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1. INTRODUCTION

Scaling temporal dynamics in functional MRI (fMRI) signals have been evidenced for a
decade as intrinsic characteristics of ongoing brain activity (Zarahn et al., 1997). Recently,
scaling properties were shown to fluctuate across brain networks and to be modulated
between rest and task (He, 2011): notably, Hurst exponent, quantifying long memory,
decreases under task in activating and deactivating brain regions. In most cases, such
results were obtained: First, from univariate (voxelwise or regionwise) analysis, hence
focusing on specific cognitive systems such as Resting-State Networks (RSNs) and rais-
ing the issue of the specificity of this scale-free dynamics modulation in RSNs. Second,
using analysis tools designed to measure a single scaling exponent related to the sec-
ond order statistics of the data, thus relying on models that either implicitly or explicitly
assume Gaussianity and (asymptotic) self-similarity, while fMRI signals may significantly
depart from those either of those two assumptions (Ciuciu et al., 2008; Wink et al., 2008).
To address these issues, the present contribution elaborates on the analysis of the scaling
properties of fMRI temporal dynamics by proposing two significant variations. First, scaling
properties are technically investigated using the recently introduced Wavelet Leaderbased
Multifractal formalism (WLMF; Wendt et al., 2007). This measures a collection of scaling
exponents, thus enables a richer and more versatile description of scale invariance (beyond
correlation and Gaussianity), referred to as multifractality. Also, it benefits from improved
estimation performance compared to tools previously used in the literature. Second, scal-
ing properties are investigated in both RSN and non-RSN structures (e.g., artifacts), at a
broader spatial scale than the voxel one, using a multivariate approach, namely the Multi-
Subject Dictionary Learning (MSDL) algorithm (Varoquaux et al., 2011) that produces a
set of spatial components that appear more sparse than their Independent Component
Analysis (ICA) counterpart. These tools are combined and applied to a fMRI dataset com-
prising 12 subjects with resting-state and activation runs (Sadaghiani et al., 2009). Results
stemming from those analysis confirm the already reported task-related decrease of long
memory in functional networks, but also show that it occurs in artifacts, thus making this
feature not specific to functional networks. Further, results indicate that most fMRI sig-
nals appear multifractal at rest except in non-cortical regions. Task-related modulation of
multifractality appears only significant in functional networks and thus can be considered
as the key property disentangling functional networks from artifacts. These finding are dis-
cussed in the light of the recent literature reporting scaling dynamics of EEG microstate
sequences at rest and addressing non-stationarity issues in temporally independent fMRI
modes.
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this approach proved very successful to study brain function, and

Much of what is known about brain function stems from studies in
which a task or a stimulus is administered and the resulting changes
in neuronal activity and behavior are measured. From the advent
of human electroencephalography (EEG) to cognitive activation
paradigms in functional Magnetic Resonance Imaging (fMRI),

more precisely functional specialization in human brain. It has
relied, on one hand, on contrasting signal magnitude between
different experimental conditions (Rosen et al., 1998) or task-
specific hemodynamic response (HRF) shape (Dale, 1999) and,
on other-hand, on statistical methods often framed within linear
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or bilinear modeling strategies (Friston et al., 1995; Makni et al.,
2005, 2008).

Spontaneous modulations of neural activity in Blood Oxygena-
tion Level Dependent (BOLD) fMRI signals however arise without
external input or stimulus and thus depict intrinsic brain activ-
ity (Damoiseaux et al., 2006). This ongoing activity constitutes a
major part of fMRI recordings and is responsible for most of brain
energy consumption. It has hence been intensively studied over the
last decade using various methods ranging from univariate, i.e.,
Seed-based linear Correlation Analysis (SCA; Biswal et al., 1995;
Greicius et al., 2003), to multivariate methods such as Independent
Component Analysis (ICA; Calhoun et al., 2001; Beckmann and
Smith, 2004), group-level ICA (Cole et al., 2010; Varoquaux et al.,
2010b), or more recent dictionary learning techniques (Varoquaux
et al., 2011). All these methods have revealed that interactions
between brain regions, also referred to as functional connectivity,
occur through these spontaneous modulations and consistently
vary between rest and task (Damoiseaux et al., 2006; Fox et al.,
2007). Resting-State Network (RSN) extraction from resting-state
fMRI time series is thus achieved either by thresholding the cor-
relation matrix computed between voxels or regions (seed-based
or univariate approach) or by identifying spatial maps in ICA-
based algorithms that closely match RSN such as somato-sensory
systems (visual, motor, auditory), the default mode, and atten-
tional networks (ventral and dorsal; Fox et al., 2007; Smith et al.,
2009). For a recent review about the pros and cons of the SCA and
ICA approaches to RSN extraction, the reader can refer to Cole
et al. (2010). Once RSNs are extracted, their topological prop-
erties can be analyzed with respect to small-world or scale-free
models (Chialvo, 2004; Eguiluz et al., 2005; Zemanovd et al., 20063
Bullmore and Sporns, 2009).

In parallel and alternatively to brain topology, the temporal
dynamics of brain activity have also been extensively studied. It is
now well accepted that brain activity, irrespective of the imaging
technique involved in observation, is always arrhythmic and shows
a scaling, or scale invariant or scale-free, time dynamics, which
implies that no time scale plays a predominant or specific role.
Often, scale invariance or scale-free dynamics is associated with
long-range correlation in time (Linkenkaer-Hansen et al., 2001;
Stam and de Bruin, 2004; Van de Ville et al., 2010), and accord-
ingly, in the frequency domain, related to a power-law decrease
of the power spectrum (F(f)od/fﬂ with 8 > 0) in the limit of
small frequencies ( f— 0). Interestingly, it is generally admitted
that only low frequencies (<0.1 Hz) convey information related to
neural connectivity in fMRI signals (Cordes et al., 2001; Leopold
et al., 2003; Achard et al., 2006). Evidence of fractal or scale-free
behavior in fMRI signals has been demonstrated for a long while
(Zarahn et al., 1997; Bullmore et al., 2001; Bullock et al., 2003)
though it was initially regarded as noise. Deeper investigations
of the temporal scale-free property in fMRI have demonstrated
that this constitutes an intrinsic feature of ongoing brain activity
(c.f., e.g., Thurner et al., 2003; Shimizu et al., 2004; Maxim et al.,
2005; Ciuciu et al., 2008; Wink et al., 2008; He et al., 2010; He,
2011). First attempts to identify stimulus-induced signal changes
from scaling parameters were proposed in Thurner et al. (2003),
Shimizu et al. (2004), where a voxel-based fluctuation analysis
was applied to high temporal resolution fMRI data. Interestingly,

fractal features of voxel time series have enabled to discriminate
white matter, cerebrospinal fluid, and active from inactive brain
regions during a block paradigm (Shimizu et al., 2004). Further,
it was shown that scaling properties can be modulated in neu-
rological disorder (Maxim et al., 2005) or between rest and task
(Thurner et al., 2003; Shimizu et al., 2004; Ciuciu et al., 2008;
Wink et al., 2008; He, 2011): It was shown that long memory, as
quantified by the Hurst exponent, decreases during task in acti-
vating and deactivating brain regions. Analyzing scale invariance
in temporal dynamics may thus provide new insights into how
the brain works by mapping quantitative estimations of parame-
ters with good specificities to cognitive states, task performance
(Shimizu et al., 2004; Wink et al., 2008; He et al., 2010; He,
2011).

Small-world and scale-free topology led to model brain as a
complex critical system, that is as a large conglomerate of interact-
ing components, with possibly non-linear interactions (Bak and
Paczuski, 1995; Chialvo, 2010). Further, these complex systems
were then regarded as potential origins for long-range correlation
spatio-temporal patterns, as critical systems, i.e., complex systems
driven close to their phase transitions, constitute known mecha-
nism yielding scaling time dynamics and generic 1/fpower spectral
densities (see e.g., Chialvo, 2010). They however so far failed to
account for the existence of possibly richer scaling properties (such
as, e.g., multifractality). At a general level, scale invariance in time
dynamics and scale-free property of brain topology are, in essence,
totally independent properties that must not be confused one with
the other. Whether or not and how these two scale-free instances
are related one to the other in the fMRI context remains a difficult
and largely unsolved issue, far beyond the scope of the present
contribution, that concentrates instead on performing a thorough
analysis of scale invariance temporal dynamics in fMRI signals.

In the existing literature, the analysis of scale invariance in fMRI
signals suffers from two limitations: First, it has often been per-
formed at the voxel or region level, thus consisting of a collection
of univariate analyses, suffering from the classical bias of voxel
selection or region definition. Moreover, although the fluctua-
tion of scale-free dynamics with tissue type has been studied in
Shimizu et al. (2004), Wink et al. (2008) to derive that stronger
persistency occurs in gray matter and that this background activ-
ity might represent neuronal dynamics, no systematic analysis has
been undertaken to disentangle the scale-free properties of RSN
and non-RSN components, such as artifacts. This investigation
can be better handled using multivariate or ICA-like approaches.
Second, scale invariance in fMRI signals has mostly been based
on spectral analysis and/or Detrended Fluctuation Analysis (c.f.,
e.g., Thurner et al., 2003; Stam and de Bruin, 2004; He, 2011). This
amounts to considering that scaling is associated only with the cor-
relation or the spectrum (hence with the second order statistics)
of the data and thus, implicitly and sometimes even explicitly, to
assuming Gaussianity and (asymptotic) self-similarity for the data
(cf.,e.g.,Ekeetal.,2002) for a survey in the fMRI context). Also, it is
now well-known that such technics lack robustness to disentangle
stationarity/non-stationarity versus true scaling property issues
and do not allow simple extension to account for richer scaling
properties such as those observed in multifractal models. It is well
accepted that wavelet analysis based analysis of scaling (cf., e.g.,
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Abryetal., 1995, 1998; Bullmore et al., 2001; Veitch and Abry, 2001;
Fadili and Bullmore, 2002) yield not only better estimation per-
formance, but also show significant practical robustness, notably
to non-stationarity, while paving the way toward the analysis of
scaling properties beyond the strict second order (hence beyond
Gaussianity and asymptotic self-similarity).

In this context, the present contribution elaborates on ear-
lier works dedicated to the analysis of scale invariance in fMRI
temporal dynamics by proposing two significant variations.

First, scale invariance dynamics is not investigated at the voxel
or region spatial scale level independently. Instead, group-level
resting-state networks are segmented by an exploratory multi-
variate decomposition approach, namely the MSDL algorithm
(Varoquaux et al., 2011), detailed in Section 3: It produces both
a set of spatial components and a set of times series, for each
component and each subject, that conveys ongoing dynamics in
functional networks but also in artifacts. As shown in Varoquaux
et al. (2011), the sparsity promoting regularization involved in
the MSDL algorithm enables to recover less noisy spatial maps
than group-level or canonical ICA (Varoquaux et al., 2010b). This
makes their interpretation easier in the context of small group of
individuals. This technique is detailed in Section 3.

Second, to enable an in-depth analysis of the scaling properties
of the temporal dynamics in fMRI signals, we resort to multifrac-
tal analysis, that measures not a single but a collection of scaling
exponents, thus enabling a richer and more versatile description of
scale invariance (beyond correlation and Gaussianity), referred to
as multifractality. It is thus likely to better account for the variety
and complexity of potential scaling dynamics, as already suggested
in the context of fMRI in, e.g., Ciuciu et al. (2008), Wink et al.
(2008). However, in contrast to Wink et al. (2008), and following
the track opened in Ciuciu et al. (2008), we use a recent statisti-
cal analysis tool, the Wavelet Leader-based Multifractal formalism
(WLMF; Wendt et al., 2007). This formalism benefits from better
mathematical grounding and shows improved estimation perfor-
mance compared to tools previously used in the literature. This
framework is introduced in Section 4, after a review of the intu-
ition, models, and methodologies underlying the definition and
analysis of scaling temporal dynamics, thus, to some extend, con-
tinuing, and renewing the surveys provided in (Eke et al., 2002;
Ciuciu et al., 2008).

These tools are combined together and applied to two datasets,
corresponding to resting-state and activation runs. They are
described in Section 2 (see also Sadaghiani et al., 2009). Modula-
tions of scale-free and multifractal properties in space, i.e., between
functional and artifactual components but also between rest and
task, are statistically assessed at the group-level in Section 5.

In agreement with findings in He (2011), the results reported
here confirm that fMRI signals can be modeled as stationary
processes, as well as the decrease of the estimated long memory
parameter under task. However, this is found to occur everywhere
in the brain and not specifically in functional networks. Moreover,
evidence for multifractality in resting-state fMRI signals is demon-
strated except for non-cortical regions. Task-related modulations
of multifractality appear only significant in functional networks
and thus become the key property to disentangle functional net-
works from artifacts. However, in contrast to what happens for

the long memory parameter, this modulation is not monoto-
nous across the brain and varies between cortical and non-cortical
regions. These results are further discussed in Section 6 in the light
of recent findings related to scale-free dynamics of EEG microstate
sequences and non-stationarity of functional modes. Conclusions
are drawn in Section 7.

2. DATA ACQUISITION AND ANALYSIS

2.1. DATA ACQUISITION

Twelve right-handed normal-hearing subjects (two female; ages,
19-30) gave written informed consent before participation in
an imaging study on a 3-T MRI whole-body scanner (Tim-
Trio; Siemens). The study received ethics committee approval
by the authorities responsible for our institution. Anatomi-
cal imaging used a T1-weighted magnetization-prepared rapid
acquisition gradient-echo sequence [176 slices, repetition time
(TR) 2300 ms, echo time (TE) 4.18 ms, field of view (FOV)
256, voxel size 1 mm x 1 mm x 1 mm]. Functional imaging used
a T2*-weighted gradient-echo, echo-planar-imaging sequence
(25 slices, TR=1500ms, TE=30ms, FOV 192, voxel size
3mm x 3mm x 3mm). Stimulus presentation and response
recording used the Cogent Toolbox (John Romaya, Vision Lab,
UCL!) for Matlab and sound delivery a commercially available
MR-compatible system (MR Confon).

The rs-fMRI dataset we consider in this study has already been
published in Sadaghiani et al. (2009). Eight hundred-twenty vol-
umes of task-free “resting-state” data (with closed, blind-folded
eyes) were acquired before getting experimental runs of 820 vol-
umes each. These experimental runs, which have not been analyzed
in Sadaghiani et al. (2009), involve an auditory detection task (run
2, motor response), and make use of a sparse supra-threshold
auditory stimulus detection.

The auditory stimulus was a 500-ms noise burst with its fre-
quency band modulated at 2 Hz (from white noise to a narrower
band of 0-5 kHz and back to white noise). Inter-stimulus intervals
ranged unpredictably from 20 to 40s, with each specific inter-
val used only once. Subjects were instructed to report as quickly
and accurately as possible by a right-hand key press whenever
they heard the target sound despite scanner’s background noise.
Details about the definition of each subject’s auditory threshold
are available in Sadaghiani et al. (2009).

2.2. DATA ANALYSIS

We used here statistical parametric mapping (SPM5, Wellcome
Department of Imaging Neuroscience, UK?. For image pre-
processing (realignment, coregistration, normalization to MNI
stereotactic space, spatial smoothing with a 5-mm full-width at
half-maximum isotropic Gaussian kernel for single-subject and
group analyses) and our own software developments for subse-
quent analyses. More precisely, the MSDL algorithm relies on the
scikit-learn Python toolbox® and the multifractal analysis
on the WLBMF Matlab toolbox*.

1
2

www.vislab.ucl.ac.uk
www.fil.ion.ucl.ac.uk
Shttp://scikit-learn.org/stable/
*http://perso.ens-lyon.fr/herwig.wendt/
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3. MULTIVARIATE DECOMPOSITION OF RESTING-STATE
NETWORKS
3.1. MULTI-SUBJECT SPATIAL DECOMPOSITION TECHNIQUES
The fMRI signal observed in a voxel reflects many different
processes, such as cardiac or respiratory noise, movement effects,
scanner artifacts, or the BOLD effect that reveals the underlying
neural activity of interest. We separate these different contribu-
tions making use of a recently introduced multivariate analysis
technique that estimates jointly spatial maps and time series char-
acteristic of these different processes (Varoquaux et al., 2011).
Formally, this estimation procedure amounts to finding K spatial
maps V;e RP*K and the corresponding time series U; € R™X,
whose linear combination fits well the observed brain signals,
Y, € R™*P?, of length 1, measured over p voxels, for subject s:

Y, = USV§+ES) (1)

with E; € R"*P the subject-level noise, or residuals not explained
by the model. Finding V! enables the separation of the contribu-
tions of the different process that are mixed at the voxel level, but
implies to work on spatial maps rather than on specific voxels. The
number of spatial maps, K, is not chosen a priori, but selected by
the procedure.

This problem can be seen as a blind source separation task in
the presence of noise, and has often been tackled in fMRI using
ICA, combined with principal component analysis (PCA) to reject
noise (McKeown et al., 1998; Kiviniemi et al., 2003; Beckmann
and Smith, 2004). In the multi-subject configuration, estimat-
ing the spatial maps on all subjects simultaneously makes it easy
to relate the factors estimated across the different subjects. This
can be done by concatenating the data across subject, modeling
a common distribution (Calhoun et al., 2001), or by extending
the data-reduction step performed in the PCA by a second level
capturing inter-subject variability (Varoquaux et al., 2010b). More
recently, it was proposed that the key to the success of ICA on
fMRI data, is to recover sparse spatial maps (Daubechies et al.,
2009; Varoquaux et al., 2010a). This hypothesis can be formulated
as a sparse prior in model (1), which can then be estimated using
sparse PCA or sparse dictionary learning procedures. With regards
to our goal in this study, extracting time series specific to the vari-
ous processes observed, a strong benefit of such procedures is that
they can perform data-reduction, i.e., estimation of the residuals
not explained by the model, and extraction of the relevant signals
in a single step informed by our prior. On the opposite, with ICA-
based procedures, the residuals are selected by the PCA step, and
not the ICA step.

3.2. MULTI-SUBJECT DICTIONARY LEARNING ALGORITHM

In addition, Varoquaux et al. (2011) have adapted the dictionary
learning procedures to a multi-subject setting, in a so-called multi-
subject dictionary learning (MSDL) framework. On fMRI datasets,
the procedure extracts a group-level atlas of spatial signatures
of the processes observed, as well as corresponding subject-level
maps, accounting for the individual specificities. They show that,
with a small spatial smoothness prior added to the sparsity prior on
the maps, the extracted patterns correspond to the segmentation of
various structures in the signal: functional regions, blood vessels,

interstitial spaces, sub-cortical structures... In these settings,
the subject-level maps V; are modeled as generated by group-
level maps Ve RP*K with additional inter-subject variability that
appears as residual terms, F; € RP*K at the group-level:

Vse{l,..., S}, Vi= V+F.

The model is estimated by finding the group-level and subject-
level maps that maximize the probability of observing the data at
hand with the given prior. This procedure is known as a Maximum
A Posteriori (MAP) estimate, and boils down to minimizing the
negated log-likelihood of the model with an additional penalizing
term. If the two sources of unexplained signal, i.e., subject-level
residuals E; and inter-subject variability F; are modeled as Gauss-
ian random variates, the log-likelihood term is the sum of squares
of these errors. The prior term appears as the sum of the sparsity-
inducing £; norm of V, and the £;-norm of the gradient of the
map, enforcing the smoothness. This prior has been used pre-
viously in regression settings under the name of smooth-Lasso
(Hebiri and van de Geer, 2011). Estimating the model from the
data thus consists of minimizing the following criterion:

S
T U Vo ) = (1Y = UV + Vs - vI2)

s=1

+ 1 (VI + V'L V/2)

where, || VIl; is the £; norm of V, i.e., the sum the absolute values,
L is the image Laplacian —V* LV is the norm of the gradient. A
is a parameter controlling the amount of prior set on the maps,
and thus the amount of sparsity, that is set by Cross-Validation
(CV). p is a parameter controlling the amount of inter-subject
validation, that is set by comparing intra-subject variance in the
observations with inter-subject variance. For more details about
the estimation procedure or the parameter setting, we refer the
reader to Varoquaux et al. (2011).

3.3. RESTING-STATE MSDL MAPS

rs-fMRI runs were analyzed for S=12 subjects, consisting of
n= 820 volumes (time points) with a 3-mm isotropic resolution,
corresponding to approximately p = 50000 voxels within the brain.
The automatic determination rule of the number of maps exposed
in Varoquaux et al. (2010a) converges to K= 42. Also, the CV pro-
cedure gives us the best CV criterion for A =2. The group-level
maps V are shown in Figure 1. They have been manually classi-
fied in three groups: Functional (F), Artifactual (A), and Undefined
(U) maps that appear color-coded in red, blue, and green, respec-
tively. The undefined class appeared necessary to introduce some
confidence measure in our classification and disambiguate well-
established networks (e.g., dorsal attentional network) from inho-
mogeneous components mixing artifacts with neuronal regions
(e.g., like in vg). The anatomo-functional description of these
group-level maps and their class assignment is given in Table 1.
The same rules applied for individual maps V. In what follows, we
will denote by F, A and U the index sets of F/A/U-maps, respec-
tively and by Card (F) =25, Card (A) =13, and Card () =4
their respective size.
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FIGURE 1 | From left to right and top to bottom, group-level MSDL
maps V= |vy|...|vs| inferred from the multi-subject (S=12)
resting-state fMRI dataset (Neurological convention: left is left).
Functional (F), Artifactual (A), and Undefined (U) maps appear
color-coded boxes in red, blue, and green, respectively. Let us denote

F, A, and U the index sets of F/A/U-maps, respectively and Card
(F)=25, Card (LA) =13, and Card (U4) =4 their respective size. Each
map v, consists of loading parameters within the (—1, 1) range where
positive and negative values are depicted by the hot and cold parts of
the color bar.

To compare spontaneous and evoked activity, the same spa-
tial decomposition was used on resting-state (run 1, Rest) and
task-related data, which were acquired during an auditory detec-
tion task (run 2, Task). In practice, this consists of projecting the
task-related fMRI data Y; onto the inferred spatial maps V; by
minimizing the following least square criterion, ?S —WSV§ 2,
with respect to W;. The time series solution admits a closed-form

expression: ?]S = Y/S \A ( W Vs) ! The subsequent scale-free analy-
sis is applied to the two sets of # x K map-level fMRI time series
Us = [ug]. . .lugk]* and U, = [ﬁs,l [..| TAS,K]t in a univariate
manner, that is to each time series ugj and % for Rest and Task,
respectively.

4. SCALE-FREE: INTUITION, MODELS, AND ANALYSES

4.1. INTUITION

In the analysis of evoked brain activity, it is common to seek cor-
relations of BOLD signals with any a priori shape of the hemody-
namic response convolved with the experimental paradigm. In the
frequency domain, this amounts to seeking response energy con-
centration in pre-defined spectral bands, as induced for instance
by periodic stimulation (e.g., flashing checkerboards). In resting-
state fMRI, it is now well admitted that intrinsic brain activity
is characterized by scale-free properties (Zarahn et al., 1997; He,
2011). This constitutes a major change in paradigm as it implies
that brain activity is not to be analyzed via the amounts of energy
it shows within specific and a priori chosen frequency bands, but
instead via the fact that all frequencies are jointly contributing
in an equivalent manner to its dynamics. Scale-free dynamics are
usually described in the spectral domain by a power-law decrease:
Let Y(¢) denote the signal quantifying brain activity and I'y (f)

its Power Spectral Density (PSD). Scale-free property is classically
envisaged as:

Mo: Ty (f)=clf|*, =0, )

with fi, <Ifl < fa, fm/f > 1. Such a power-law behavior over
a broad range of frequencies implies that no frequency in that
range plays a specific role, or equivalently, that they are all equally
important. To analyze brain activity, this power-law relation thus
becomes a more important feature than the energy measured at
some specific frequencies. For instance, it implies that energy at
frequency f; can be deduced from energy at frequency f, according
to He (2011):

Ty (5) =Ty () (|&l/1A) " 3)

In the scale-free framework, one therefore tries to quantify brain
activity by considering the scaling exponent g (or variants) as the
key descriptor. Let us moreover note that the terminology scale-
free is equivalent to scale invariance or simply scaling, encoun-
tered in other scientific fields, where this property has also been
found to play a central role (c.f., Abry et al., 2002; Ciuciu et al,,
2008).

4.2. SCALE-FREE MODELS

4.21. From spectrum to increments

Though appealing, equations (2) and (3) do not provide practi-
tioners with a versatile enough definition of scale-free with respect
to real-world data analysis. Indeed, they concentrate only on the
second order statistics and hence account neither for the marginal
distribution (first order statistics) of the signal Y, nor for its higher
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Table 1 | Classification of group-level V = Jvq;
to the F/A/U labeling.

...|vaz| maps according

Index Anatomo-functional description Label Network
vy Ventral primary sensorimotor cortex F(fq) Mot.
Vg Dorsal primary motor cortex or U (uq)
edge of recorded volume
V3 Midbrain A(a) Oth.
V4 Precuneus, posterior cingulate F (f2) DMN
cortex
Vs Calcarine cortex (V1) F(f3) Vis.
Ve Anterior cerebellar lobe F (fa) N-c
% Ventricles A (a2) Ven
Vg Caudate, thalamus, and putamen F (fs) N-c
Vg Pre- and supplementary motor U (u2)
cortex
V1o Occipital cortex F (fg) Vis.
V1 Ventricles A (a3) Ven.
V12 Median prefrontal cortex F(f7) DMN
Vi3 Right lateralized fronto-parietal F (fg) Fr.-par.
cortex
V14 Ventricles A (az) Ven.
Vis Superior temporal and inferior F (fg) Lang.
frontal gyrus
Vig Primary sensorimotor cortex F (f10) Mot.
V1s Artifact A (as) Oth.
Vig Dorsal occipital cortex F(f11) Vis.
Vig Supratemporal cortex F (f12) Aud.
Voo Semioval center (white matter) A (ag) WhM.
Vo1 Anterior insula and cingulate cortex F (fq3)
Voo Frontal Eye Fields (FEF), F (f1a) Att.
intra-parietal cortex
Vo3 Ventral occipital cortex F (f15) Vis.
Vo4 Semioval center (white matter) A (a7) WhM.
Vo5 Lateral occipital cortex F (f16) Vis.
Vog Parieto-occipital cortex F(f17) Vis.
Va7 Extracerebral space A (ag) Oth.
Vog Left lateralized ventral F (f1g) Fr.-par.
fronto-parietal cortex
Vaog Retrosplenial and anterior occipital U (uz)
cortex
V30 White matter A (a9) WhM.
V30 Left lateralized fronto-parietal F (f19) Fr.-par.
system
V32 Right lateralized ventral F (f20) Att.
fronto-parietal system
Vo3 Mesial temporal system F(fo1)
V3a Dorsomedian frontal cortex F (f22) DMN
V35 White matter A (a10) WhM.
V36 Motion-related artifact A (aq1) Mov.
v37 Bilateral prefrontal cortex and F (fy3)
anterior Caudate
V3g Left lateralized temporo-parietal F (f24) Att.
junction and inferior frontal gyrus
V3g Right lateralized temporo-parietal F (f5) Att.
junction and inferior frontal gyrus
(Continued)

V40 Bilateral superior parietal lobe U (ug)
Vaq White matter A (a12) WhM.
V42 Artifact A (ar3) Oth.

The Fmaps have been subdivided in different functional networks: Attentional,
Default Mode Network, Motor, Visual. Basal Ganglia (Thalamus, Caudate, and
Putamen) and cerebellum have been put together under the Non-cortical label.
They will be considered together in the following set: N = {Att, DMN, Mot, N-c,
Vis}. The artifacts have been distinguished in four types: Ventricles, White Matter,
Movement, and Other. The corresponding set will be denoted T = {Ven, WhM,
Mov, Oth}.

order dynamics (or dependence structure). For instance, it does
not indicate whether data are jointly Gaussian or depart, weakly,
or strongly, from Gaussianity.

To investigate how to enrich Model M, let us assume for now
that Y consists of a stationary jointly Gaussian process, with PSD
as in equation (2). Equivalently, this implies that the covariance
function behaves as Cy (1) ~ 0}2,(1 + Cr|™ ), fort,, <t <TMp
with «=1—p8. A simple calculation hence shows that
E(Y(t+1)— Y1) =EY(t+1) 2 +EY () —2EY(t+1)Y () =
c21T17%. The Gaussianity of Y further implies that Vg > —1:

a8
EYt+1) - YD =qglt]" 2, tn <1 < M. (4)

Defining X(t)= f " Y(s)ds, equation (4) straightforwardly implies
that, as long as 7,, < 71,72 < Tpp

5

{X(t+r1) —X(t)} @{X(t+fz)—X(t)}

teR teR
with H = (—a/2) = (B + 1)/2,and where f dd means equality of all
joint finite dimensional distributions: i.e., (X (t 4+ 71) — X(¢))/ ‘c]H
and (X(t + o) — X(t))/tZH have the same joint distributions. In
turn, this implies that Vg > —1, such that EIX (#)19 < co:

EIX (t+ 1) — X()]1 = ¢qlt|™, 1y < T <M1, 0F (6)

qH
Emu+m—xuwzﬁmu+m—xaw<%D @)
1

with 7, < 7,72 <7)p which are reminiscent of equations (2)
and (3).

4.22. Self-Similar processes with stationary increments
Equations (6) and (7) turn out to hold not only for jointly Gaussian
1/f-processes but for a much wider and better defined class, that
of self-similar processes with stationary increments, referred to as
H-sssi processes, and defined as, c.f., Samorodnitsky and Taqqu
(1994):

M1 : {X (t)}zeR fg {“HX (t/a)}teR’ (8)

Ya> 0, H € (0, 1). Essentially, it means that X cannot be distin-
guished (statistically) from any copy, dilated by scale factor a > 0,
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on condition that the amplitude axis is scaled by a. Parameter
H is referred to as the self-similarity exponent. A major practical
consequence of this definition consists of the fact that equations
(6) and (7) hold for all T (resp., 71,72).

The central benefit of such a definition is that it does not
require the data to be Gaussian but provides both theoreti-
cians and practitioners with a well-defined model. For analy-
sis, fMRI data can hence be envisaged as the increment process
Y(t) =X (t+ 1) — X(t) of an H-sssi process X (where 7 is an
arbitrary constant chosen to make sense with respect to physiol-
ogy and data acquisition set up, e.g., 7o =TR). This constitutes
a second model to account for scale-free properties in data, that
encompasses the simpler 1/f-spectrum first model.

Further, if joint Gaussianity is assumed, the model becomes
even more precise as the only Gaussian H-sssi process X is the
so-called fractional Brownian motion (fBm), c.f,, e.g., Mandelbrot
and van Ness (1968), hereafter labeled X(¢) = By(t). The corre-
sponding increment process Y (t) = Gy(t) = By(t+1) — Bu(t) is
termed fractional Gaussian noise (fGn). Additionally, note that
it may sometimes constitute a practical and relevant challenging
issue to decide whether brain activity is better modeled by the H-
sssiprocess X (hence a non-stationary process) or by its increment
process Y (hence a stationary process; c.f., e.g., Ciuciu et al., 2008;
He et al., 2010; He, 2011).

423 Multifractal processes

In a number of situations, it has been actually observed on a vari-
ety of real-world data of very different nature (c.f,, e.g., Abry et al,,
2002 for reviews) that equation (6) holds over a wide range of ts,
however, with scaling exponents that depart significantly from the
theoretical linear behavior gH:

EIX (t+17) = X (D)1= ¢gltl*?D, 7,y <7 < 0. )

The generic behaviors modeled by equation (9) can be considered
as a practical or operational, definition of scale-free property. Let
us note that, by nature, ¢ (g) is necessarily a concave function of g
(c.f., e.g., Wendt et al., 2007).

Scaling exponents ¢(q) that are strictly concave rule out the
use of H-sssi process as models. Instead, a broader class should be
used, referred to as that of multifractal processes. This is however a
large and not-well-defined class of processes. For the purposes
of this contribution, let us use a particular subclass of multi-
fractal processes defined as fBm subordinated to a multiplicative
Compound Poisson cascade:

t
My 2 X(t) := By (A(t)), where A(t) = / W (s)ds, (10)
with W (s) a multiplicative Compound Poisson cascade (or mar-
tingale), such as those defined in Barral and Mandelbrot (2002).
The complete definition of these cascades has been given and stud-
ied with details elsewhere and is hence not recalled here (c.f., Bacry
et al., 2001; Barral and Mandelbrot, 2002; Chainais et al., 2005).
It is enough to emphasize that they rely on the choice of posi-
tive random variables whose moments of order g define the {(q).
The process X thus defined satisfies equation (9) with strictly con-
vex tunable scaling exponents ¢ (q), has stationary increments Y,

and has distributions that depart from strict jointly Gaussian laws.
Such departures, that may however turn subtle and hard to detect
in practice, are precisely quantified by the departure of ¢ (q) from a
linear behavior in q. The ¢ (g) therefore convey a rich information
about data X, and hence about Y, as they account for the entire
dependence structure of the data, hence both to the time dynamic
and distributions of data. Their accurate estimation from real-
world data therefore naturally constitutes an important practical
challenge discussed below.

4.3. SCALE-FREE ANALYSIS

4.3.1. From spectrum to wavelet analysis

Assuming that data Y have a power-law spectrum behavior as in
equation (2), it is natural to rely on spectral estimation to measure
B. A classical tool in spectrum analysis is the Welch estimator that
consists in splitting data Y into blocks and in averaging the squared
Fourier transforms computed independently over each block. For
scale-free data, it is hence expected that:

Py () = [(V.gall” = clf] ", (11)
k

where the grx = go(t— k)e2™f are translated into time and into
frequency templates of a reference pattern go(#). This relation can
be further used to estimate S.

It has been shown that wavelet transforms can achieve bet-
ter performance both in the analysis of scale-free properties in
real-world data, and in the estimation of the corresponding scal-
ing parameters (c.f., Abry et al., 1995, 1998; Veitch and Abry,
2001). The discrete wavelet transform (DWT) coefficients of Y
are defined as:

dy (j, k) = /R Y (1) 277 (2_jt _ k) dt=(Y,950),  (12)

where the ¥/ = 277g(277t — k) consists of templates of a refer-
ence pattern ¥ translated in time and dilated (by a factor a= 2)).
It is referred to as the mother-wavelet: an elementary function,
characterized by fast exponential decays in both the time and fre-
quency domains, as well as by a strictly positive integer Ny, > 1,
the number of vanishing moments, defined asVk=0, 1,.. ., Ny — 1,
SRt Yo(t)dt=0, and [rtNro(t)dt#0. Note the choice of the
L'-norm (as opposed to the more common L?-norm choice) that
better matches scaling analysis. For further introduction to wavelet
transforms, the reader is referred to, e.g., Mallat (2009).

Defining S)‘i (J,2) = nij E;:jzl |dy G, k) |2 (with #; the number of

dx(j,k) available at scale 2/), one obtains (c.f. Abry et al., 1995):

ES¢ (j,2) = /R Iy (1) [ <2ff)’2df (13)

where W denotes the Fourier transform of (. This indicates
that Sl‘f (j,2) can be read as a wavelet based estimate of the PSD
and is hence referred to as the wavelet spectrum. It measures the
amount of energy of Y around the frequency f;= fol2) where f
is a constant that depends on the explicit choice of ¥( (for the
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Daubechies wavelet used here, fy >~ 3f;/4 with f; the sampling fre-
quency). This correspondence between the Fourier and wavelet
spectra is illustrated on fMRI signals in Figure 2. For scale-free
processes satisfying equation (2), it implies:

1
sé@azsi§zxn¢ﬂﬂﬁzgﬂw*%amgﬂgaM.
" =1
While this formally looks like equation (11), it has been shown
in detail how and why the wavelet spectrum yields better esti-
mates of the scaling exponents 8 than Welch based-ones, both in
terms of estimation performance and robustness to various forms
of non-stationarity in data that may be confused with scale-free
behaviors (Abryetal., 1995, 1998; Veitch and Abry, 2001). Notably,
it was shown how wavelet analysis enables to disentangle non-
stationarity, stemming from fMRI environment, from true long
memory in brain activity. Also, the wavelet spectrum avoids the
potentially difficult issue that consists of deciding a priori whether
empirical data are better modeled by Y or X, needed by classical
spectrum estimation, that can only be applied to stationary data.
In a nutshell, these benefits stem from the use of the change of
scale operator to design the analysis tool, that intuitively matches
scale-free behavior more naturally than a frequency shift operator.

4.3.2. From 2nd to other statistical orders: Wavelet leaders

As discussed in Section 4.2, analyzing in-depth scale-free proper-
ties implies investigating not only the spectrum (i.e., the second
order statistics of data) but rather the entire dependence structure,
i.e., the whole range of available statistical orders g. It had initially
been thought that this would amount to extending the definition
of $¢(j, 2) to other orders g, S (j, q) = n% ZZJ:I (Y, w]—,kﬂq. It has
however recently been shown that this approach, though intuitive
and appealingly simple, fails to yield satisfactory estimation of the
£(q). Notably, wavelet coefficients show little power in enabling
practitioners to decide whether ¢ (q) is a linear or strictly concave
function of g. Instead, it is now well documented that the estima-
tion of the ¢ (g) should be based on Wavelet Leaders (Wendt et al.,
2007).

Let us now assume that ¢ has a compact time support
and introduce the global regularity of Y, h,,, defined as: h,, =
lim inf,j_, ; log(supy|dy (j, k)|)/ log(zj). Therefore, h,, can be
estimated by a linear regression of the log of the magnitude

A B,
A 0.8 /’\f‘\\
.
S { A
2 = t ] z )
B ,‘ 08 Jretefreyinbi
=3 i S \
S & 2 [—osp Rest 04 v Y
- DSP Task ¢ “1 \
2 oH-—wspRest| ﬂ‘ 0.21{ ~*~Func Rest ; L %
~-WSP Task ~+-Func Task \ \z
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0008 0016 0031 0063 0125 025 0 05 1 1.5
log, f in Hz Hélder exponent h

FIGURE 2 | (A) Welch (blue curves) vs. Wavelet (black curves) spectra
associated with a F-map (f1g). Solid and dashed lines correspond to rest and
task, respectively. (B) Corresponding multifractal spectra D(h).

of the largest wavelet coefficient at scales 2/ versus the log of
the scales 2/ (Wendt et al., 2007). Let y >0 be defined as,
with € >0: y =0 if hy >0, and y =—h,, + € otherwise. Fur-
ther, let 1 denote the dyadic interval Aj;= [k2/, (K +1)2)),
and denote by 31 the union of 4, and its 2 closest neighbors,
34 = [(k— 1)2], (k+2)2)). The wavelet leaders L}"
as Lg,y)(j, k) = sup}\/cﬂj’kﬂj |dy(k/)’. In practice, Lg,y)(j, k) sim-
ply consists of any of the largest coefficients 2/Idy (1)! located
at scales finer or equal to 2/ and within a small time neighbor-
hood. It is then necessary to form the so-called wavelet Leader

structure functions that reproduce the scale-free properties in Y
according to:

are defined

n
] 1 ’ q 4
Sy Grav) = — 20 (19 (k)" = 24, (14)
T k=1
Moreover, for alarge class of processes,one has: ¢ (¢,y) =¢(gq) + v 4.

For all real-world data analyzed so far with WLME, this relation is
found to hold, by varying y (c.f. Wendt et al., 2007 for a thorough
discussion). This has also been verified empirically for fMRI data.
Further, because it can take any concave shape, the function ¢ (g,y)
is often written as a polynomial expansion (Arneodo et al., 2002):

0(q,y) = Tp=1 c(y)qp/p‘ Notably, the second order truncation

(g y) = c(y)q + c(y) 9% /2 (with C(Y) < 0 by concavity) can be
regarded as a potentlally interesting approximation that captures
the crucial information regarding whether the ¢{(g,y) are linear
in q (hence indicating H-sssi models) or strictly concave (hence
suggesting multiplicative cascade models). Interestingly, the coef-
ficients c;y) entering the polynomial expansion of ¢{(g,y) are not
abstract figures but rather turn out to be quantities deeply tied to
the scale-free properties of Y, as they are related to the scale depen-
dence of the cumulants of order p > 1, C;V) (j, p)» of the random

variable In Lg,y) G, k):

Vp =1, C(y)(j»p) = Cé);,) + C()/) In2. (15)
Equations (14) and (15) suggest that the ¢(gy) or c;” can

be efficiently estimated from linear regressions: ¢ (q,)/) =

2]_]-1 wjlog, SL(j, ¢, 7) and c(y) = log, ex? i Vi CY(] P Y)-
The weights wj are chosen to perform ordinary (or non-weighted)

least squares estimation (c.f. Veitch and Abry, 2001 for discussion).

Further, ¢ (q,y) = ¢(q) + y q obviously implies that ¢; = cl(y) -y

andVp>2,¢, = céy)

This wavelet Leader-based analysis of scale-free properties
is intimately and ultimately related to multifractal analysis, the
detailed introduction of which is beyond the scope of the present
contribution. We restate here only its essence. Multifractal analyses
describe globally the fluctuations along time of the local regularity
of a signal Y (¢). This local regularity is measured by the so-called
Holder exponent h(t), that essentially compares Y around time
to against a local power-law behavior: 1Y (#) — Y (#o)l <lt— tolh,
It— tol = 0. The variations of h along time are then described
globally via the multifractal spectrum, consisting of the collection

Frontiers in Physiology | Fractal Physiology

June 2012 | Volume 3 | Article 186 | 8


http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Fractal_Physiology
http://www.frontiersin.org/Fractal_Physiology/archive

Ciuciu et al.

Multifractal time dynamics in fMRI

of Hausdorff dimensions, D(h), of the sets of points {t,h(t) = h}.
In practice, the multifractal spectrum is estimated indirectly via
(a Legendre transform of) the function ¢ (gq). The approximation
£(q) = c1q+ c1¢%/2 translates into D(h) ~1— (h— c¢1)*/(2lcyl).
For thorough and detailed introductions to multifractal analysis,
the reader is referred to, e.g., Wendt et al. (2007). Examples of
such multifractal spectra estimated using the WLMF from real
fMRI signals are illustrated in Figure 2B. An outcome of the
mathematical theory underlying multifractal analysis, of key prac-
tical importance and impact, is the following: the function D(h)
theoretically constitutes a rich characterization of the scale-free
properties of a signal Y and its complete and entire estimation
requires the use, in equation (14), of both positive and nega-
tive order gs, concentrated left and right around 0 (Wendt et al,,
2007).

5. MULTIFRACTAL ANALYSIS OF MSDL MAPS

5.1. SINGLE-SUBJECT ANALYSIS

5.1.1. Scaling range

For analysis, orthonormal minimal-length time support
Daubechies’s wavelets were used with Ny = 3. Scale-free prop-
erties are systematically found to hold within a 4-octave range
((j1,j2) = (3,6)), corresponding to a frequency range of [0.008,
0.063] Hz>, which is hence consistent with the upper limit
0.1Hz classically associated with the hemodynamics boundary
and scaling in fMRI data (Cordes et al., 2001).

5.1.2. Fourier vs. wavelet spectra

For illustrative purposes, two time series corresponding to a func-
tional map (k=28, f1s in Table 1), were selected in the rest
and task runs from the first subject. In Figure 2A, the Fourier
spectrum estimate (long‘us)k (f)) based on Welch’s averaged peri-
odogram and its wavelet spectrum counterpart (log, S,‘i L(52)
are found to closely match, as predicted by equation (13). Inter-
estingly, Figure 2A shows that the 8 exponent, measured within
frequency range [0.008, 0.063] Hz, in equation (2) (i.e., the neg-
slope of the log-spectra log, Fus,k (f)) decreases with task-related
activity in fg. This amounts to observing lower Hurst expo-

nent H= (B — 1)/2 in the task-related dataset: ﬁ}; ~ 0.66 and

It[ng ~ 0.5. As shown in the following, this decrease of self-
similarity is not specific to functional maps and will be observed in
artifactual and undefined maps. Following He (2011), the station-
arity of fMRI signals is confirmed since we systematically observed

~RT
Hy

5.1.3. Multifractal spectrum

For the same time series, MF spectra D(h), estimated using
the WLMF tool described above, are depicted in Figure 2B.
The decrease of self-similarity between rest and task is captured
by a shift to the left of the position ¢} of the maximum of
D(h): ((51)]%8, (EI)Zs) = (0.75,0.5) It should also be noted that
parameter ¢; systematically takes values that are close to those
of the Hurst exponent. This is consistent with the theoretical

>The scale and band-specific central frequency are related according to f; = 3f/ (42)).

modeling of scale-free property that establishes a clear connec-
tion between ¢; and H and predicts ¢; >~ H (c.f. Wendt et al,
2007). Therefore, in the following, ¢; will be referred to as the
self-similarity parameter although this is a slight misnomer. Fur-
ther, Figure 2B confirms the presence of multifractality in fMRI
data as strictly negative ¢, < 0 are almost always observed. Indeed,
parameter ¢, quantifies the width of D(h; as a curvature radius
of D(h) around (¢1): ¢; < 0. Multifractality is however not spe-
cific to a given brain state since we measured ((?2)%3’ (’52)}18)
(—0.07, —0.06). In this example, multifractality, as measured by
the width of the multifractal spectra, is decreased from rest to
task. However, opposite fluctuations will be also observed amongst
F-maps.

The sole two self-similarity and multifractality parameters c;
and ¢, are therefore used from now on as sufficient and relevant
descriptors of the scale-free properties of fMRI signals (super-
script y is dropped for the sake of conciseness, while y has been
systematically set to y =2).

5.2. GROUP-LEVEL ANALYSIS

5.2.1. Group-level scale-free properties

Let c] denote the ¢; and ¢, estimates (index i=1:2) for dif-
ferents maps (index k= 1:K), runs (index j=R,T for Rest and
Task, respectively) and for different subjects (index s). The map-
dependent group-level values have been computed as pf r =

DRI /S and sorted according to their labeling (F/A/U-maps)

s=1"1,
given in Table 1. Then, global spatial averaging of the means

“]i,k has been performed so as to derive global F/A/U-average
parameter estimates: ﬂJ;)F = YkcF ;L]Z:,k/Card(}" ), [_,L]l 4> and
,lTLJ;’U are defined equivalently. In the same spirit, group-level
multifractal attributes /1]1:)1,[ are derived for each functional net-
work v, e N = {Att, DMN, Mot, N-c, Vis} such that ;1]1»’ e =

Zken ;L]i’k/Card(ng), V¢ =1:5, and j= (R,T). We proceed in the
same way for analyzing artifact types t, € 7 = {Ven, WhM, Mov,
Oth}, and computing [,_L]l-,tr for r=1:4.

As shown in Figure 3[top], the group-averaged values of self-
similarity “]1,k lie approximately in the same range [0.55, 1],
indicating long memory, for all components (F/A/U-maps). An
almost systematic decrease of self-similarity is observed in the
task-related dataset (8, = M{k — ,ulik < 0), for ke FUAUU.
This trend is therefore not specific to F-maps. Moreover, the
average decrease computed over F-maps is about the same as
the one estimated for A and U-maps (51,1: = —0.125, Sl,A =
—0.11 and 8;,y = —0.13). Also, the averaged standard devia-
tions (6§F, 6EA, and 511{’(]) computed over the F/A/U-maps, are
close to each other (c_fli F/aju ~ 0.18) and systematically increase
with the task-related activity(3{ /4 /iy > 65 5/a,0)-

Figure 3[bottom] illustrates that the group-averaged values of
“2 k are almost all negative in the F/A/U-maps indicating multi-
fractahty in fMRI time series irrespective of the map type or brain
state. Between rest to task-related situation minor changes in the A
and U-maps are also observed since 18, x| < 0.03 fork € U U A)
while we measured 18, < 0.08 for ke F (6, = ,u{k - Mg,k)'
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FIGURE 3 | From left to right: Group-averaged map-dependent MF parameters [L’;yk (top), ,Lgk (bottom) specific to F/A/U-maps defined in Table 1. Black

Hence, the level of multifractality does not change much between
rest and task in irrelevant maps. In contrast, large changes in the
multifractal parameters are observed in F-maps, while not system-
atically in the same direction. For instance, in cerebellum ( f4),
basal ganglia (f5), DMN ( f7) and fronto-parietal network ( fs)
evoked activity induces a large increase of multifractality (8, x < 0)
while in the auditory and attentional systems (e.g., f12 and f4,
respectively), which are supposed to be involved in the audi-
tory detection task, the converse observation holds, i.e. (6% > 0.
Also, it is worth noticing that the averaged standard deviations
computed over the A/U-maps increase when switching from rest
to task (65, = 006 < 63, = 0.09 and 55, = 0.05 <

6} v =0. 085) while they remain at the same level in the F-maps:

05 r 02 r ~ 0.08.

We computed the grand means of the self-similarity parame-
ters [Li’g/ AjU Over the F/A/U-maps, respectively, and draw the
same conclusion at this macroscopic level, as demonstrated in
Figures 4A-C: the decrease of self-similarity from rest to task is
not specific to functional components and only slightly fluctu-
ates between networks and artifact types. Moreover, we did not
observe any significant modification of the grand means of mul-
tifractal parameter estimates [LZR”E/ a/u between rest and task, as
illustrated in Figure 4D. This motivated deeper investigations at
the network and artifact levels, especially concerning the fluctu-
ation of multifractality induced by task. Figure 4E reveals that a
major increase of multifractality (/lrzr,n4 < ﬁ% ) occurred only in
the non-cortical regions while no major change appeared in the
artifacts ([L{ty ~ ﬂg,tr,‘v’r € 7)) as shown in Figure 4F.

522 One-sample statistical tests
To assess the statistical significance of the multifractal parame-
ters for the rest and task-related datasets at the group-level, we

used one-sided tests associated with the following null hypotheses
Vke FUAUU:

O

Ml e = 0.5,
H(2 k)

it i SRD
(White noise or ) } (16)

2,k =0., (H — sssi process).

We also conducted similar tests at the macroscopic level
(ke NUT) by replacing “’Ji,k with 'a]i,k in the null hypothe-
ses (16). Because there is no definite proof nor evidence that
MF parameter estimates ?:1]; should be normally distributed
across subjects, we investigated different statistics (Student-t,
Wilcoxon’s signed rank (WSR) statistic). Indeed, other statis-
tics may provide more sensitive results in presence of out-
liers. To account for multiple comparisons (K tests per-
formed simultaneously) and to ensure correct specificity con-
trol (control of false positives), the Bonferroni correction was
applied.

Rejecting Hé,;’k) clearly amounts to localizing brain areas or
components eliciting significant long memory or self-similarity.
H(Z,k)

Rejecting enables to discriminate multifractality from self-

similarity. Slmllar tests involving /LI Fiajus 1 _] iny and ,u
the definition of null hypotheses(16) for (1—1 2) were also
performed.
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FIGURE 4 | Top: Group-level grand-mean self-similarity parameter ;2’;.,( grand-mean multifractality parameter /i, , averaged over the F/A/U-maps, i.e.,
averaged over the F/A/U-maps, i.e., k € 7/ A/U (A), the functional k € F/A/U (D), the functional networks, k € N (E) and the artifact types,
networks, k € N (B) and the artifact types, k € T, (C). Bottom: Group-level ~ k € T, (F). Black and red curves code for j=R (Rest) and j =T (Task).

Analysis of statistical significance of F-maps regarding Hélfg’k

showed that most components (22/25) rejected this null hypo,th—
esis at rest using T-test and thus were significantly self-similar
(see blue curves in Figure 5A). The task effect then induced a loss
of significance in the vast majority of components as shown in
Figure 5B: only four maps ( f10, f 14, f1s> and f24) demonstrated
a significant level of self-similarity using T-test in the task-related
dataset. These maps are related to the motor, fronto-parietal, and
attentional (parieto-temporal junction and IPS/FEF) networks.
Two out of them are lateralized in the left hemisphere. Statisti-
cal analysis of F-maps regarding Héig’k demonstrated that only six
components ( f15,f17,f18>f21,f 23, f24) rejected this null hypothe-
sis at rest: see red curves in Figure 5A. The task-related modulation
tends to reduce the number of significant F-maps: As depicted
in Figure 5B, only 3 components survived the T-test ( f10, f15,
and f19) in the task-related dataset. Interestingly, f 1o and f9 are
likely to be involved in the auditory detection task and the motor
response since they belong to the Motor and Attentional networks.
Hence, a significant level of multifractality is observed during task
in components that were monofractal at rest. Besides, the level of
multifractality remains significant in the ventral occipital cortex
(f15) irrespective of the brain state and that a few components in
the visual (f}7), fronto-parietal ( f3), temporal ( f), prefrontal
(f23), and attentional ( f,4) networks became monofractal under
the task effect.

Statistical analysis of A and U-maps regarding Hé,lj)’k showed
the same behavior when switching from rest to task, namely a
strong decrease of the number of significant self-similar compo-
nents (from 10 to 4 and 4 to 2 for A/U-maps, respectively): see
blue curves in Figures 5C-F, respectively. Statistical analysis of

A and U-maps regarding Hé’zj)’k also demonstrated a reduction
of the number of multifractal components in A/U-maps. Two
artifactual components (a;9 and a;;) located in the white mat-
ter remained consistently multifractal in both datasets and one
undefined component (u3) became significantly multifractal when
switching from rest to task. In all cases, a loss of significance is
observed using WSR tests (dash dotted curves) instead of T-tests
(solid curves) indicating that there is no outlier in this group and
thus that the Gaussian distribution hypothesis is tenable.

Then, we focused on the statistical analysis at different macro-
scopic scales, first by averaging all F/A and U-maps respectively so
as to derive a mean behavior for F/A/U-maps. Finally, we looked
at functional networks and artifact types in more details. Blue
curves in Figures 6A,B report such results for the rest and task-
related datasets, respectively. We still observed a significant level
of self-similarity in all averaged groups (blue curves) irrespective
of the brain state: H (()};F/ AU 4 systematically rejected for j= (R,
T). However, we still noticed a reduction of statistical significance
induced by task irrespective of the map type. More interestingly,
we found at this macroscopic level that all averaged maps were
multifractal at rest whereas only the functional one remained
multifractal during task: see red curves in Figures 6A,B. Fur-
ther, statistical analysis of functional networks defined in Table 1
was conducted to understand which network drives this effect.
When comparing p-values in Figures 6C,D on functional net-
works, we observed that all remained significantly self-similar
in both states, while the DMN is close to the significance level
o = 0.05 during task (blue curves). Regarding multifractality, only
the non-cortical regions appeared monofractal at rest and all net-
works kept a significant amount of multifractality during task. In
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FIGURE 5 | Corrected p-values associated with one-sample
Student-t (--) and WSR (-.,-.) tests performed on resting-state ([A,C,E])
and task-related multifractal parameters ([B,D,F]) for assessing

H,;" (blue curves) and H,>’ (red curves) on the functional ([A-B]),
artifactual ([C-D]) and undefined maps ([E-F]), respectively. Significance
level (@ = 0.05) is shown in - -.
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FIGURE 6 | Corrected p-values associated with one-sample
Student-t (-,-) and WSR (-.,-.) tests performed on resting-state ([A,C,E])
and task-related multifractal parameters ([B,D,F]) for assessing H,;"’

(blue curves) and H;” (red curves) on the averaged map types ([A-B]),
networks A ([C-D]) and artifact types 7~ ([E-F]), respectively. Significance
level (@ = 0.05) is shown in - -.

contrast, this observation did not hold for artifacts: when looking
at Figures 6E,F in detail, the signal related to ventricles became
monofractal during task.

523 2-way repeated measures ANOVA

In order to assess any significant change of self-similarity or multi-
fractality between rest and task, we entered the subject-dependent
parameter estimates (EZ”;) in several 2-way repeated measures
ANOVAs involving two factors: brain state (two values: j=R, T)
and map type (with varying number of values). These ANOVAs
were conducted separately for assessing self-similarity (i=1) and

multifractality (i=2) changes. First six ANOVAs (three for each
parameter) were carried out by considering the F/A/U-maps as
the second factor, respectively. This second factor thus took a
number of values that depends on the set under study: F, A,
or U. Results are summarized in Table 2. Regarding the analysis
of self-similarity (Z‘{; parameters), a significant brain state effect
appeared in all F/A/U-maps, and a significant map effect in the F
and A-sets. Significant interactions were found for the F and U-
maps. This confirms that the level of self-similarity is not sufficient
to disentangle functional networks from artifactual or undefined
maps.
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Table 2 | 2-way repeated measures ANOVA results based on the 2;’;
parameters for i ={1, 2}, j=(R,T), s=1:S, and k € F (top), ke A
(middle), k e 4 (bottom).

Table 3 | 2-way repeated measures ANOVA results based on the 2{;
parameters for i={1,2}, j=(R,T), s=1:S, and ke (top) and keT
(bottom).

Level Param. Source F score p-val. Level Param. Source F score p-val.
F-maps di State 9.54 0.01 Networks cﬁ State 9.78 0.01
Map 4.31 1e-09 ' Network 4.18 0.006
State x Map 1.76 0.02 State x Network 1.09 0.37
F-maps césk State 0.13 0.73 Networks &5 State 1.013 0.34
Map 119 0.25 Network 3.18 0.02
State x Map 1.56 0.04 State x Network 2.97 0.03
A-maps 6‘41 State 5.73 0.03 Artifacts 2‘47( State 4.85 0.05
Map 2.4 0.008 Artifact 2.33 0.09
State x Map 1.32 0.21 State x Artifact 1.16 0.34
A-maps &ésk State 0.09 0.77 Artifacts 6‘5( State 0.31 0.59
Map 2.4 0.007 Artifact 1.03 0.39
State x Map 0.71 0.74 State x Artifact 1.085 0.37
U-maps &% State 5.39 0.04
Map 2.91 0.06 Bold font indicates statistically significant results i.e., p-value < 0.05.
State x Map 3.16 0.04 .
U-maps Céi State 2.436-05 0.99 for the ,ujz)k’s: task-related positive and negative fluctuations of
Map 0.68 0.57 4l were actually observed in Subsection 5.2.1. Figures 7A,B
State x Map 0.63 0.6 shows the uncorrected p-values for the F-maps and networks,

Bold font indicates statistically significant results i.e., p-value < 0.05.

As regards ANOVAs based on Eé . Parameters, a significant
interaction for F-maps is found, thus indicating that the aver-
aged change in multifractality between rest and task is significant
for functional maps only. In summary, only F-maps exhibited
significant interactions for both multifractal attributes.

Akin to the one-sample analyses above, we looked at a larger
spatial scale, the functional network, and artifact type levels and
performed similar ANOVAs, corresponding results are reported
in Table 3. While both functional networks and artifacts demon-
strate a significant change in the self-similarity parameter between
rest and task, only functional networks made the map type effect
significant. More importantly, the key feature for discriminating
functional networks from artifacts relied on ANOVAs based on 2'272
parameters. Indeed, a significant network effect and more impor-
tantly a significant interaction between rest and task are observed
in functional networks.

524. Two-sample statistical tests

To localize which maps are responsible for statistically significant
ANOVA results, we finally performed two-sample T-tests in which
we tested the following null hypotheses:

~ (1,k) R _ T
~H02k PULE = M Vke FUAUU (17)
H(() ) ,u,g ,uzk,Vker.AUle

We also conducted similar tests at the macroscopic level
(ke NUT) by replacing “Ji,k with ﬂJi,k in the null hypotheses
(17). The fluctuations in self-similarity being systematically in the
same direction between rest and task, we performed one-sided

tests as regards the u]] i s while two-sided tests were considered

respectively. We rejected ﬁél’k) for (f3, fa» f11> f18> f25) at a

significance level set to o} =0.01 and H(2 " for (fa f7, f1s) at
o =0.05. These components clearly explain significant results
reported in Table 2 about the changes in self-similarity and multi-
fractality that occurred in F-maps. Interestingly, among the latter,
the null hypothesis was rejected because of a large increase of
multifractality in (f4, f7). In contrast, a decrease of multifrac-

tality was responsible for the rejection of H| A% in f1s. When
setting oy = o1 =0.01, only fg survived this threshold and thus
remained the single functional component for which a significant
difference of self-similarity and multifractality was found between
rest and task. This component clearly drove the significant interac-
tion reported in Table 2 for the change in multifractality in F-maps.
Figure 7B also showed that the state effect reported in Table 3 on

c] ) at the network level was driven by the attentional, motor,
and visual systems. Last, the significant interaction reported in

Table 3 on (c] ) is explained by the non-cortical regions as shown
in Figure 7B.

Figures 7C,D shows the localization of the state effects reported
in Tables 2 and 3 for the changes in self-similarity that occurred in
artifacts at the local and global levels. No A-map enabled to reject

H, ghh at the o1 significance level but a majority of A-maps (aj.4,
ag, as, a)o, a12) contributed to the significant state effect observed
in Table 2. At the global artifact level, the ventricles appear as
the main source of the significant state effect reported in Table 3
for the change in self-similarity. Also, no significant difference in
multifractality was reported for artifacts whatever the observation
level (A-maps or averaged artifacts). Similarly, Figure 7E enables
us to show that u, and uy were the main sources of the significant
state effect and interactions reported in Table 2 for the change
in self-similarity. At the macroscopic level, we finally observed in
Figure 7F that only the grand mean of functional maps leads to a
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FIGURE 7 | Uncorrected p-values associated with two-samples respectively. Similar tests were computed at a broader spatial scale on the
Student-t test performed between resting-state and task-related functional networks (B), the artifacts (D) and the averaged map types (F),
multifractal parameters for assessing H."’ (blue curves) and H* (red respectively. Significance levels («; = 0.01 and «, = 0.05) are shown in - -
curves) on the functional (A), artifactual (C) and undefined maps (E), and - -, respectively.

significant modulation of self-similarity between rest and task at
level o;.

6. DISCUSSION

6.1. RESULTS INTERPRETATION

This study analyzed in-depth the scale-free properties of fMRI
signals, using multifractal methodologies, and their modulations
during rest and task both in functional networks and artifactual
regions. The underlying goal was to finely characterize which prop-
erties are specific to functional networks and which modulation
can be expected for these networks from task-related activity. Pre-
vious attempts in the literature (Cordes et al., 2001; Leopold et al.,
2003; He, 2011) focused on functional networks without compar-
ing results with the behavior of artifacts. The main reason comes
from the fact that seed region analyses were only conducted in such
studies. Hence, no comparison with vascular or ventricles-related
signals was undertaken.

Our results confirmed that fMRI signals are stationary and self-
similar but not specifically in functional networks. Also we showed
that the amount of self-similarity significantly varies between rest
and task not only in functional networks involved in our auditory
detection task with a motor response (Attentional, Motor) but
also quite surprisingly in the visual system and in some artifacts
(ventricles) and undefined maps. This observation led us to inves-
tigate the scale-free structure of fMRI signals using richer models,
namely multifractal processes, to which the WLMF toolbox is ded-
icated. Our statistical results demonstrate first that fMRI signals

are multifractal, second that interactions between brain state and
maps only occurred in F-maps and functional networks and third,
that specific F-maps such as in non-cortical regions demonstrated
a statistically significant fluctuation between rest and task. This
result shows that the concept of multifractality permits to disen-
tangle functional components from artifactual ones, in a robust
and significant manner.

However, in contrast to self-similarity that systematically
decreases with evoked activity, multifractality decreases in corti-
cal (f1g) but increases in non-cortical ( f4, f7). Thus, task-related
activity has no systematic impact with respect to increase/decrease
of multifractality. Interestingly, we found a statistically non-
significant trend toward a decrease of multifractality in regions
primarily involved in the task ( f12, f24, f25). However, the group
size of this study remains small (12 subjects only) to achieve signif-
icant results, mainly because of the between-subject variability and

of the difficulty in estimating 2‘;;{ parameters on short time series.

Further investigations beyond the scope of this paper are nec-
essary to find out any general trend on the direction change
of multifractality with evoked activity by cross-correlating mul-
tifractal parameters with task-related activity (e.g., group-level
Z-scores) and task performance. However, to derive reliable results
for multifractality, a larger group of individuals will be considered
and a larger number of scans will be acquired while maintaining
the same scanning time: To this end, accelerated SENSE imaging
will be used together with recent reconstruction algorithms so as
to improve temporal resolution (Chaari et al., 2011b).
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6.2. MONOFRACTAL SCALE-FREE EEG MICROSTATE SEQUENCES VS.
MULTIFRACTAL DYNAMICS FOR RSN

The results obtained in this contribution shows multifractal tem-
poral dynamics in fMRI signals and thus naturally lead to ques-
tion the potential origins and generative mechanisms for this
departure from the more traditional long-range correlation mod-
eling of scale invariance. A natural track to inspect consists of
that of the relations between hemodynamic (fMRI) and electri-
cal (EEG) signatures for brain activity at rest. This question has
been intensively studied over the last decade (Laufs et al., 2003;
Mantini et al., 2007; Britz et al., 2010; Musso et al., 2010; Van
de Ville et al., 2010; Yuan et al., 2012), first by measuring cross
correlations between fMRI data at rest and EEG-informed regres-
sors derived from the convolution of the EEG power signal in
five well-identified frequency bands (8 € (1,4) Hz, 6 € (4,7) Hz,
a € (8,12) Hz, B € (13,30) Hz, and y > 30 Hz) with the canonical
HRE This approach revealed the negative correlation of «-band
activity with the attentional network and the positive correlation
with 8;-band with the default mode network (precuneus and pos-
terior cingulate cortex; Laufs et al., 2003). Also, Mantini et al.
(2007) showed that functional resting-state networks have differ-
ent EEG signatures which are not specific to a given frequency
band but are rather spread over several oscillations regimes (e.g.,
correlation between o and B power in specific RSN), a conse-
quence of the so-called oscillation hierarchy (Buzsaki, 2006) and
the of phase-amplitude cross-frequency coupling (He et al., 2010).
However, none of these works enable to explain the low frequency
fluctuations (<0.1 Hz) or scale-free dynamics of the fMRI signal
at rest, because this phenomenon is much more widespread than
oscillations.

Scale-free dynamics of brain electrical activity at rest has
recently been studied (Van de Ville et al., 2010) but not directly
on raw data. Instead, EEG microscates that correspond to short
periods (100 ms) during which the EEG scalp topography remains
quasi-stable, have been first segmented. Remarkably, it has been
shown that only four different EEG microstate patterns are neces-
sary to describe the ongoing electrical brain activity at rest (Britz
et al., 2010) and that these four microscates correlate with well-
known RSN, which were classically identified from fMRI dataset
alone using group-level ICA. This demonstrated that the EEG
microstate with rapid fluctuations might be considered as the
electrophysiological signature of intrinsic functional connectiv-
ity patterns. The investigation of scale-free dynamics was thus
performed on the EEG microstate sequence to understand how
fast the microscates are changing and what kind of correlation
structure (short or long-range) they bring (Van de Ville et al,,
2010).

The recent finding that EEG microscate sequences reveal purely
monofractal dynamics (Van de Ville et al., 2010), irrespective of
the data filtering, may lead to conclude that the same monofrac-
tal behavior in the fMRI signature of RSN (strongly correlate
with these microstates) should be expected, if one assumes a
linear and time invariant HRF model for the neurovascular cou-
pling. However, the results obtained in the present contribution
can be considered not only as evidence in favor of multifrac-
tality in fMRI data, but also as evidence that this multifractal
effect is discriminant of cortical versus non-cortical regions and

characteristic of functional network with respect to modulation
under task.

Several factors may explain this apparent discrepancy. First,
an accurate comparison of both sets of result would require
a precise match of the range of scales (or frequencies) within
which scale invariance is analyzed and corresponding parame-
ters measured. Here, the selected range of frequencies corresponds
to ([0.008,0.063]Hz), while the monofractal behavior of EEG
microstate sequences was exhibited on a distinct frequency range,
i.e. ([0.063, 3.9]Hz) in Van de Ville et al. (2010). Comparison
of scaling properties requires that the same frequency range is
selected but this constraint is clearly not tenable across modalities
like EEG and fMRI given the fMRI sampling rate.

Second, it is indeed very unlikely that a linear and time invari-
ant filtering may create multifractality in fMRI starting from a
monofractal electrophysiological signal in EEG. The general issue
of the relations between (linear and non-linear) filtering and mul-
tifractality were barely studied theoretically so far but interestingly,
Abry et al. has shown that simple non-linear filter can turn mono-
into multifractality. Hence, another putative origin for the appar-
ent contradiction between our findings and those in Van de Ville
et al. (2010) lies in refined descriptions of HRF model by non-
linear dynamical systems (e.g., Balloon model; Buxton et al., 1998,
2004). Of course, linear and stationary approximations like the
canonical HRF model (Glover, 1999) or non-parametric alterna-
tives (Vincent et al., 20105 Chaari et al., 2011a) have been validated
but only on evoked activity and considering inter-stimulus inter-
vals larger than 3s. For shorter ISIs, non-linear hemodynamics
has turned out to be a valid property (Liu and Gao, 2000). In this
context, habituation, or repetition suppression effects may occur
and induce a sublinear hemodynamic response, which would
modify scaling properties (Dehaene-Lambertz et al., 2006; Ciuciu
et al., 2009). Hence, by modeling the sequence of EEG transient
brain states as a series of short time epochs, this could induce
non-linearities in the hemodynamic system that could explain
the switch from purely fractal EEG microstates to multifractal
signatures in the corresponding RSNs.

Third, instead of segregating EEG microstates in multiple
groups based upon the maximal spatial dissimilarity between
groups (Britz et al., 2010; Musso et al., 2010), a more recent
analysis of joint EEG/fMRI resting-state data has revealed a larger
number (thirteen) of EEG microstates that show temporal inde-
pendence from each other (Yuan et al., 2012). In this latter
work, all resting-state networks including visual, motor, auditory,
attention, saliency and default mode networks were character-
ized by a specific electrophysiological signature involving several
EEG microstates. This clearly indicates that the original analy-
sis of scale-free dynamics for EEG microscates done in Van de
Ville et al. (2010) should be revisited on this larger number of
metastable states to disentangle whether multifractality in this
larger set of microstates has been discarded due to averaging
effects. It is actually clear that the sequence mixing thirteen differ-
ent microstates may generate richer singularities (abrupt changes
between microstates) than the ones relying on four microstates
only. Fourth, the temporal signatures of EEG microstates found
in Musso et al. (2010), Van de Ville et al. (2010) are correlated
in time since the spatial similarity was the key factor to identify
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them. As a consequence, the microstate sequences is correlated
too and might loose some singularities that could be found out in
the microstate sequences generated by Yuan et al. (2012). Finally,
the presence of multifractality in resting-state (and task-related)
MEG data has been evidenced in the sensor space in Zilber et al.
(2012). These findings open new research avenues: For instance, it
is natural to explore whether the observed multifractal properties
can be related multiplicative cascade processes, that is to one of the
only practical mechanism known to generate multifractal dynam-
ics, or to investigate whether this cascade takes place at meso or
macroscopic scales, as well as to figure out how brain networks
could implement such cascade mechanisms. This topic is beyond
the scope of the present contribution, however the log-normal sta-
tistics of neuronal firing rate could provide us with a first clue to
uncover any generative process underlying multifractal dynamics.

6.3. STATIONARITY VS. NON-STATIONARITY OF THE RSN DYNAMICS
Recent results in resting-state fMRI reveal temporally independent
functional modes of spontaneous brain activity (Smith etal., 2012)
and postulate the presence of temporally non-stationary modes in
part of the default mode network by resorting to high temporal
resolution fMRI. While stationarity receives a unique and clear
definition, non-stationarity can correspond to a bunch of differ-
ent situations; for example, non-stationarity might (i) refer to an
apparent change over time in the correlation between two regions
or (ii) refer to changes in the mean and/or variance in the time
course of a functional network.

The wavelet based analysis of scaling proposed here already
addresses a number of such situations. The fact that the estimated
Hurst coefficient of fMRI time series remains consistently below
1 indicates that fMRI signals at hand here are better modeled as a
stationary step process Y rather than as a non-stationary random
walk X. Further, wavelet analysis are known to bring robustness
against various forms of non-stationarities, such as smooth trends
superimposed to data, to mean or variance modulation (c.f. (i1)).
The multifractal analysis performed here is thus not impaired by

such form of non-stationarities. This leaves open issues such as
the presence of oscillations superimposed to scaling. Given that
time series are very short, the use of formal stationarity test will
lack power and are not likely to reject stationarity. Further, in all
the analysis conducted in the present work, no evidence of non-
stationarity in the fMRI time series at hand were evidenced. This
is in agreement with what has been reported in He (2011) in an
fMRI ROI-based analysis. Finally, previous attempts to scale-free
analysis of densely sampled fMRI datasets in time (using the EVI
sequence; Rabrait et al., 2008) already confirmed the validity of a
the stationarity assumption; see Ciuciu et al. (2008).

7. CONCLUSION

We uncovered multifractal scale-free dynamics of fMRI time series
over four octaves (15-125s) both in functional networks and
in artifacts. We then disentangled functional components from
artifactual ones in a robust and significant manner by demon-
strating that only the former gave rise to significant modulations
of the multifractal attributes between rest and task-related activity.
Variability in human performance scores also generally exhibits
power-law distributions, whose strength (or exponent) is often
modulated across conditions and tasks (Holden et al., 2011).
This paves the way toward future works devoted to investigating
the extent to which behavioral properties are correlated with the
change of scale-free dynamics in neuroimaging time series (MEG,
fMRI) acquired during multisensory learning (Seitz et al., 2007).
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