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Fractal analyses have become very popular and have been applied on a wide variety of
empirical time series. The application of these methods supposes that the monofractal
framework can offer a suitable model for the analyzed series. However, this model takes
into account a quite specific kind of fluctuations, and we consider that fractal analyses have
been often applied to series that were completely outside of its relevance. The problem is
that fractal methods can be applied to all types of series, and they always give a result,
that one can then erroneously interpret in the context of the monofractal framework. We
propose in this paper an easily computable index, the relative roughness (RR), defined as
the ratio between local and global variances, that allows to test for the applicability of frac-
tal analyses. We show that RR is confined within a limited range (between 1.21 and 0.12,
approximately) for long-range correlated series. We propose some examples of empirical
series that have been recently analyzed using fractal methods, but, with respect to their
RR, should not have been considered in the monofractal model. An acceptable level of RR,
however, is a necessary but not sufficient condition for considering series as long-range
correlated. Specific methods should be used in complement for testing for the effective
presence of long-range correlations in empirical series.
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INTRODUCTION
Long-range correlations (LRC) represent a very special kind of
fluctuation in time series. In a long-range correlated series, the
current value is related to a large set of previous values, often hun-
dreds. Intuitively, the concept of short-term correlation is easily
conceivable: the current value can, for example, keep a memory of
the just previous value, as in one-order auto-regressive processes.
The concept of LRC is less intuitive: correlations appear simul-
taneously among all time scales, and are not confined on the
short-term: the current value seems to possess the memory of
the whole previous history of the series.

Long-range correlations have been discovered in the dynamics
of a number of natural and physical systems, including for exam-
ple the series of discharges of the Nile River (Hurst, 1951), the
series of magnitudes of earthquakes (Matsuzaki, 1994), the evo-
lution of traffic in Ethernet networks (Leland et al., 1994), or the
dynamics of self-esteem over time (Delignières et al., 2004). In the
domain of human movement, LRC have been evidenced in serial
reaction time (Gilden, 1997; van Orden et al., 2003), in finger tap-
ping (Gilden et al., 1995; Lemoine et al., 2006), in stride duration
during walking (Hausdorff et al., 1995), or in relative phase in a
bimanual coordination task (Torre et al., 2007a).

Long-range correlations appear as a ubiquitous phenome-
non, and this is one of the reasons that motivated its scien-
tific appealing. However, LRC should not be considered only
a mathematical curiosity: a number of authors suggested that
LRC in a time series is the hallmark of the complexity of the
system that produced the series. Complexity, in this theoretical

context, is conceived as the rich set of interactions between
the multiple components that compose the system. LRC have
been particularly studied in physiology and movement sciences,
and have been recurrently evidenced in the series produced by
young and healthy organisms. In contrast, LRC disappeared in
the series produced by aged of diseased systems (Hausdorff et al.,
1997; Goldberger et al., 2002). This result has been interpreted
as the hallmark of a loss of complexity, induced by aging or
disease.

Long-range correlations analyses are based on the monofractal
model, initially introduced by Mandelbrot and van Ness (1968).
This model is supported by a number of basic assumptions that
should be satisfied for a proper use of the analysis methods and for
sustaining consistent interpretations. In general, statistical mod-
els allow the use of formal statistical properties for analyzing the
properties of empirical data, but this is only possible if there is a
kind of analogy between the formal properties of the model and
those of the analyzed data.

This principle was at the origin of the Stevens’ theory of scales
of measurement (Stevens, 1951). As stated by Stevens, measure
is acceptable from the moment where there is a correspondence
between the empirical properties of the observed phenomenon
and the formal properties of numbers. In that case, the latter can
serve as a model for the former. Stevens described four levels of
measurement (nominal, ordinal, interval, and ratio scales), each
level being characterized by distinctive properties, and especially
by the set of mathematical operations that it allows. Each empir-
ical phenomenon has properties that limit to a specific level of
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measurement, and any reference to a higher level causes erroneous
uses numbers and inadequate statistical descriptions.

A similar reasoning can be sustained for normality. The suit-
ability of parametric statistical tests depends on the adequacy of
the normal distribution for accounting for the actual distribution
of the analyzed samples. This assumption, basically, suggests that
each value xi in the sample is composed of the additive combi-
nation of a “true” value (μ) and a random, normally distributed
noise (Eq. 1).

xi = μ + εi (1)

This model supposes that the random term accounts for the
multiple uncontrolled factors that affect the measure (individ-
ual characteristics, experimental errors, etc.). Considering that
this random term is centered on zero, averaging the sample con-
verges toward μ. The distribution of the sample is supposed
to be normal, thanks to the normality of the random term,
and the statistical properties of the normal distribution can be
applied.

Note, however, that it is possible to use forbidden operations,
with regards to the level of measurement, or to apply paramet-
ric statistics to non-normal samples. These operations will give
absurd results, and statistic tests will yield erroneous conclusions,
but in both cases one will obtain a “result.” A similar problem
can occur with the monofractal model. Fractal methods can be
applied to all types of series, in absolute terms, and they always
give a result, that one can then erroneously interpret in the context
of the monofractal framework.

Our aim in the present paper is to provide researchers with
some indications for assessing the suitability of the monofractal
framework for serving as a model for a given time series. In a first
step it seems necessary to present in more details the monofractal
model.

THE MONOFRACTAL MODEL
This model has been introduced by Mandelbrot and van Ness
(1968), and is composed of to distinct families of processes,
fractional Gaussian noises (fGn) and fractional Brownian motions
(fBm). These two families represent extensions of two well-known
stochastic processes, white noise and Brownian motion. Brown-
ian motion represents the displacement obtained by the iterative
summation of uncorrelated, normally distributed increments. In
other words, Brownian motion is the integration of a white noise
process. An important property of Brownian motion is that its
expected displacement is proportional to the square root of the
expended time.

Fractional Brownian motions extends the concept of Brownian
motion by allowing the successive increments to be correlated over
time. A positive or persistent correlation signifies that an increas-
ing trend in the past is likely to be followed by an increasing trend
in the future. Conversely, a negative or anti-persistent correlation
signifies that an increasing trend in the past is likely to be followed
by a decreasing trend.

Mathematically, a fBm series is characterized by the following
scaling law:

SD (x) ∝ Δt H (2)

which signifies that the standard deviation of the process is a power
function of the time interval (Δt ) over which it was computed. H
is the Hurst exponent and can be any real number in the range
0 < H < 1. Anti-persistent series are characterized by H < 0.5,
and persistent series by H > 0.5. Brownian motion corresponds
to the special case H = 0.5 and constitutes the frontier between
anti-persistent and persistent fBm. Eq. 2 expressed the so-called
diffusion property of fBm processes. With respect to the standard
diffusion of Brownian motion (standard deviation is proportional
to the square root of time), anti-persistent fBm are said to be
under-diffusive, and persistent fBm over-diffusive. We present in
Figure 1 (top row) three example fBm series, for three contrasted
H exponents.

Fractional Gaussian noise is defined as the series of successive
increments in a fBm. In other words a fGn is the differentiation of
a fBm, and conversely the integration of a fGn gives a fBm. Each
fBm is then related to a specific fGn, and both are characterized by
the same H exponent. We present in the bottom row of Figure 1
the fGn series corresponding to the just above fBm series. The fGn
family is centered around white noise (H = 0.5), which represents
the frontier between anti-persistent and persistent fGn.

These two families of processes possess fundamentally differ-
ent properties: fBm series are non-stationary with time-dependent
variance (diffusion property), while fGn are stationary with
constant expected mean and variance over time. As previously
explained, fGn and fBm can be conceived as two superimposed
families, invertible in terms of differentiation and integration.

Another useful conception is to conceive these two families as
representing a continuum, ranging from the most anti-persistent
fGn to the most persistent fBm. This fGn/fBm continuum is char-
acterized by the presence of scaling laws that could be expressed
in the frequency or in the time domain. In the frequency domain,
a scaling law relates power (i.e., squared amplitude) to frequency
according to an inverse power function, with an exponent β:

S
(
f
) ∝ 1

f β
(3)

This scaling law is exploited by the Power Spectral Density
(PSD) method that reveals β as the negative of the slope of the

FIGURE 1 |Top row: example series of fractional Brownian motions

(fBm) for three typical values of the scaling exponent. The central graph
represents an ordinary Brownian motion (H = 0.5). The left graph shows an
anti-persistent fBm (H = 0.25) and the right graph a persistent fBm
(H = 0.75). The corresponding fractional Gaussian noises series (fGn) are
displayed in the bottom row.

Frontiers in Physiology | Fractal Physiology June 2012 | Volume 3 | Article 208 | 2

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Fractal_Physiology
http://www.frontiersin.org/Fractal_Physiology/archive


Marmelat et al. Relative roughness

log–log representation of the power spectrum (Figure 2). The
fGn/fBm continuum is then characterized by exponents β ranging
from −1 to 3 (see Figure 4).

In the time domain, the typical scaling law states that the stan-
dard deviation of the integrated series is a power function of the
time over which it is computed, with an exponent α. Considering
a time series x(i):

⎧⎪⎨
⎪⎩

y(i) =
i∑

k=0
x (k)

SD
(
y
) ∝ nα

(4)

This scaling law is exploited by the Detrended Fluctuation
Analysis (DFA) that reveals α as the slope of the log–log diffusion
plot (Figure 3). The fGn/fBm continuum is characterized by expo-
nents α ranging from 0 to 2 (see Figure 4). Note that the scaling law
expressed in Eq. 4 just derives from the original definition of fBm
(Eq. 1). If the series x(i) is a fGn, y(i) is the corresponding fBm and
α is the Hurst exponent. If x(i) is a fBm, y(i) belongs to another
family of over-diffusive processes, characterized by exponents α

ranging from 1 to 3, and in that case α = H + 1.
The different exponents that characterize these scaling laws are

mutually linked by very simple equations:
For fGn series:

β = 2H − 1 and α = H (5)

For fBm series:

β = 2H + 1 and α = H + 1 (6)

FIGURE 2 | Power Spectral Density analysis. The exponent β is given by
the negative of the slope of the log–log representation of the power
spectrum.

For fGn and fBm series:

β = 2α − 1 or α = (β + 1)

2
(7)

The exponents provided by PSD and DFA (β and α, respec-
tively), are useful because they allow to unambiguously distinguish
between fGn and fBm series, which could be characterized by the
same H exponents.

In this fGn/fBm continuum, LRC are generally considered
to appear in a narrow range, between β = 0.5 and β = 1.5 (i.e.,
between α = 0.75 and α = 1.25, see Wagenmakers et al., 2004). This
range is centered on β = α = 1, corresponding to the ideal 1/f noise.
Long-range correlated series present typical fluctuations, often
referred to as 1/f fluctuations, characterized by multiple interpen-
etrated waves. As can be seen in Figure 4, with the increase of the
scaling exponent (α or β), the series becomes smoother and less
stationary. Within this continuum, LRC series are characterized by
a weak stationarity, and a median level of roughness.

A INDEX OF RELATIVE ROUGHNESS
As previously stated, our aim in this paper is to provide researchers
with some indications for assessing the suitability of the monofrac-
tal model for a given time series. A number of procedures can be
proposed, often complex and time-consuming. We think, however,
that the property of roughness, previously evoked, could support a
very simple and easily computable index for testing this suitability.

Roughness has been extensively used for characterizing the tex-
ture of surfaces (Thomas, 1999). In this context, roughness can be
quantified by the deviations of a real surface from its ideal form. If
deviations are large, the surface is rough, and the surface is smooth
if deviations are small. A number of roughness parameters have
been proposed, for example the Mean Roughness, defined as the
arithmetic average of the absolute values of the deviations from
the ideal surface, or the Root Mean Square Roughness, defined as
the root mean square average of these deviations.

FIGURE 3 | Detrended Fluctuation Analysis. The exponent α is
determined as the slope of the log–log diffusion plot.
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FIGURE 4 | Representation of the fGn/fBm continuum. The continuum is
characterized by exponents β ranging from −1 to 3, and by exponents α

ranging from 0 to 2. White noise corresponds to β = 0 and α = 0.5, and

Brownian motion to β = 2 and α = 1.5. Long-range correlations are considered
to appear between β = 0.5 and β = 1.5. β = α = 1 corresponds to ideal 1/f
noise.

In the domain of time series analysis, roughness refers to the
level of short-term irregularity in the evolution of the series.
As previously proposed, roughness appears as a typical prop-
erty of 1/f fluctuations, and we think that it could be useful for
assessing the suitability of the monofractal model for a given
series.

Roughness in a series can be assessed by the computation of
local variance (Madison et al., 2009). Local variance can be defined
as the variability between adjacent points in the series. This source
of variance in a series is independent on others typical sources,
such as long-term drifts (Madison et al., 2009), or more local
trends induced by serial correlations (Torre and Balasubramaniam,
2011).

An easy way for estimating local variance is to compute the vari-
ance of the series of increments in the original series (Torre and
Balasubramaniam, 2011). Some other estimates have been pro-
posed: for example Ogden and Collier (2002) and Madison et al.
(2009) assessed local variance through the average of the squared
differences between adjacent values, and Delignières et al. (2004)
used the average of the absolute differences between adjacent val-
ues. Despite some algorithmic divergences, all these measures pro-
vide equivalent measures of local variability, in terms of variance
or standard deviation.

Local variance, however, cannot in isolation provide a rele-
vant indication for the suitability of the monofractal model. As
previously stated, local variance is independent on the strength
of serial correlations in the series: similar patterns of corre-
lation can be obtained with different levels of local variance,
and conversely identical levels of local variance could appear
in series possessing different levels of serial correlation (Torre
and Balasubramaniam, 2011). The problem is to assess the rel-
ative contribution of local variance to the global variance of
the series. In this aim, we propose an index of relative rough-
ness (RR), defined as the ratio between local variance and global
variance.

Consider a series (xi). Local variance (LVar) can be
expressed as:

LVar (xi) = Var (xi − xi−1) = 2 [Var (xi) − γ1 (xi)] (8)

γ1(xi) representing the lag-one autocovariance. One can then
obtain the following expression for RR:

RR = 2

[
1 − γ1 (xi)

Var (xi)

]
(9)

This equation suggests that for a white noise process, local vari-
ance should be twice the global variance, and RR should equal
2. One could also expect a progressive decrease of RR with the
increase of serial correlations in the series. Finally, the diffusion
property suggests that for fBm series global variance increases with
series length. As a consequence, for fBm series RR should decrease
as series length increases.

In order to analyze the evolution of RR according to the strength
of serial correlations in the series, we generated exact fractal series
with α exponents ranging from 0.1 (highly anti-persistent fGn) to
1.9 (highly persistent fBm), by steps of 0.1, using the algorithm
proposed by Davies and Harte (1987). In order to check the effect
of series length on RR, we worked on series of 512, 1024, and 2048
data points, which correspond to the series lengths mostly used in
the literature. One-hundred series was generated for each α level
and each series length. The results are illustrated in Figure 5. As
expected RR decreased as correlations increased in the series. RR
was about 2.0 for white noise, and anti-persistent fGn series were
characterized by values greater than 2.0, up to 2.9 for the most
negatively correlated series (α = 0.1). For fBm series RR presented
an asymptotical trend toward zero as α increased. As expected,
series length affects RR, but this effect is located in a narrow range
of anti-persistent fBm (between α = 1.0 and α = 1.4).

We present in Table 1 the details of the results for the range
0.5–1.5. We obtained for 1/f series (α = 1.0) a mean RR ranging
from 0.4 to 0.5, depending of series length. On the basis of these
results, it is possible to roughly estimate the limits of the range
of RR values that corresponds to the series that are usually con-
sidered as long-range correlated (0.75 < α < 1.25). For series of
512 points, RR should be approximately comprised between 1.24
and 0.28, for series of 1024 points between 1.24 and 0.17, and for
series of 2048 points between 1.21 and 0.12. Note that these values
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FIGURE 5 | Relative roughness as a function of the scaling exponent α in simulated fGn and fBm series. Results are given for series lengths of 512, 1024,
and 2048 data points.

Table 1 | Mean relative roughness (RR), computed for exact fractal

series with α exponents ranging from 0.5 to 1.5.

α Relative roughness (RR)

512 1024 2048

0.5 1.990 2.005 2.004

0.6 1.722 1.705 1.705

0.7 1.410 1.397 1.388

0.8 1.074 1.052 1.037

0.9 0.718 0.688 0.662

1.0 0.496 0.449 0.417

1.1 0.407 0.349 0.301

1.2 0.318 0.248 0.186

1.3 0.116 0.087 0.057

1.4 0.056 0.031 0.017

1.5 0.018 0.010 0.005

Results are given for series lengths of 512, 1024, and 2048 data points. Forty

series have been generated for each α level and each series length. Series that

correspond to the LRC range are indicated in bold.

should certainly not be considered as strict and absolute bound-
aries. The present results are dependent on the method we used
to generate series, and another method would have given slightly
different values.

RELEVANT SERIES FOR FRACTAL ANALYSIS: RELATIVE
PHASE IN BIMANUAL COORDINATION TASKS
The aim of RR is to provide an easily computable index for testing
the a priori suitability of the monofractal model. We think that this
index could be useful for distinguishing the variables that could
be relevant for the application of fractal analyses, and those that
clearly fall out of the scope of the monofractal model.

An interesting example can be proposed on the basis of
studies that analyzed the fractal properties of series collected
in bimanual coordination tasks. In the bimanual coordina-
tion paradigm, participants are requested to perform simulta-
neous rhythmical oscillations with the two hands, according
to a prescribed phase relationship between the two effectors
(Kelso, 1984). Two modes of coordination have been shown
to be particularly stable: the in-phase coordination, in which
homologous muscles perform simultaneous contractions, and
the anti-phase coordination, in which homologous muscles per-
form alternate contractions. The relevant variable for analyz-
ing such coordination is the relative phase, i.e., the difference
between the instantaneous phases of each oscillator. Relative phase
equals 0˚ for the in-phase mode, and 180˚ for the anti-phase
mode.

Two measures of relative phase are used in the literature, and
are generally considered as interchangeable. Continuous relative
phase (CRP) is derived from the position (xt) and velocity (xt)
time series of each oscillator. The phase angle is determined for
each oscillator using the following equation:

φt = tan−1
(

ẋt

xt

)
, (10)

and the relative phase is determined as the instantaneous difference
between the phase of each oscillator.

Discrete relative phase (DRP) is punctually computed, as the
temporal difference between similar inflection points in the oscil-
lation of the two oscillators, reported to the period of one of the
oscillators. CRP has often been interpreted as a higher resolu-
tion form of DRP. Nevertheless, Peters et al. (2003) showed that
these two measures essentially differ in nature: DRP yields infor-
mation regarding the relative dispersion of events in oscillatory
signals, while CRP described their relationship in a higher order
phase space.
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Torre et al. (2007a) analyzed the fractal properties of both DRP
and CRP series. Two example series, collected in trials performed in
in-phase mode, are presented in Figure 6 (top row). At first glance,
the two series look similar, presenting a weak stationarity around
a mean value of 0˚. However, the DRP series (left graph) contains
only 1044 data points, while the CRP series is composed of 32,000
data points (sampled at 100 Hz, representing approximately 96

consecutive cycles). The graphs in the second row highlight the
differences between the two series, by focusing on 200 points for
DRP and 2000 points for CRP. The DRP series is composed of dis-
crete points, and differences between adjacent values provide the
series with a marked level of roughness. In contrast the CRP series
appears as a very smooth motion, with slow oscillations around
the mean value.

FIGURE 6 |Top Row: relative phase series collected during a

bimanual coordination task. The task was performed following an
in-phase mode. The left graph represents a series of discrete relative
phases (DRP, 1044 data points, computed by the point estimate
method at the time of maximal pronation of the right hand). The right
graph is a series of continuous relative phase (CRP, 32,000 data

points, sampled at 100 Hz, representing approximately 96
consecutive cycles). Second row: DRP (left) and CRP (right) series.
These graphs focus on 200 points for DRP and 2000 points for CRP.
Third row: average DFA diffusion plots obtained for DRP (left), and
CRP (right) series. Bottom row: average log–log power spectra
obtained for DRP (left), and CRP (right) series.
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Relative roughness, averaged over 12 series composed of the
2048 first points of the experimental data, was about 1.22 (±0.44)
for DRP, and 0.0015 (±0.000) for CRP. These results suggest that
DRP series could be reasonable candidates for being modeled as
fGn processes, while CRP series appear clearly out of the range of
RR values expected for LRC processes.

These results are confirmed by the application of DFA and
PSD. DRP series yielded a mean α exponent of 0.76 (±0.12). The
mean β was 0.49 (±0.15), corresponding according to Eq. 7 to
a α value of about 0.75. These values converge toward the char-
acterization of DRP series as weakly persistent fGn series. The
analysis of CRP series provided completely different results. When
computed over the whole range of intervals, the mean α was of
about 1.25 (±0.11). However, a close examination of the diffu-
sion plot (see Figure 6) revealed a clear inflection, with a steeper
slope of about 1.89 (±0.03) for short time intervals, and a flat-
tened slope (0.69 ± 0.41) for long intervals. PSD yielded a mean
log–log power spectrum that also presented an inflection, with a
positive mean slope of about 0.40 (±1.58) in the very low fre-
quency region, and a highly negative slope (−5.08 ± 0.28) in the
medium to high-frequency region. This last result was consistent
with that reported by Schmidt et al. (1991), which obtained very
high β exponents for CRP series. One could question, however, the
relevancy of computing an exponent on the basis on the average
slope of this kind of spectrum. An interesting point here is the dis-
crepancy between the results obtained in the time domain (DFA)
and the frequency domain (PSD). According to Rangarajan and
Ding (2000), such a discrepancy should lead researchers to doubt
of the genuine presence of LRC in the analyzed series.

THE SPECIAL CASE OF BOUNDED SERIES
Another problem that could prevent the application of the
monofractal model is the fact that series could appear bounded
within physiological or biomechanical limits. The monofractal
model suggests that fBm series are typically unbounded. The diffu-
sion over time of a pure fBm is theoretically unlimited: fluctuations
grow as a power function of time, and the expected displacement
of the process from a given origin is likely to increase indefinitely.

When a series is bounded within physiological boundaries, the
diffusion process is obviously limited and variance cannot exceed a
ceiling value. In other words, variance is likely to become indepen-
dent on time beyond a critical time interval necessary for reaching
this ceiling value.

This problem was recently considered by Delignières et al.
(2011a), in the domain of postural control. Research on postural
control focuses on the analysis of center-of-pressure (COP) trajec-
tory, easily recorded with force platforms. A number of authors,
during the last decade, have proposed to apply to these data diverse
non-linear methods, including fractal analyses. Delignières et al.
(2011a) formulated strong reserves about the suitability of the
fractal framework for modeling COP data, which appear clearly
bounded within functional limits. Interestingly, they showed that
bounding affected primarily COP velocity, rather than COP posi-
tion series, as generally accepted in the literature (Collins and De
Luca, 1993). This result suggested that bounding could be due
to motor control limitations, rather than by biomechanical con-
straints as commonly assumed. We present in Figure 7 (top row)
an example COP velocity series, sampled at 40 Hz, that illustrates

this bounding phenomenon: COP velocity presents highly per-
sistent trends on the short-term, but these trends tend to reverse
in direction when velocity reaches the upper or the lower limits
represented by the dashed lines.

The presence of persistent trends on the short-term suggests a
rather low roughness, similar to that observed for persistent fBm
series. However, the ceiling effect on global variance yields surpris-
ing results: The computation of RR for 26 experimental series of
COP velocity of 2048 data points gave a mean value of about 1.64
(±0.66), corresponding the value expected for weakly persistent
fGn series (see Figure 5).

Liebovitch and Yang (1997) analyzed the effect of bounding
on the results produced by fractal analyses. Especially, the diffu-
sion plot obtained with the application of DFA is supposed in that
case to present a typical inflection, with a steep slope for short time
intervals revealing the persistence of the process on the short-term,
and a flattening of the slope for long time intervals, due to the lim-
itation of diffusion. The application of DFA on the series of COP
velocity clearly illustrate this crossover (see Figure 7): the diffusion
plot presents a slope of about 1.0 for short time intervals, and a
slope of 0.43 for long intervals. Note that the crossover can also be
revealed by PSD: the log–log power spectrum presents a marked
inflection, with a positive slope in the low frequency region reveal-
ing negative correlations on the long-term, and a negative slope
in the high-frequency region, due to the persistent trends on the
short-term (Figure 7, bottom row, right column).

The application of fractal-like methods to bounded series has
sometimes lead to interpretations in terms of dual fractal regime,
with a persistent behavior on the short-term and an anti-persistent
behavior on the long-term (e.g., Collins and De Luca, 1993;
Treffner and Kelso, 1995, 1999). In the present case a simpler
hypothesis related to the effect of bounding on the dynamics
of the variable under study, offers a more interesting and useful
interpretation.

DISCREPANCIES BETWEEN RELATIVE ROUGHNESS AND
SCALING EXPONENTS
The previous examples showed how the measure of RR could allow
to a priori assessing the plausibility of the fractal hypothesis. When
RR is clearly out of the range expected for LRC, the reference to
the monofractal framework can be abandoned.

Relative roughness, however, is not sufficient for unambigu-
ously characterizing a given series as long-range correlated. In
others words, a series can present a level of RR located in the range
expected for LRC processes, without being actually long-range
correlated.

In order to illustrate this problem, we simulated three sets of
time series, possessing different correlation properties. The first
set was generated by a one-order auto-regressive model:

yi = ϕyi−1 + εi (11)

In this equation ϕ is the auto-regressive parameter and was set
to 0.85. εi is a white noise process with zero mean and unit vari-
ance. The second set was generated by an integrated one-order
moving average model:

yi = yi−1 − θεi−1 + εi (12)
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FIGURE 7 |Top: an example series of center-of-pressure velocity,

during the maintenance of upright posture (sampling frequency:

40 Hz). The dashed lines represent the upper and lower limits that

bound the evolution of the series. Bottom: average DFA diffusion plot
(left) and average log–log power spectrum (right). From Delignières
et al. (2011a).

In this equation θ is the first-order moving average parame-
ter and was set to 0.8. εi is a white noise process with zero mean
and unit variance. Finally we used the Davies–Harte algorithm for
simulating a set of fractional Gaussian noise series, with H = 0.9
(Davies and Harte, 1987). Each set was composed of 100 series of
1024 points. By construction, the two first sets of series present
only short-term correlations, while the third one possesses LRC
properties.

We choose these ARMA models and their parameters values
because the application of DFA on the series generated by these
models yields diffusion plots similar to those obtained with fGn
series. We present in Figure 8 one example series of each set, and
the corresponding diffusion plots: in all cases a linear slope close
to 0.9 is obtained. Obviously the best linear fit is observed for
the fGn series, which contains genuine LRC. For the AR series,
the diffusion plot presents a slight flattening for long intervals,
and conversely the slope tends to increase for long intervals for
the MA series. However the diffusion plots obtained the AR
and MA series roughly mimic the typical shape expected from
long-range correlated series, and could easily lead to erroneous
interpretations.

More precisely, considering the 100 series of each set, the mean
α exponent was 0.92 ± 0.06 for AR series,0.92 ± 0.08 for MA series,

and 0.90 ± 0.07 for fGn series. In contrast, the computation of RR
gave different values in the three sets: the mean RR was 0.30 ± 0.03
for AR series, 0.87 ± 0.36 for MA series, and 0.69 ± 0.09 for fGn
series. For fGn series, the mean RR corresponded exactly to the
expected value (see Table 1). With respect to the obtained α expo-
nent, AR series were characterized by a mean RR value lower than
expected, and conversely for MA series RR was slightly higher than
expected.

Such discrepancies between the expected and obtained RR val-
ues could represent an interesting test for the suitability of the
monofractal model. Note, however, that these differences between
expected and obtained values should be considered with some
caution. The mean RR value of 0.30 obtained for AR series corre-
sponds to the expected value for fBm series with α = 1.1, and the
mean value of 0.83 obtained for MA series to the expected value
for fGn series with α = 0.8. Considering the possible error in the
estimation of α, especially for relatively short series (see Delig-
nières et al., 2006), the discrepancy between α and RR should be
only considered one indicator, among others, for characterizing
the series.

Some methods have been especially developed for distinguish-
ing between short-term and LRC. Wagenmakers et al. (2005) and
Torre et al. (2007b) have proposed a method based on ARMA and
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FIGURE 8 |Top row: example series simulated with a one-order

auto-regressive model (yi = 0.85yi − 1 + εi, left column), a one-order

moving average model (yi = yi − 1 – 0.8εi − 1 + εi, central column), and the

Davies–Harte algorithm (fGn with H = 0.9, right column). The
corresponding DFA diffusion plots are presented in the bottom
row.

ARFIMA modeling. This method consists in fitting 18 models to
the series. Nine of these models are ARMA (p, q) models, p and
q varying systematically from 0 to 2. These ARMA models do not
contain any long-range serial correlations. The other nine models
are the corresponding ARFIMA (p, d, q) models, differing from the
previous ARMA models by the inclusion of the fractional integra-
tion parameter d representing persistent serial correlations. One
supposes that if the analyzed series contains LRC, ARFIMA mod-
els should present a better fit than their ARMA counterparts. We
applied the ARMA/ARFIMA modeling to the three sets of series:
as expected, all series in the fGn set were recognized as long-range
correlated. In contrast, only 10% of the AR series and 14% of the
MA series were best fitted by ARFIMA models.

Note that Gilden (2009) has issued severe reservations
against methods based on goodness-of-fit criteria, such as the
ARMA/ARFIMA procedure proposed by Wagenmakers et al.
(2004). As an alternative, the author proposed global analyses that
evaluate models on the basis of their capacity of generalization.
The models are examined in terms of cross-validity, flexibility,
and representativeness.

One could wonder about the added value of the proposed RR
index, with regard to these methods that allow to detect the gen-
uine presence of LRC in data sets. RR just provides an a priori
indication about the possible relevancy of the monofractal model,
but is unable to attest for the genuine presence of LRC. One could
propose to systematize the application the aforementioned meth-
ods before any consideration of the fractal approaches. However
it is clear that these methods are rarely used in the litterature.
These methods remain complex to implement, and their theo-
retical backgrounds are sometimes difficult. Often authors prefer
to directly apply fractal methods such as PSD or DFA, and to

interpret a posteriori the obtained results. The RR index presents
the advantage to be very easy to compute, and can allow avoiding
superfluous investigations.

TIME SERIES AND EVENT SERIES
The two first examples we evoked in this paper (relative phase
series and COP velocity) open an interesting line of discussion
about the relevancy of fractal analyses. One could note that in
both cases the series that appear unsuitable for being modeled
through the monofractal framework were genuine time series, i.e.,
series of successive values spaced by equal time intervals.

In contrast, DRP series correspond to a cycle-to-cycle measure-
ment, and the time interval between two successive values depends
on the local period used as denominator in the calculation of rela-
tive phase. DRP series are just event series, composed of temporally
ordered measures, but cannot be considered genuine time series.
It is important to note that in most cases, experiments that clearly
evidenced the presence of fractal fluctuations did not consider
time series but event series. This was the case, for example, for the
inter-tap intervals series in finger tapping experiments (Gilden
et al., 1995; Lemoine et al., 2006), or for the stride intervals series
analyzed in walking experiments (Hausdorff et al., 1995, 1997).
In the set of experiments proposed by Gilden (2001), all analyzed
series were as well composed of ordered successive performances.

At a methodological level, this could be considered an obstacle
for the application of time series analyses such as those previously
presented. Is it possible to apply analyses dealing with notions
such as frequency or time intervals with data series where time
is not effectively present? The application of time series analy-
ses to event series is generally accepted pending some theoretical
adaptations. Obviously, when dealing with an event series, time

www.frontiersin.org June 2012 | Volume 3 | Article 208 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Fractal_Physiology/archive


Marmelat et al. Relative roughness

cannot be considered in its absolute sense. When applying PSD,
“frequency” should not be read in Hertz units, but rather in terms
of inverse trial number (Gilden, 2001), or in number of cycles
for N trials or observations (Musha et al., 1985; Yamada, 1996).
As well, the “intervals” taken into account by DFA are not gen-
uine time intervals, but rather lengths of samples of successive
observations.

This distinction between time series and event series is a key
point in fractal analyses. Researchers aiming at undertaking a
fractal approach to a given system could be naturally inclined
to opt for time series, considering the nature of the statistical
procedures commonly used in this domain. However, we think
that the key variable in fractal analysis is not fluctuation in time,
but rather cycle-to-cycle or trial-to-trial fluctuation. As argued by
Kello et al. (2007), 1/f fluctuations are likely to occur when a sys-
tem is repeatedly exposed to the same set of constraints. Gilden
(2001) developed a similar idea, suggesting that the emergence
of 1/f fluctuations is dependent on the consistency of the mental
set, i.e., the reproducibility of constraints over successive trials.
When a system has to repeatedly produce the same performance
in the same situation, fluctuations in performance are likely to
reveal its constitutive complexity. Essential properties of complex
systems, such as degeneracy, suggest that the neural networks that
are in charge of the production of performance are never identi-
cal from one trial to the other, but are never completely different.
This capacity to mobilize softly assembled and evolving networks
over successive trials could be considered the essential origin of
LRC in the series of performances produced by complex systems
(Delignières et al., 2011b).

Note, however, that the collection of event series is often diffi-
cult and time-consuming. The successive performance of hun-
dreds of trials on a given task raises evident methodological
problems and experimental biases, related to fatigue, or moti-
vation. In contrast, the collection of time series, especially with
high-frequency recording devices, could appear easier. Obviously,
we do not argue that fractal analyses cannot be applied on genuine
time series. Some convincing experiments have been published
that were based on the analysis of time series, for example in the
study of force production (Sosnoff and Newell, 2005), or elec-
troencephalographic data (Nikulin and Brismar, 2004). In these
examples, however, series were recorded from systems in steady
state condition, and the successive measurements are likely to rep-
resent ordered assessments of a more or less stationary variable.
In contrast, in a number of situations time series represent a kind
of displacement in a given physical environment (for example
COP trajectories) or in a more formal space (for example CRP
series). Obviously, such series tend to present strong persistent

correlations between successive positions, and this kind of motion
falls clearly out of the scope of LRC processes. A solution in this
case can be to seek for LRC properties in the series of successive
increments, rather than in the original series (see, for example,
Stephen et al., 2010).

CONCLUSION
Long-range correlations remain a very intriguing phenomenon,
and the recent theoretical advances in this domain suggest that
these fluctuations could represent a key entry in the study of the
functional complexity of living systems. However, if the presence
of serial correlations in series of data collected on such systems is
surely more the rule than the exception (Slifkin and Newell, 1998),
this does not imply that these correlations possess long-range
properties. The RR index we discussed in this paper represents
a simple tool allowing an easy prior assessment of the plausibility
of the LRC hypothesis for a given series. We showed, however, that
additional precautions are necessary in order to avoid erroneous
conclusions or interpretations.

Note, however, that if the RR index can serve as an a priori
warning light, some options can be considered before the definitive
abandon of the monofractal framework. As previously suggested,
one can often choose alternative variables that are better suitable
for fractal analyses (e.g., DRP rather than CRP). Series transfor-
mations, by means of differentiation or integration, can also be
used for obtaining more relevant data sets. Finally series are often
contaminated by trends, caused by external effects, that could spu-
riously increase global variance, with respect to the amplitude of
local fluctuations. In those cases RR could appear very low and
lead to rejection of the monofractal hypothesis. Modified versions
of the DFA, including polynomial detrending of various orders,
have been proposed for controlling this kind of non-stationarities
(Kantelhardt et al., 2001). When series are definitively too smooth
for being accounted for by the monofractal model, one could con-
sider other methods, based on phase space reconstruction, and
especially Recurrence Analysis that allows revealing hidden reg-
ularities in apparently unpredictable signals (Webber and Zbilut,
2005).

Long-range correlations have recently become a very popular
theme of research. A number of researchers have tried to check
whether their usual objects of research could present LRC prop-
erties. However, we think that evidencing the presence of LRC
in a given system cannot represent per se an interesting research
goal. The problem is not to seek everywhere for LRC, but to deter-
mine, theoretically, where it could be important, and empirically
where it could be plausible to find such long-term persistent serial
correlations.
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