
betic animals did inhibit induction of the 117-kDa form of UT-A1
however the amount of 117-kDa protein is ∼3.5-fold over basal
levels (Figure 1F).

UT-A3 is also a glycoprotein that is found predominantly in
the papilla in the IM. This transporter is distinguished as multiple
glyco-forms ranging from 45- to 65-kDa (Blount et al., 2008) as
detected in control rats (Figure 2A). Rats treated with l-NAME
did not demonstrate a change in UT-A3 glycoprotein abundance
(Figures 2B,C). Corroborating previous reports (Blount et al.,

2008), UT-A3 abundance was increased in DM rats (Figure 2B).
The increased protein abundance of UT-A3 is due to increased
glycosylation of the upper form of the protein (Figure 2B)
whereas induction of diabetes had no effect on the 45-kDa UT-A3
(Figure 2C). l-NAME treatment of the DM rats prevented the
compensatory increase in UT-A3 abundance (Figure 2). Interest-
ingly, l-NAME treatment of diabetic rats significantly reduced the
45-kDa glycosylated form of UT-A3 (Figure 2C).

L-NAME REDUCED THE DM-INDUCED UPREGULATION OF THE WATER
CHANNEL, AQP2
AQP2 is expressed as glycosylated (40–46-kDa) and unglycosylated
(29-kDa) proteins (Nejsum et al., 2001) as observed in control
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FIGURE 2 | Upregulation of UT-A3 in diabetes is blunted by NO

inhibition. Presented is a representative western blot of IM tip (A) probed
for UT-A3. Densitometry was determined for all the 65-kDa smear (B) and
45-kDa glyco-form (C) in the IM tip. The experimental conditions were
performed five times (n = 5) where there were five animals per
experimental group in each cohort. In total, 25 animals per experimental
group were analyzed. *p < 0.05 compared to control, †p < 0.05 compared
to DM.

rat IM tip and base (Figures 3A,D). l-NAME treatment did not
affect AQP2 expression in the papilla but did lower protein lev-
els in the IM base (Figures 3B,E). Glycosylated AQP2 protein
levels were significantly increased in both the tip and base of
diabetic IM (Figures 3B,E); however, the unglycosylated form of
AQP2 was not altered in response to diabetes in either IM tip or
base (Figures 3C,F). In the IM tip of diabetic animals, l-NAME
treatment had no effect on the unglycosylated AQP2 expression
(Figure 3C) but did reduce the glycosylated AQP2 abundance
to basal level (Figure 3B). l-NAME treatment of DM animals
lowered glycosylated AQP2 levels in the IM base compared to
DM animals (Figure 3E) but did not alter unglycosylated AQP2
abundance (Figure 3F).

NKCC2 WAS INCREASED IN DM ANIMALS BUT EXPRESSION LEVELS
WERE UNAFFECTED BY L-NAME
NKCC2 was detected at 150-kDa in the OM dissected from
rat kidney (Figure 4A). Rats treated with l-NAME did not
have any alteration in NKCC2 protein abundance (Figure 4B).
STZ-treatment significantly increased NKCC2 levels (Figure 4B).
l-NAME treatment did not significantly change the increased
NKCC2 abundance in DM rats.

DISCUSSION
The goal of this study was to determine how declining NO in the
diabetic kidney affects the already compromised urine concen-
trating mechanism. Using STZ-induced diabetic rats, we found
that l-NAME-mediated inhibition of NO alleviated the polyuria
observed in untreated diabetes. l-NAME treatment alone did not
alter basal levels of blood or urine glucose suggesting that l-NAME
treatment of the DM kidney does not improve polyuria by alter-
ing glucose-dependent osmotic diuresis but by other mechanisms,
including differential expression of the concentrating transporters
UT-A1, UT-A3, and AQP2.

The effect of untreated DM on urea transporter expression and
function in the IM has been extensively investigated (Kim et al.,
2003, 2005; Blount et al., 2008). Collectively, these studies have
found that DM induces an increase in both UT-A1 and UT-A3
protein abundance in an attempt to restore inner medullary inter-
stitial urea, which is disrupted in the advancement of the disease.
Our results present the novel finding that diabetic rats treated
with l-NAME did not have the compensatory increase in UT-
A1 or UT-A3 expression. Previous work has shown that UT-A1
protein abundance increases during osmotic diuresis whenever
urinary urea decreases in order to continuously transport urea
to the interstitium (Kim et al., 2005). Although DM resulted in
decreased urea as a urinary solute in this study, l-NAME treat-
ment of DM rats increased the amount of urea in urine, possibly
explaining the dampened increase of urea transporter proteins in
the face of DM.

Early work demonstrated that both glycoproteins of UT-A1
are equally upregulated in the papilla in response to chronic dia-
betes; however, increased protein expression of UT-A1 in the IM
base of diabetic rats was mainly due to an increase in the 117-
kDa form (Kim et al., 2003). Our findings are in agreement;
total UT-A1 expression was significantly upregulated throughout
the IM of diabetic rats, particularly in the IM base. Despite the
decrease in overall protein expression, l-NAME-treated DM ani-
mals still had an increase in the 117-kDa glycoprotein. Recently,
Chen et al. (2011) determined that the 117-kDa UT-A1 was the
mature glycosylation form of the transporter. Furthermore, the
researchers found that the 117-kDa form is associated with lipid
rafts. This localization of 117-kDa UT-A1 into lipid rafts was
increased in response to diabetes. Although not proven to be the
mature glycosylation form of UT-A3, we found that uncontrolled
diabetes increased the upper 65-kDa glycosylated form while the
lower, 45-kDa form remained unchanged. Hyperglycemia has
been linked to increased glycosylation of a variety of proteins
(Martin et al., 2006). It is possible that uncontrolled diabetes
increases UT-A1 and UT-A3 membrane trafficking by changing
the glycosylation state, which facilitates lipid raft targeting; how-
ever, we did not examine altered cellular location in our studies.
Although hyperglycemia-induced glycosylation may account for
the increased presence of the 117-kDa form of UT-A1 and 65-kDa
form of UT-A3 independent of nitric oxide, it does not explain the
dampened total protein abundance. Further studies addressing the
function of the urea transporter glycosylation states and lipid rafts
in diabetes will need to be pursued to completely elucidate this
question.
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FIGURE 3 | Upregulation of glycosylated AQP2 in diabetes is blunted by

NO inhibition. Displayed is a representative western blot of IM tip (A) and
base (D) probed for AQP2. Densitometry was determined for the
glycosylated (B) and unglycosylated forms (C) in the IM tip as well as the
glycosylated (E) and unglycosylated forms (F) in the IM base. To prevent
saturation of bands, the blot was scanned at a lighter intensity to measure

glycosylated AQP2 (A,D) and at a higher intensity to measure the
unglycosylated AQP2 (A,D) however, images are gleaned from the same
representative western blot. The experimental conditions were performed
five times (n = 5) where there were five animals per experimental group in
each cohort. In total, 25 animals per experimental group were analyzed.
*p < 0.05 compared to control, †p < 0.05 compared to DM.

Investigation of AQP2 revealed that l-NAME treatment did
not affect AQP2 expression in the papilla but did lower protein
levels in the IM base. This corresponds to studies that docu-
mented decreased AQP2 expression in the IM of rats orally treated
with l-NAME for 6 weeks (Albertoni Borghese et al., 2007). We
found that glycosylated AQP2, but not unglycosylated AQP2, is
upregulated in response to diabetes which is in agreement with
previously published reports (Nejsum et al., 2001; Satake et al.,
2010). Although not investigated in this study, uncontrolled dia-
betes can increase vasopressin plasma levels (Trinder et al., 1994;
Iwasaki et al., 1996; Bardoux et al., 1999). This could explain the
increase in AQP2 expression in response to diabetes in that vaso-
pressin can upregulate AQP2 protein levels at a transcriptional
level (Nielsen et al., 2002). In our study, DM animals treated
with l-NAME had no compensatory increase in AQP2 expres-
sion. Nitric oxide synthase inhibition by l-NAME has been shown
to inhibit vasopressin release (Mornagui et al., 2010), perhaps
explaining the lowered levels of AQP2 expression the treated DM
animals.

In our studies, l-NAME treatment had no effect on NKCC2
expression. These findings do not corroborate with other studies
which observed an increase of NKCC2 abundance in response to

l-NAME (Kim et al., 2006; Wangensteen et al., 2006; Riazi et al.,
2009). These studies differ from ours in that the rats were sub-
jected to l-NAME for 4–8 weeks whereas the rats in our study
were treated with l-NAME for 3 weeks. In addition, we used a
lower concentration of l-NAME during treatment compared to
the other studies. While these may be minor factors, alterations
in NKCC2 levels have been shown to be time dependent in other
animal models (Kim et al., 2003). NKCC2 protein abundance was
upregulated in the OM of DM rats. Increased NKCC2 expres-
sion likely increases sodium reabsorption and, through counter-
current multiplication, increases urine concentration. l-NAME
did not alter the elevated expression of NKCC2 in DM animals.
Given the likelihood that treatments of l-NAME longer than
3 weeks increases NKCC2 expression, it would be interesting to see
if longer treatment periods amplifies the DM-induced compen-
satory upregulation of the transporter. NO stimulates production
of cGMP which has been shown to decrease surface NKCC2 lev-
els thus rendering the transporter inactive (Ares et al., 2008). It is
possible that the l-NAME used in our studies prevents the syn-
thesis of cGMP allowing NKCC2 to accumulate at the plasma
membrane where it is active in the DM animals contributing
to the reduction of polyuria in the l-NAME-treated DM rats.
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FIGURE 4 | NO inhibition does not affect NKCC2 expression. Observed
is a representative western blot of outer medulla (A) probed for NKCC2.
Densitometry was determined (B). The experimental conditions were
performed five times (n = 5) where there were five animals per
experimental group in each cohort. In total, 25 animals per experimental
group were analyzed. *p < 0.05 compared to control, †p < 0.05 compared
to DM.

This hypothesis would need to be confirmed with localization
experiments.

Long-term treatment of rats with l-NAME can reduce
medullary blood flow resulting in a major effect on sodium and
water homeostasis and promoting the development of hyperten-
sion in these animals (Cowley et al., 1995). We did not measure
blood pressure in our experimental animal groups however, it is
probable that l-NAME-treated animals were hypertensive. Thus,
l-NAME-induced hypertension and not NOS inhibition may be
the explanation for the attenuated expression of the concentrated
transporters in l-NAME-treated DM animals. Protein abundance
of these transporters has been examined in other animal mod-
els of hypertension (Klein et al., 2006). In these models UT-A1,
AQP2, and NKCC2 were all downregulated. In our l-NAME-
treated animals, which should mimic these hypertension models,
we did not see a change in transporter expression levels. Although
the contribution of hypertension cannot be ruled out, because the
expected decrease of UT-A1, AQP2, and NKCC2 was not observed,
we assume that a majority of the l-NAME effects in our study is
due to NOS inhibition and not hypertension.

Several reports have shown that administration of l-NAME
to STZ-treated rats reduces the renal hyperfiltration that occurs
with uncontrolled diabetes (Ito et al., 2001; Brands et al., 2004).
Although it seems plausible that urine flow rates may contribute
to urea transporter and AQP2 expression, studies have found that
protein levels of these transporters are not responsive to increased
urine flow rate or loss of medullary hypertonicity (Marples et al.,
1998). For instance, animals with lithium-induced nephrogenic
diabetes insipidus produce a large 24-h urine volume but have
reduced AQP2, UT-A1, and UT-A3 expression rather than the
increased expression observed in the DM model (Blount et al.,
2010). Thus, we believe that the reduction of urine output in

l-NAME-treated rats is not the explanation for the decrease in
transporter expression.

Interpretation of our findings are complicated by conflicting
reports of the roles of NO and NOS in the diabetic kidney. Col-
lectively, studies indicate that expression of all isoforms of NOS is
increased in the IM of STZ-induced diabetes although by possibly
different mechanisms (Lee et al., 2005). Increased NOS1 expres-
sion was found to be due to high blood glucose but not glycosuria
whereas increased NOS3 activity in the IMCD is attributed to
sheer stress stimuli due to the high urine flow associated with dia-
betes (Lee et al., 2005). Despite reports of localized increases of
NO production in the IMCD (Choi et al., 1999), we observed a
decrease in NO in the urine of diabetic rats. Since urinary NOx
is an indicator of total NO production in an animal (Wang et al.,
2011), we can conclude that the reported increase in NOS activ-
ity in the IMCD is not sufficient to prevent an overall decrease
in total body NO production. NO concentration in the kidney
changes with advancing diabetes (Komers and Anderson, 2003).
In early diabetes, there is an excess of NO which likely contributes
to renal hyperfiltration and hyperperfusion. Hyperfiltration was
shown to be reversed via l-NAME administration to STZ-injected
rats (Levin-Iaina et al., 2011). Advanced stages of diabetes lower
NO levels in the kidney which contribute to the declining renal
function. Urinary nitrite/nitrate excretion is decreased in rodent
models of chronic diabetes (Trachtman et al., 2002) suggesting
that the animal model used in these studies resembles later stages
of diabetes.

The initial increase of NOS isoforms in diabetes may further
complicate disease progression. Each isoform of NOS requires
five cofactors/prosthetics to produce NO from l-arginine. Reduc-
tion of these cofactors and/or substrate, frequently observed in
advanced diabetes, leads to the uncoupling of NOS resulting in the
synthesis of O−

2 instead of NO (Forbes et al., 2008). Increased con-
centrations of O−

2 in diabetic animals could explain the increased
expression of the urea transporters in the diabetic IM given that
urea permeability is increased by O−

2 (Zimpelmann et al., 2003). In
our studies,l-NAME may be exerting the observed effect by reduc-
ing the elevated O−

2 levels in diabetic animals. Although in some
reports, administration of l-NAME significantly increased O−

2 lev-
els (Usui et al., 1999; Heiman and Allen-Gipson, 2000). It would
therefore be interesting to examine the fate of the concentrating
transporters in diabetic animals that were treated with l-NAME
and proven O−

2 production inhibitors such as allopurinol, ebselen,
and NAC.

Reports indicate that diabetes affects the individual isoforms
of NOS differently. Diabetic mice lacking NOS3 do not have
severe oxidative stress and tubulointerstitial fibrosis compared
to control, diabetic mice (Wang et al., 2011). However, dia-
betic nephropathy was more severe in STZ-induced diabetic
NOS2 knockout mice than STZ-injected wild type mice (Tra-
chtman et al., 2002). It has been suggested that cellular distri-
bution of NOS isoforms may explain conflicting effects. In the
IM, NOS1 is largely cytosolic while NOS2 and NOS3 levels are
more associated with membrane enriched fractions (Lee et al.,
2005). Cytosolic NOS activity, due to NOS3, is increased early-
onset diabetes (Lee et al., 2005). l-NAME inhibits all isoforms
of NOS thus we were unfortunately not able to address the
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impact that individual NOS isoforms have on diabetes-induced
polyuria.

In conclusion, we found that inhibition of NOS activity can
reduce the advancing polyuria associated with diabetes. Uncon-
trolled diabetes increased total protein abundance of the urine
concentrating transporters, UT-A1, UT-A3, and AQP2 by increas-
ing glyco-forms of the transporters in a compensatory man-
ner. While not altering the enhanced glycosylation state of these

transporters, inhibition of NO in DM prevented the increased total
expression of these transporters.

ACKNOWLEDGMENTS
Work was supported by the following NIH/NIDDK grants:
T32 DK007656 (Penelope Cipriani), STEP-UP (Sunhye L. Kim),
K01-DK082733 (Mitsi A. Blount), K01-DK082733-S1 (Mitsi A.
Blount).

REFERENCES
Albertoni Borghese, M. F., Majow-

icz, M. P., Ortiz, M. C., Delgado,
M. F., Sterin Speziale, N. B., and
Vidal, N. A. (2007). Renal sodium-
glucose cotransporter activity and
aquaporin-2 expression in rat kid-
ney during chronic nitric oxide syn-
thase inhibition. Nephron Physiol.
107, p77–p86.

Ares, G. R., Caceres, P., Alvarez-
Leefmans, F. J., and Ortiz, P. A.
(2008). cGMP decreases surface
NKCC2 levels in the thick ascend-
ing limb: role of phosphodiesterase
2 (PDE2). Am. J. Physiol. Renal Phys-
iol. 295, F877–F887.

Bardoux, P., Martin, H., Ahloulay,
M., Schmitt, F., Bouby, N.,
Trinh-Trang-Tan, M. M., and
Bankir, L. (1999). Vasopressin
contributes to hyperfiltration,
albuminuria, and renal hypertro-
phy in diabetes mellitus: study in
vasopressin-deficient Brattleboro
rats. Proc. Natl. Acad. Sci. U.S.A. 96,
10397–10402.

Blount, M. A., Sands, J. M., Kent, K. J.,
Smith, T. D., Price, S. R., and Klein,
J. D. (2008). Candesartan augments
compensatory changes in medullary
transport proteins in the diabetic rat
kidney. Am. J. Physiol. Renal Physiol.
294, F1448–F1452.

Blount, M. A., Sim, J. H., Zhou, R.,
Martin, C. F., Lu, W., Sands, J. M.,
and Klein, J. D. (2010). Expression
of transporters involved in urine
concentration recovers differently
after cessation of lithium treatment.
Am. J. Physiol. Renal Physiol. 298,
F601–F608.

Bouley, R., Pastor-Soler, N., Cohen,
O., Mclaughlin, M., Breton, S., and
Brown, D. (2005). Stimulation of
AQP2 membrane insertion in renal
epithelial cells in vitro and in vivo
by the cGMP phosphodiesterase
inhibitor sildenafil citrate (Viagra).
Am. J. Physiol. Renal Physiol. 288,
F1103–F1112.

Brands, M. W., Bell, T. D., and Gib-
son, B. (2004). Nitric oxide may
prevent hypertension early in dia-
betes by counteracting renal actions
of superoxide. Hypertension 43,
57–63.

Centers for Disease Control and Pre-
vention. (2008). National Diabetes
Fact Sheet: General Information and
National Estimates on Diabetes in
the United States, 2007. Atlanta, GA:
Department of Health and Human
Services, Centers for Disease Control
and Prevention.

Chen, G., Howe, A. G., Xu, G., Frohlich,
O., Klein, J. D., and Sands, J.
M. (2011). Mature N-linked gly-
cans facilitate UT-A1 urea trans-
porter lipid raft compartmentaliza-
tion. FASEB J. 25, 4531–4539.

Choi, K. C., Lee, S. C., Kim, S. W., Kim,
N. H., Lee, J. U., and Kang, Y. J.
(1999). Role of nitric oxide in the
pathogenesis of diabetic nephropa-
thy in streptozotocin-induced dia-
betic rats. Korean J. Intern. Med. 14,
32–41.

Cowley, A. W. Jr., Mattson, D. L., Lu, S.,
and Roman, R. J. (1995). The renal
medulla and hypertension. Hyper-
tension 25, 663–673.

Forbes, J. M., Coughlan, M. T., and
Cooper, M. E. (2008). Oxidative
stress as a major culprit in kid-
ney disease in diabetes. Diabetes 57,
1446–1454.

He, Y., Fan, Z., Zhang, J., Zhang, Q.,
Zheng, M., Li, Y., Zhang, D., Gu,
S., and Yang, H. (2011). Polymor-
phisms of eNOS gene are asso-
ciated with diabetic nephropathy:
a meta-analysis. Mutagenesis 26,
339–349.

Heiman, A. S., and Allen-Gipson,
D. (2000). Cytokines potentiate
human eosinophil superoxide
generation in the presence of
N(omega)-nitro-L-arginine methyl
ester. Int. J. Immunopharmacol. 22,
171–181.

Herrera, M., Hong, N. J., Ortiz, P. A.,
and Garvin, J. L. (2009). Endothelin-
1 inhibits thick ascending limb
transport via Akt-stimulated nitric
oxide production. J. Biol. Chem. 284,
1454–1460.

Huang, J. S., Chuang, L. Y., Guh, J.
Y., and Huang, Y. J. (2009). Effects
of nitric oxide and antioxidants on
advanced glycation end products-
induced hypertrophic growth in
human renal tubular cells. Toxicol.
Sci. 111, 109–119.

Ito, A., Uriu, K., Inada, Y., Qie, Y. L.,
Takagi, I., Ikeda, M., Hashimoto,
O., Suzuka, K., Eto, S., Tanaka, Y.,
and Kaizu, K. (2001). Inhibition
of neuronal nitric oxide synthase
ameliorates renal hyperfiltration in
streptozotocin-induced diabetic rat.
J. Lab. Clin. Med. 138, 177–185.

Iwasaki, Y., Kondo, K., Murase, T.,
Hasegawa, H., and Oiso, Y. (1996).
Osmoregulation of plasma vaso-
pressin in diabetes mellitus with sus-
tained hyperglycemia. J. Neuroen-
docrinol. 8, 755–760.

Kim, D., Klein, J. D., Racine, S., Mur-
rell, B. P., and Sands, J. M. (2005).
Urea may regulate urea transporter
protein abundance during osmotic
diuresis. Am. J. Physiol. Renal Phys-
iol. 288, F188–F197.

Kim, D., Sands, J. M., and Klein, J. D.
(2003). Changes in renal medullary
transport proteins during uncon-
trolled diabetes mellitus in rats. Am.
J. Physiol. Renal Physiol. 285, F303–
F309.

Kim, J. S., Choi, K. C., Jeong, M. H.,
Kim, S. W., Oh, Y. W., and Lee, J.
U. (2006). Increased expression of
sodium transporters in rats chron-
ically inhibited of nitric oxide syn-
thesis. J. Korean Med. Sci. 21, 1–4.

Klein, J. D., Murrell, B. P., Tucker,
S., Kim, Y. H., and Sands, J. M.
(2006). Urea transporter UT-A1
and aquaporin-2 proteins decrease
in response to angiotensin II
or norepinephrine-induced acute
hypertension. Am. J. Physiol. Renal
Physiol. 291, F952–F959.

Komers, R., and Anderson, S. (2003).
Paradoxes of nitric oxide in the dia-
betic kidney. Am. J. Physiol. Renal
Physiol. 284, F1121–F1137.

Lee, D. L., Sasser, J. M., Hobbs, J.
L., Boriskie, A., Pollock, D. M.,
Carmines, P. K., and Pollock, J.
S. (2005). Posttranslational regu-
lation of NO synthase activity in
the renal medulla of diabetic rats.
Am. J. Physiol. Renal Physiol. 288,
F82–F90.

Levin-Iaina, N., Iaina, A., and Raz, I.
(2011). The emerging role of NO
and IGF-1 in early renal hypertrophy
in STZ-induced diabetic rats. Dia-
betes Metab. Res. Rev. 27, 235–243.

Marples, D., Christensen, B. M., Froki-
aer, J., Knepper, M. A., and Nielsen, S.
(1998). Dehydration reverses vaso-
pressin antagonist-induced diuresis
and aquaporin-2 downregulation in
rats. Am. J. Physiol. 275, F400–F409.

Martin, A., Rojas, S., Chamorro, A., Fal-
con, C., Bargallo, N., and Planas, A.
M. (2006). Why does acute hyper-
glycemia worsen the outcome of
transient focal cerebral ischemia?
Role of corticosteroids, inflamma-
tion, and protein O-glycosylation.
Stroke 37, 1288–1295.

Morishita, T., Tsutsui, M., Shimokawa,
H., Sabanai, K., Tasaki, H., Suda, O.,
Nakata, S., Tanimoto, A., Wang, K.-
Y., Ueta, Y., Sasaguri, Y., Nakashima,
Y., and Yanagihara, N. (2005).
Nephrogenic diabetes insipidus in
mice lacking all nitric oxide synthase
isoforms. Proc. Natl. Acad. Sci. U.S.A.
102, 10616–10621.

Mornagui, B., Rezg, R., Grissa, A.,
Duvareille, M., Gharib, C., Kamoun,
A., El-Fazaa, S., and Gharbi, N.
(2010). Influence of nitric oxide
synthase inhibition on vasopressin
and corticosterone secretion during
water deprivation in rats. J. Physiol.
Biochem. 66, 271–281.

Nejsum, L. N., Kwon, T. H., Marples,
D., Flyvbjerg, A., Knepper, M. A.,
Frokiaer, J., and Nielsen, S. (2001).
Compensatory increase in AQP2, p-
AQP2, and AQP3 expression in rats
with diabetes mellitus. Am. J. Physiol.
Renal Physiol. 280, F715–F726.

Nielsen, S., Frokiaer, J., Marples, D.,
Kwon, T. H., Agre, P., and Knep-
per, M. A. (2002). Aquaporins in the
kidney: from molecules to medicine.
Physiol. Rev. 82, 205–244.

Nonoguchi, H., Sands, J. M., and Knep-
per, M. A. (1988). Atrial natri-
uretic factor inhibits vasopressin-
stimulated osmotic water perme-
ability in rat inner medullary col-
lecting duct. J. Clin. Invest. 82,
1383–1390.

Palm, F., Buerk, D. G., Carlsson, P.
O., Hansell, P., and Liss, P. (2005).
Reduced nitric oxide concentration
in the renal cortex of streptozotocin-
induced diabetic rats: effects on renal
oxygenation and microcirculation.
Diabetes 54, 3282–3287.

www.frontiersin.org June 2012 | Volume 3 | Article 176 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Renal_and_Epithelial_Physiology/archive


Cipriani et al. L-NAME affects urine concentration in diabetes

Riazi, S., Tiwari, S., Sharma, N., Rash,A.,
and Ecelbarger, C. M. (2009). Abun-
dance of the Na-K-2Cl cotransporter
NKCC2 is increased by high-fat feed-
ing in Fischer 344 X Brown Nor-
way (F1) rats. Am. J. Physiol. Renal
Physiol. 296, F762–F770.

Satake, M., Ikarashi, N., Kagami, M.,
Ogiue, N., Toda, T., Kobayashi, Y.,
Ochiai, W., and Sugiyama, K. (2010).
Increases in the expression levels
of aquaporin-2 and aquaporin-3 in
the renal collecting tubules alle-
viate dehydration associated with
polyuria in diabetes mellitus. Biol.
Pharm. Bull. 33, 1965–1970.

Trachtman, H., Futterweit, S., Pine, E.,
Mann, J., and Valderrama, E. (2002).
Chronic diabetic nephropathy: role
of inducible nitric oxide synthase.
Pediatr. Nephrol. 17, 20–29.

Trinder, D., Phillips, P. A., Stephenson, J.
M., Risvanis, J., Aminian, A., Adam,
W., Cooper, M., and Johnston, C.
I. (1994). Vasopressin V1 and V2

receptors in diabetes mellitus. Am.
J. Physiol. 266, E217–E223.

Usui, M., Egashira, K., Kitamoto, S.,
Koyanagi, M., Katoh, M., Kataoka,
C., Shimokawa, H., and Takeshita,
A. (1999). Pathogenic role of oxida-
tive stress in vascular angiotensin-
converting enzyme activation in
long-term blockade of nitric oxide
synthesis in rats. Hypertension 34,
546–551.

Wang, C. H., Li, F., Hiller, S., Kim, H. S.,
Maeda, N., Smithies, O., and Taka-
hashi, N. (2011). A modest decrease
in endothelial NOS in mice compa-
rable to that associated with human
NOS3 variants exacerbates diabetic
nephropathy. Proc. Natl. Acad. Sci.
U.S.A. 108, 2070–2075.

Wangensteen, R., Rodriguez-Gomez, I.,
Moreno, J. M., Vargas, F., and
Alvarez-Guerra, M. (2006). Chronic
nitric oxide blockade modulates
renal Na-K-2Cl cotransporters. J.
Hypertens. 24, 2451–2458.

Wu, F., Park, F., Cowley, A. W. Jr., and
Mattson, D. L. (1999). Quantifica-
tion of nitric oxide synthase activ-
ity in microdissected segments of
the rat kidney. Am. J. Physiol. 276,
F874–F881.

Zhao, H. J., Wang, S., Cheng, H.,
Zhang, M. Z., Takahashi, T., Fogo,
A. B., Breyer, M. D., and Har-
ris, R. C. (2006). Endothelial nitric
oxide synthase deficiency produces
accelerated nephropathy in diabetic
mice. J. Am. Soc. Nephrol. 17,
2664–2669.

Zimpelmann, J., Li, N., and Burns,
K. D. (2003). Nitric oxide inhibits
superoxide-stimulated urea perme-
ability in the rat inner medullary
collecting duct. Am. J. Physiol. Renal
Physiol. 285, F1160–F1167.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that

could be construed as a potential con-
flict of interest.

Received: 30 January 2012; accepted: 14
May 2012; published online: 06 June
2012.
Citation: Cipriani P, Kim SL, Klein
JD, Sim JH, von Bergen TN and
Blount MA (2012) The role of nitric
oxide in the dysregulation of the urine
concentration mechanism in diabetes
mellitus. Front. Physio. 3:176. doi:
10.3389/fphys.2012.00176
This article was submitted to Frontiers
in Renal and Epithelial Physiology, a
specialty of Frontiers in Physiology.
Copyright © 2012 Cipriani, Kim, Klein,
Sim, von Bergen and Blount . This is an
open-access article distributed under the
terms of the Creative Commons Attribu-
tion Non Commercial License, which per-
mits non-commercial use, distribution,
and reproduction in other forums, pro-
vided the original authors and source are
credited.

Frontiers in Physiology | Renal and Epithelial Physiology June 2012 | Volume 3 | Article 176 | 8

http://dx.doi.org/10.3389/fphys.2012.00176
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Renal_and_Epithelial_Physiology
http://www.frontiersin.org/Renal_and_Epithelial_Physiology/archive

	The role of nitric oxide in the dysregulation of the urine concentration mechanism in diabetes mellitus
	Introduction
	Materials and methods
	Animals
	Metabolic measurements
	Sample preparation and western blot analysis
	Statistical analysis

	Results
	Administration of l-NAME alters metabolic progression of diabetes
	Administration of l-NAME reduced the compensatory upregulation of urea transporters normally observed with DM
	l-NAME reduced the DM-induced upregulation of the water channel, AQP2
	NKCC2 was increased in DM animals but expression levels were unaffected by l-NAME

	Discussion
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


