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Cancer is a major health problem with high mortality rates. In the post-genome era, inves-
tigators have access to massive amounts of rapidly accumulating high-throughput data
in publicly available databases, some of which are exclusively devoted to housing Cancer
data. However, data interpretation efforts have not kept pace with data collection, and
gained knowledge is not necessarily translating into better diagnoses and treatments. A
fundamental problem is to integrate and interpret data to further our understanding in
Cancer Systems Biology. Viewing cancer as a network provides insights into the com-
plex mechanisms underlying the disease. Mathematical and statistical models provide an
avenue for cancer network modeling. In this article, we review two widely used modeling
paradigms: deterministic metabolic models and statistical graphical models. The strength
of these approaches lies in their flexibility and predictive power. Once a model has been
validated, it can be used to make predictions and generate hypotheses. We describe a
number of diverse applications to Cancer Biology, including, the system-wide effects of
drug-treatments, disease prognosis, tumor classification, forecasting treatment outcomes,
and survival predictions.
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MATHEMATICAL AND STATISTICAL MODELING IN CANCER
SYSTEMS BIOLOGY
In the last half a century, tremendous progress in understanding
the genetic and biochemical mechanisms underlying cancer has
been achieved. Despite these advances, cancer remains a major
health problem that is responsible for one in every four adult
deaths (Siegel et al., 2011). High mortality rates indicate that this
knowledge is not translating into effective cancer treatments (Lord
and Ashworth, 2010). Chemotherapy was discovered in chemical
warfare during World War I; it was first used to treat cancer in the
1940s when little was understood about the disease (Goodman
et al., 1946), and remains the most common form of treatment for
most types of cancers. Chemotherapy drugs target rapidly divid-
ing cells; as a result, normal tissues with high growth rates suffer
and patients often experience adverse and sometimes deadly side
effects.

Over the past 15 years, drugs have emerged that target cancer
metabolism, either directly through enzymes that facilitate meta-
bolic reactions or indirectly through signaling pathways (Zhukov
and Tjulandin, 2007; Heiden, 2011). Targeted therapy is typically
less damaging to normal cells than chemotherapy. However, cancer
cells are extremely robust for survival and often completely insen-
sitive to perturbations or develop resistance over time. Drug resis-
tance occurs when non-targeted genes or proteins kick in to rescue
the cancer cell by rerouting growth requirements through alterna-
tive mechanisms and pathways. Drug resistance is a major limita-
tion to targeted therapies. For this reason, they are most effective
when used in combination with chemotherapy treatments. It is
becoming apparent that, in order to develop effective targeted

therapies that overcome resistance, the drug development para-
digm will have to shift from single molecular targets to pathways
(Astsaturov et al., 2010; Thangue and Kerr, 2011). Systems biology
approaches will play a pivotal role in the development of drugs
that do not succumb to resistance.

Mathematical models of complex biological systems are cen-
tral to systems biology. They can be used as an exploratory tool to
complement and guide experimental work. Simulations, known as
in silico experiments, can be performed with mathematical mod-
els to validate hypotheses and make predictions about quantities
that are difficult or impossible to measure in vivo. Predictions can
provide much-needed insight into the pathways driving cancer
progression, and the robust compensatory mechanisms that pro-
tect cancer cells from drug intervention. Model simulations can be
used to predict the system-wide effects of molecular targets, e.g.,
determine the effects of molecular target(s) inhibition in specific
populations. They can also serve as an important clinical tool, e.g.,
classify benign and malignant tumors, predict disease prognosis
for individual patients, and predict outcomes of treatments.

High-throughput technologies offer the capability to simul-
taneously measure tens of thousands of molecular targets per
sample. As costs steadily decline, the number of omics datasets
characterizing the genome, proteome, and metabolome continues
to grow. A number of publicly available resources have been devel-
oped to house data and functional annotation. These resources can
be queried and have enabled scientists to better leverage omics-
based research efforts. To illustrate the size of such databases,
as of March, 2012, Gene Expression Omnibus (GEO) contained
data from 9,919 platforms, 710,229 samples, 28,873 series, and
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2,720 manually curated datasets (Barrett and Edgar, 2006). The
Progenetix database houses data from Comparative Genomic
Hybridization (CGH) experiments that focus on copy number
abnormalities in human cancer (Baudis and Cleary, 2001). The
Cancer Genome Atlas (TCGA) contains the results of subject-
ing patient samples from a variety of cancer subtypes to a bat-
tery of common high-throughput assays such as gene expression,
array comparative genomic hybridization (aCGH), SNP genotyp-
ing, methylation profiling, microRNA profiling, and some exon
sequencing platforms (Collins and Barker, 2008). The Sanger Can-
cer Genome Project has generated a cancer gene census (Futreal
et al., 2004), a catalog of somatic mutations in cancer (Forbes et al.,
2010), as well as several bioinformatic resources born out of the
interrogation of cancer cell lines.

The wealth of publicly available data offers an exciting oppor-
tunity to study cancer as a complex network. We are currently in
an era where collecting data in a high-throughput fashion is the
norm. However,our ability to interpret this data for knowledge and
discovery has not kept pace with the data collection efforts. Impor-
tantly, this message was echoed in NCI’s recent funding opportu-
nity addressing provocative questions, which pose game-changing
scientific questions to drive progress against cancer (RFA-CA-11-
01; Varmus and Harlow, 2012). A series of questions were posed
to inspire investigators to “. . .step back from the momentum of
these discoveries and make sure we have left no stone unturned and
no important but perhaps not obvious question left unexplored.”
Provocative question 17 asks the following:“Since current methods
to assess potential cancer treatments are cumbersome, expensive
and often inaccurate, can we develop other methods to rapidly test
interventions for cancer treatment or prevention?” Mathematical
models serve as a link between experimental and computational
biology, and can be used to address this question. Specifically, they
can serve as a tool to drive experimental advances in terms of
predication, classification, and hypotheses generation.

In this article, we describe two complementary and widely used
modeling paradigms: deterministic models of cellular systems and
graphical modeling. Deterministic models of cellular metabolism
are constructed in a bottom-up approach from known stoichiom-
etry, principles of mass balance, and physiological constraints,
whereas graphical models are inferred from the data using linear
statistical models in a top-down approach. These approaches offer
vastly different perspectives on network behavior and have been
instrumental for systems biology. We review the fundamentals of
these modeling paradigms and highlight applications of models
that have been developed to advance Cancer Systems Biology.

DETERMINISTIC MODELS OF CELLULAR METABOLISM AND
CELL SIGNALING
Cancer cells exhibit profound alterations to their metabolic and
signaling pathways. Many drugs that are either available or in the
development phase target proteins or enzymes in these pathways in
an effort to slow or halt cancer growth (Bates et al., 2012). Cell pro-
liferation, motility, and survival are tightly controlled in normal
cells. However, adjustments in cancer cell signaling enable prolif-
eration independent of exogenous signals, disrupt apoptosis, and
elicit tumor angiogenesis and metastasis to surrounding tissues
and vessels (Johnstone et al., 2002; Martin, 2003). Unlike their

normal counterparts, cancer cells use aerobic glycolysis instead
of oxidative phosphorylation for energy production (Warburg,
1956). Glutamine is central to cancer cell protein and nucleotide
biosynthesis, and replenishes the TCA cycle for anabolic processes
(Lu et al., 2010). Fatty acid biosynthesis occurs at high rates and
most fatty acids are produced de novo regardless of nutrition.
(Medes et al., 1953; Ookhtens et al., 1984). These metabolic and
signaling signatures are common to most forms of cancer.

Ordinary differential equations (ODEs) represent the most
widely used approach for modeling cellular dynamics. The under-
lying assumption is that reactions occur under well-mixed con-
ditions and that the abundance of reactants is not too low. The
differential equations are derived from laws of mass balance and
describe the rate of change of a species (dC/dt ) in terms of
production and utilization, i.e., dC/dt = production− utilization
(Figure 1A). In many cases, the stoichiometry of pathways are
well understood, and the topology of the system can be mod-
eled easily with ODEs (Ogata et al., 1999; Matthews et al., 2009).
However, the underlying processes, e.g., reaction fluxes and trans-
port rates, rely on parameters that are often unknown and require
challenging underdetermined estimation from time course data
(Figure 1B; Erguler and Stumpf, 2011). Another challenge is that
these systems can often exhibit sharp transients on different time
scales (stiffness),which requires computationally intensive numer-
ical integration (Shampine et al., 2003; MacLachlan et al., 2007).
These factors ultimately limit the scale of dynamic models. Con-
sequently, they are used to investigate small subsets of reactions
and pathways.

ODE models have been used extensively to examine the
dynamic properties of cancer signaling pathways. A model of
tumor suppressor p53 and oncogene Mdm2 revealed high vari-
ability in the oscillatory behaviors of cells following DNA damage
(Geva-Zatorsky et al., 2006). NF-κB signaling plays a critical role
in intracellular signaling, apoptosis, and resistance to chemother-
apy. A computational model was used to distinguish the roles of
NF-κB kinase isoforms, which regulate NF-κB through coordi-
nated system dynamics (Hoffmann et al., 2002). Extensions of this
model have been used to characterize feedback loops in the sys-
tem and identify the activation of downstream pathways (Covert
et al., 2005; Werner et al., 2005; Cheong et al., 2008). Several dif-
ferent mathematical models have been developed for the MAPK
(mitogen-activated protein kinase) pathway (35 models between
1960 and 2005; Orton et al., 2005). Despite differences in detail
and complexity, these models are able to explain the data and make
insightful system-wide predictions about the pathway dynamics.
Most of the differences between model outputs can be attributed
to model boundaries and simplifications. This has been suggested
to be a reflection of the robustness of ODE modeling and the
biological system at hand (Orton et al., 2005).

Advances in high-throughput technologies have spurred the
development of comprehensive genome-scale metabolic mod-
els (Oberhardt et al., 2009). These models have developed from
extensive curation of the data and literature. The metabolic sys-
tem is described by hundreds of metabolic reactions, multiple
compartments, and highly interconnected pathways. Constraint
based analysis (CBA) has been used to investigate the steady-state
behavior of these systems under a variety of conditions. In the
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FIGURE 1 | Simplified schematic describing mathematical modeling
of cellular systems with ODEs. (A) The cellular system is translated into
a mathematical model with system of ODEs reflecting the mass balance
of the system. (B) Dynamic analysis of the system requires specification
of fluxes as non-linear functions, which depend on a number of unknown

parameters. Solving the ODE system results in the time course of
concentration values as output. (C) Steady-state analysis of the system
requires the specification of an objective function and constraints, but the
ODE system reduces to a simple linear system. The output of the analysis
is optimal flux values.

steady-state, metabolites are stable and exhibit no change in con-
centration levels. Adopting this assumption reduces a complex
dynamical system of ODEs to linear system and eliminates the
need for large-scale parameter estimation (Figure 1C).

The purpose of steady-state analysis is to identify feasible
flux values that satisfy the steady-state assumptions and maxi-
mize an objective function describing the physiological objectives
of the cell (Lee et al., 2006). The solution space is bounded
with system constraints, e.g., stoichiometric, thermodynamic, and
enzyme capacity constraints. In single cell organisms, such as
Escherichia coli and Saccharomyces cerevisiae, the cellular objective

is to proliferate, and critical reactions and pathways are included in
biomass function which is maximized (Edwards and Palsson, 2000;
Förster et al., 2003). In these cases, optimizing cellular growth is
analogous to maximizing the likelihood of survival. Defining cel-
lular objectives is less straightforward in mammalian and human
systems, which consist of a variety of interacting tissues and cells
(Duarte et al., 2007; Livnat Jerby and Ruppin, 2010; Selvarasu et al.,
2010). However, unlike normal cells, cancer cells want to prolifer-
ate and exhibit biomass requirements which can be leveraged in
CBA modeling approaches. Recently, a genome-scale model has
been used to characterize the Warburg effect in cancerous cells
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(Shlomi et al., 2011). The model was validated against the full
panel of NCI-60 cancer cell lines, and provided novel insights
into phases of metabolic behavior through cancer progression. A
smaller model centered around a core set of critical enzymes and
coding genes was used to predict novel drug targets (Folger et al.,
2011).

ODEs are the most popular modeling technique largely because
of their simplicity. Several other modeling paradigms that vary in
complexity have been applied to study cancer cellular metabo-
lism, signaling, and response to treatment. Boolean models have
been used to represent reactions as logical gates with two states:
on and off (Lähdesmäki et al., 2003; Morris et al., 2010). Partial
differential equations (PDEs) are significantly more complex than
ODEs with respect to parameter estimation. Detailed information
about spatial dynamics and interactions between components is
required (Sleeman and Levine, 2001; Ribba et al., 2006; Fried-
man et al., 2007). Perturbation-response modeling approaches
are based on fundamental linear response rules, which leverage
flux conservation. This approach has been used to examine toll
like receptor (TLR) signaling and tumor necrosis factor related
apoptosis inducing ligand (TRAIL) resistance (Piras et al., 2011;
Selvarajoo, 2011). Pharmacokinetic modeling has also been used
to describe the time-dependent distribution of drugs in the system
(Gerlowski and Jain, 1983; Reitz et al., 1990; Sanga et al., 2006).

GRAPHICAL MODELS
Probabilistic graphical models (PGMs) can be used to describe
directed and undirected relationships between variables (Koller
and Friedman, 2009). In this setting, each variable (e.g., genes, pro-
teins) is a node in the network and viewed as a random variable,
which is subject to uncertainty. The links in the network convey a
relevant measure of association, e.g., correlation (undirected) or
causality (directed). The network structure can be decomposed
into small regions and translated into a product of conditional
probabilities, which represents the joint probability distribution.
Undirected graphs are known as Markov Networks and portray
symmetric relationships (Figure 2A). A link in this model is
present if the linked nodes are associated after controlling for the

influence of other nodes in the graph (conditional association). In
a directed graph, an edge A→B implies that independent variable
A (parent node) is upstream of the dependent variable B (child
node) in the underlying causal process (Figure 2B). Furthermore,
the directed edge implies a causal effect of A after the influence
of the remaining nodes upstream of B (ancestors of B) have been
controlled for or removed. Bayesian Networks (BNs) are directed
acyclic graphs (DAGs), which contain no cycles, and thereby pro-
hibit feedback in the model. Chain graphs contain a mixture of
directed and undirected edges.

A fundamental challenge is to infer graphical models from
data. There are two distinct and difficult learning tasks: parame-
ter estimation and structural learning. Parameter estimation is for
the parameters of the conditional probabilities for a given net-
work structure, and can be carried out using maximum likelihood
approaches (Koller and Friedman, 2009). In structural learning,
the aim is to identify the most likely network topology that came
from the observational data. Structural learning is especially chal-
lenging because the number of possible network topologies is
super-exponential with the number of nodes (Chickering et al.,
1994). As a result, enumeration of all possible network topologies
is impossible even for small problems, and machine learning and
optimization techniques must be utilized (Koller and Friedman,
2009).

PGMs have been applied to investigate a number of differ-
ent cancers and data types. Several applications involve predic-
tion and classification tasks, which have direct clinical relevance.
Markov networks were used to predict breast cancer survival
after patients received different forms of treatments, e.g., com-
binations of chemotherapy, radiotherapy, and hormonal therapy
(Pérez-Ocón et al., 2001). BNs were used to integrate clinical and
microarray data for the classification of breast cancer patients into
good and poor prognosis groups (Gevaert et al., 2006). Kahn et al.
developed a BN called MammoNet for radiological decision sup-
port in distinguishing malignant and benign mammary tumors.
The highly accurate classifier (88% correct diagnosis in test cases)
was constructed from observational data, patient history, and
expert advice from experienced radiologists (Kahn et al., 1995).
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FIGURE 2 | Probabilistic graphical models can be (A) undirected, or (B) directed. Relationships between variables can be expressed using conditional
independencies, allowing compact representation of the joint distribution.
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This group later developed a similar BN classifier called OncOs
to differentiate among bone lesions on the appendicular skeleton
(Kahn et al., 2001). A practical value of these models is to provide
a probabilistic guide for a clinician to diagnose and treat different
cancers. Another use of PGMs is to sort out the underlying muta-
tions which put individuals at high-risk. Conjunctive Bayesian
Networks (CBNs; Beerenwinkel et al., 2007), which describe an
accumulation of events, have been used to model the accumula-
tion of mutations using CGH mutation data from the Progentix
database (Gerstung et al., 2009). The inference problem is to iden-
tify CGNs, which represent the dependencies among accumulating
mutations in renal cell carcinoma, breast, and colorectal cancers.
The models identified multiple independent mutations, which
triggered downstream complex pathways.

A strength of PGM frameworks is the flexibility to integrate
across diverse data types. Recently, a PGM methodology based on
factor graphs known as PARADIGM (Pathway Recognition Algo-
rithm using Data Integration on Genomic Models) was proposed,
which integrates multiple high-throughput data sets together to
identify perturbed molecular pathways (Nigro et al., 2005). This
method was applied to breast cancer using gene expression data,
and glioblastoma using gene expression and copy number data, to
identify pathways and disease subclasses which correlate with sur-
vival. PARADIGM was recently applied to the same task using
a more comprehensive set of breast cancer data in the CGA,
including, mRNA, copy number alterations, micro RNAs, and
methylation data. The method revealed disease subclasses and
specific class signatures, which would not have been identified
without leveraging the different data sources. Specific perturba-
tions in immune response and interleukin signaling (IL-4, IL-6,
IL-12, and IL-23) were also shown to be drivers of the classification
and to have promising prognostic value. For example,patients with
gene signature that favors high-T helper 1 cytotoxic T-lymphocyte
response and represses Th2 driven humoral immunity, are more
likely to have a better survival outcome.

Expression quantitative trait loci (eQTL), protein QTL, and
metabolic QTL combine genotyping and high-throughput pheno-
typing of a population (Jansen et al., 2009). Genotype-phenotype
network inference leverages this data and the natural variation that
occurs within a population (Rockman, 2008). EQTL data on skin
tumor progression in mice revealed markedly different patterns in
the genetic architecture of malignant skin tumors (Quigley et al.,
2011). This rich data includes genotypes and gene expression from
F2 mice on benign and malignant skin tumors, as well as normal
skin samples. EQTL data from a mouse model of breast cancer
was used to identify Sipa1, a susceptibility and progression locus
in both mice and humans (Crawford et al., 2007). PGM based
algorithms utilize directed graphs to approximate the network of
causal relationships among phenotypes and genotypes in segre-
gating populations, but applications to cancer data are yet to be
explored (Neto et al., 2010; Hageman et al., 2011).

There has been recent progress in sparse genome-scale mod-
els for undirected graphs, with applications that include protein
signaling, breast cancer gene expression, and the genetics of gene
expression (Carvalho et al., 2008; Friedman et al., 2008; Edwards
et al., 2010; Yoshida and West, 2010). Sparse models can be esti-
mated when the number of variables greatly exceeds the sample

size. Importantly, estimation in graphical models requires large
sample sizes for accuracy. Although sparse modeling deals with
the issue of many variables, sufficient sample size is still required
for meaningful results.

Graphical reasoning about biological problems underlies many
approaches that are not formal PGMs. Cluster analysis is a class
of techniques whose motivation lies in the concept of modular-
ity, which has gained popularity more or less simultaneously in
molecular biology, systems biology, developmental biology, and
evolutionary biology (Wagner et al., 2007). Clustering (Gordon,
1999) can be viewed as a graph partitioning since members of the
same cluster are considered to be connected in terms of whichever
measure of association is adopted, and different clusters are rel-
atively disconnected from each other. The associations between
clusters may be specified in a variety of ways and no attempt is
made to specify all the links in the graph.Viewing high-throughput
data through clusters and modules increases our ability to dis-
tinguish subtle signals in tumorigenesis (Segal et al., 2005). This
type of analysis is often easier to interpret than traditional lists of
differential expression. Clustering methods have been extensively
applied to identify and classify different cancer subtypes, and asso-
ciate clusters with survival, e.g., (Furey et al., 2000; Guyon et al.,
2002; van’t Veer et al., 2002; Sørlie et al., 2003; Rich et al., 2005;
De Souto et al., 2008). Weighted Correlation Network Analysis
(WGCNA) was recently developed as a method for identifying
co-expression modules, relating modules to one another, relating
modules to external phenotypes, and identifying hub genes that
are highly connected within the module (Langfelder and Horvath,
2008). This method was used to identify a co-expression module
in glioblastoma, which was also present in breast cancer. ASPM, a
hub gene in the module,was experimentally validated as a potential
uncharacterized glioblastoma target (Horvath et al., 2006).

DISCUSSION: CHALLENGES AND OPPORTUNITIES
Data integration remains a major fundamental challenge for the
field of systems biology, which has limited our ability to take full
advantage of omics data for knowledge and discovery (Kitano,
2002; Sullivan et al., 2010). Comparisons and integration within
omics data types are complicated by a number of factors. Several
different platforms are available that use different technologies and
vary in coverage. Differences exist in sample quality, array pro-
cessing, the organism under investigation, tissue type, and exper-
imental conditions (e.g., diet). Integration between data types is
an even larger challenge (Figure 3). It is important to understand
how these different biological domains connect and give rise to a
phenotype or disease. Methods that integrate between and across
diverse data types are only beginning to emerge (Nigro et al., 2005).
Mathematical modeling is a promising avenue for this endeavor.
In Cancer Biology, data integration is of particular importance
because of the complex interplay between genetics, cell signaling,
and metabolic pathways.

Mathematical and statistical models are capable of integrating
biological knowledge that is outside of the observational data. In a
number of applications, the use of Bayesian methods that integrate
a priori knowledge into the model have been shown to improve
model behaviors and predictive output. We have described appli-
cations of BNs which incorporate expert advice from radiologists,

www.frontiersin.org June 2012 | Volume 3 | Article 227 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Systems_Physiology/archive


Blair et al. Modeling in cancer systems biology

Ge
nom

e
Pro
teo
me

Me
tab
olo
me

Clin
ical

Phe
not
ype

s
Tra
nsc
ript
om
e

Proliferation

Bruising

Cholesterol

Anemia

Fatigue

FIGURE 3 | Understanding how molecular traits from different biological domains connect in networks is critical to progressing Cancer Biology.

which can be viewed as a model prior (Kahn et al., 1995). In
metabolic modeling, flexible Bayesian priors have been used to
guide the parameter estimation process. In this context, priors
favor parameter estimates which respect known physiology of the
system, e.g., steady-state, dynamic trends, feasible bounds on con-
centration levels, and fluxes (Calvetti and Somersalo, 2006; Calvetti
et al., 2006). In graphical models, priors have been developed in
the form of energy functions to guide network inference (Imoto
et al., 2004). Priors have been used to encode known relational
information from databases such as KEGG into the network infer-
ence process (Werhli and Husmeier, 2007; Mukherjee and Speed,
2008). Priors have also been used to enforce sparsity in the network
structure and prevent over-fitting (Hageman et al., 2011).

Developing mathematical models which are consistent with
and predictive of the true underlying biological mechanisms is
a central goal of systems biology. The experimental design and
perturbations have been shown to have major influence on para-
meter estimation, and subsequently the output and accuracy of
the computational model (Apgar et al., 2010). Graphical model
network inference can be subject to a large proportion of false
positive edges (Li et al., 2010). Environmental and experimental
design factors that are not accounted for in the model can further
misguide models (Remington, 2009). Assessing and improving the
utility of mathematical models in the context of systems biology
will continue to be an active area of research.

A continuous cycle between mathematical modeling and the
wet-bench is critical to move systems biology forward. As George
Box famously stated, “all models are wrong, but some are use-
ful” (Box and Draper, 1987). Sensitivity analysis should routinely
be performed to assess how sensitive the model output (pre-
dictions) are to model parameters and input (data). However,
this is often not routine. Sensitivity analysis can also be used

to guide model reductions and expansions, e.g., marginalizing
over quantities that play little to no role in the system dynamics.
Mathematical models can provide, via model driven predictions
and hypotheses generation, a cheap and fast catalyst for experi-
mental advances in systems biology. On the other hand, models
which are more “wrong” than “useful” can lead to the design and
execution of experiments and studies which are unlikely to be suc-
cessful. Contrary to in silico studies, this can waste a lot of time
and money, and ultimately promote skepticism in the modeling
approach.

CONCLUDING REMARKS
In summary,mathematical models of networks can describe a wide
range biological processes. We have described two complementary
modeling approaches: deterministic modeling of cellular metab-
olism and graphical modeling, which offer different insights into
biological systems. Although they have been used to drive progress
in Cancer Systems Biology, they remain far from mainstream. At
present, there is an overwhelming need to view cancer as a com-
plex network in order to understand drug resistance, and develop
viable targets. It is also critical to better interpret and integrate data
to get at the mechanisms which drive the disease, classify cancer
subtypes, and predict treatment outcomes. In the coming years,
we believe that mathematical and statistical models will be pivotal
in advancing our understanding, and that they hold tremendous
promise for the future of Cancer Systems Biology.
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