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Atherosclerosis, a chronic inflammatory disease of the vessel wall and the underlying cause
of cardiovascular disease, is initiated and maintained by innate and adaptive immunity.
Accumulating evidence suggests an important contribution of autoimmune responses to
this disease. Plasmacytoid dendritic cells (pDCs), a specialized cell type known to produce
large amounts of type I interferons (IFNs) in response to bacterial and viral infections, have
recently been revealed to play important roles in atherosclerosis. For example, the develop-
ment of autoimmune complexes consisting of self-DNA and antimicrobial peptides, which
trigger chronic type I IFN production by pDCs, promote early atherosclerotic lesion forma-
tion. pDCs and pDC-derived type I IFNs can also induce the maturation of conventional
DCs and macrophages, and the development of autoreactive B cells and antibody produc-
tion. These mechanisms, known to play a role in the pathogenesis of other autoimmune
diseases such as systemic lupus erythematosus and psoriasis, may also affect the develop-
ment and progression of atherosclerotic lesion formation.This review discusses emerging
evidence showing a contribution of pDCs in the onset and progression of atherosclerosis.
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INTRODUCTION
Atherosclerosis is the pathophysiological process underlying car-
diovascular diseases such as myocardial infarction and stroke, and
the leading cause of death in developed countries. Regarded as
a chronic inflammatory disease of the vessel wall, atherosclero-
sis is driven by responses of both innate and adaptive immunity
(Hansson et al., 2006; Galkina and Ley, 2009; Weber and Noels,
2011). Pathomechanistically, atherosclerotic plaque development
is initiated by local endothelial dysfunction under conditions of
hypercholesterolemia, resulting in lipid depositions in the vessel
wall. This triggers the infiltration of blood-borne immune cells
and an asymmetrical thickening of the intima. The continuous
influx of cells sustains plaque progression, resulting in complex
mature plaques consisting of a necrotic core, surrounded by foam
cells (lipid laden macrophages) and other immune cells (e.g., T
cells, dendritic cells), and covered by a cap of smooth muscle cells
and a collagen-rich matrix. Eventually, the release of proinflam-
matory cytokines and proteases may reduce collagen production
and cause thinning of the fibrous cap, which can lead to plaque
rupture and trigger an acute thrombotic occlusion of the vessel
wall (Ross, 1993; Libby, 2002; Hansson et al., 2006; Weber et al.,
2008; Galkina and Ley, 2009; Weber and Noels, 2011).

Among the plaque infiltrating leukocytes, monocytes/macro-
phages, T cells, neutrophils (Zernecke et al., 2008; Drechsler et al.,
2010) but also dendritic cells (DCs; Manthey and Zernecke, 2011;
Weber et al., 2011), play an important role in atherosclerosis.
DCs are professional antigen-presenting cells equipped with high
phagocytic activity, that take up, process and present antigen to T
cells. DCs are a very heterogeneous cell population with various
subtypes differing in location, migratory pathways, and immuno-
logical functions (Shortman and Naik, 2007; Geissmann et al.,

2010). In mice, DC subtypes include conventional DCs (cDCs)
that are further subdivided into migratory and lymphoid-tissue-
resident DCs and based on their expression of CD8α and CD4,
inflammatory DCs, e.g., GM-CSF-driven monocyte-derived DCs,
and plasmacytoid DCs (pDCs; Shortman and Naik, 2007; Naik,
2008; Ju et al., 2010; Miloud et al., 2010). However, DCs are also
known as a very plastic cell type, and depending on the local envi-
ronment, pDCs for instance may also adopt functions of mature
DCs that have the ability to stimulate naïve T cells but no longer
produce type I interferons, a feature typical for pDCs (Reizis et al.,
2011b).

DENDRITIC CELLS IN ATHEROSCLEROSIS
In general, DC accumulation in regions prone to atherosclerosis
suggests that their recruitment accounts for an initial inflamma-
tory or immune activation. The exact localization and origin of
vascular DCs, however, is still under debate. CD11c+ DCs have
been described in the intima of regions predisposed to athero-
sclerosis (Jongstra-Bilen et al., 2006; Choi et al., 2009). However,
flow cytometric analyses of C57BL/6 as well as Apolipoprotein
E-deficient (Apoe−/−) mice revealed the presence of CD11c+

DCs in normal/non-inflamed aortae primarily in the adventitia
(Galkina et al., 2006). Moreover, as CD11c expression can also be
detected on Ly6Clow monocytes, also these cells may give rise to
vascular DCs (Swirski et al., 2007; Tacke et al., 2007; Zhu et al.,
2009; Cybulsky and Jongstra-Bilen, 2010). Choi et al. described
a CD103+ DC population within the intima, which depends on
Flt3L (and thus likely does not originate from monocytes) (Choi
et al., 2011). Ccl17+DCs in turn were described to constitute a sub-
set of mature cDCs in atherosclerotic arteries with pro-atherogenic
effects (Weber et al., 2011). All of these DC populations expand
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during lesion formation, and are able to take up and present
antigen. The biggest difference, however, may lay in the fact that
CD103+ DCs can already be detected in considerable numbers in
the intima during the steady state, whereas Ccl17+ DCs and pDCs
primarily seem to enter the vessel wall at sites of inflammation
during lesion growth, in line with their “inflammatory” functions.

Lipoproteins deposited in the arterial wall may constitute stim-
uli or display antigens that participate in early immune activation.
oxLDL has been found to induce the upregulation of scavenger
receptors on DCs (Nickel et al., 2009), which may contribute
to dendritic foam cell formation in the vasculature. Further-
more, short-term depletion of DCs using CD11c-DTR Apoe−/−

mice enhanced cholesterolemia implicating that cDCs, possibly
via lipoprotein uptake and clearance from the circulation, can
control cholesterol homeostasis (Gautier et al., 2009). LDL par-
ticles (Hansson and Hermansson, 2011) present within the plaque
(or circulation) may affect DC differentiation and function. For
example, native LDL and oxLDL can induce the maturation of
DCs (HLA-DR and CD86), whereas oxLDL increases the expres-
sion of CD40, CD83, CCR7 and interleukin (IL)-6 release and
DC-induced T-cell proliferation. Accumulating evidence supports
the notion that DCs critically control immune processes in ath-
erosclerosis. The adoptive transfer of OVA-loaded bone marrow
derived DCs (BMDCs) induces a profound proliferation of T-cell
receptor (TCR)-specific lymphocytes in the adventitia of OTI-
Rag-2−/− mice, providing evidence that T cells residing within
the aorta can in principle be activated by antigen-presenting cells
(Galkina et al., 2006). The antigens recognized in atherosclerosis,
however, are still under debate. While modified lipids, e.g., oxi-
dized or malondialdehyde-modified LDL gained most attention
due to the early isolation of oxLDL-reactive T cells from human
plaque tissue (Stemme et al., 1995), recent studies have in addi-
tion implied an important role of native LDL and unmodified
ApoB100 as specific antigens in atherosclerotic (Hermansson et al.,
2010).

It is well established that T-cell subpopulations with a spe-
cific signature of pro- or anti-inflammatory cytokines (Th1, Th2,
Th17) control the atherogenic process (Mallat et al., 1999; Binder
et al., 2004; Ait-Oufella et al., 2006; Braunersreuther et al., 2007;
Kleemann et al., 2008; Taleb et al., 2009; van Es et al., 2009). In
particular, also Tregs, which suppress activation of the immune
system, have been characterized as inhibitors of atherosclerosis
(Gotsman et al., 2006; van Es et al., 2009). Numbers of circulating
and lesional Tregs were shown to peak at 4 weeks, but thereafter
decrease due to an impaired ability to bind to aortic endothelium
after prolonged hypercholesterolemia. Diminished Treg accumu-
lation within lesions is accompanied by an increased accumulation
of CD4+ effector T cells, most likely due to the loss of Treg-
mediated control functions (Maganto-Garcia et al., 2011). Hence,
experimental approaches to expand Tregs may therefore be bene-
ficial. Indeed, adoptive transfer of ApoB100-pulsed myeloid DCs
additionally treated with IL-10 resulted in decreased lesion forma-
tion in LDL receptor-deficient (Ldlr−/−) mice, accompanied by
the induction of regulatory T cells (Tregs) and a reduced lesional T
effector cell infiltration (Hermansson et al., 2011). Notably, immu-
nization with apolipoprotein B alone seems to be atheroprotective
by stimulating Treg responses in vivo (Wigren et al., 2011).

We have recently identified the accumulation of a subset of
CCL17-expressing cDCs in the aorta of Apoe−/− mice during
lesion growth, which mediates the recruitment of T cells to
atherosclerotic lesions, but systemically and at sites of plaque
growth also constrains Treg-maintenance, thereby driving ath-
erosclerotic lesion formation (Weber et al., 2011). Conversely,
the subset of CD103+ DCs identified by Choi et al. (2011) are
atheroprotective; their absence results in decreased Treg num-
bers and increased expression of inflammatory cytokines. These
findings imply that different DC subsets may exert distinct and
stage-specific functions during plaque evolution. Furthermore,
their influence on T-cell immunity, especially with regards to
the control of Treg responses is crucial in the development of
atherosclerosis.

While functions of DCs in atherosclerosis have recently been
reviewed in more detail elsewhere (Bobryshev, 2010; Cybulsky and
Jongstra-Bilen, 2010; Niessner and Weyand, 2010; Puddu et al.,
2010; Koltsova and Ley, 2011; Manthey and Zernecke, 2011; Moore
and Tabas, 2011; Perrins and Bobryshev, 2011), we here focus on
the emerging role and current state of knowledge regarding the
contribution of pDCs to atherosclerosis.

PLASMACYTOID DCs AND TYPE I INTERFERON RESPONSES
Plasmacytoid DCs are a specialized subpopulation of DCs first
described by Lennert and Remmele (1958) as plasmacytoid T cells
or plasmacytoid monocytes in humans (Grouard et al., 1997; Fac-
chetti and Vergoni, 2000). Human pDC can now be identified by
expression of IL-3 receptor-α chain (CD123; Grouard et al., 1997)
and blood DC antigen 2 and 4 (BDCA-2 and BDCA-4; Dzionek
et al., 2001), whereas in mice pDCs express sialic-acid-binding
immunoglobulin-like lectin H (SiglecH; Blasius et al., 2006a) and
bone marrow stromal cell Ag 2 (BST2; Blasius et al., 2006b). pDCs
are highly specialized for sensing viral and certain microbial infec-
tions, based on their selective expression of TLR7 and TLR9, and
their capacity to respond to inactivated viral nucleic acids in the
absence of viral replication (Fitzgerald-Bocarsly et al., 2008). Upon
activation of TLR7 and TLR9, pDCs have the unique ability to pro-
duce large amounts of type I IFNs (Kadowaki et al., 2001). Despite
being a relatively rare leukocyte subtype in humans and mice (e.g.,
in mice ranging at 0.1–0.4% of blood and 1.5% of bone marrow
cells, and in humans at up to 0.5% of blood leukocytes), pDCs
are capable of producing up to 1000-fold higher levels of type
I IFNs compared to other cell types. Hence, they are the main
source of type I interferons (IFN) during infection (Siegal et al.,
1999; Asselin-Paturel et al., 2003), when pDC numbers increase
and become detectable in various tissues, such as lung, vaginal
mucosa, and skin (Gilliet et al., 2008; Lande and Gilliet, 2010).
The IFN family consists of two main classes of related cytokines:
type I and type II IFNs, discriminated by their ability to “inter-
fere” with viral infections. Type I IFNs have potent antiviral and
growth-inhibitory activities and comprise a group of cytokines
that share structural homologies and bind to one common recep-
tor (IFN receptor I; Pestka et al., 1987). Among all IFNs produced
by pDC (IFNα, IFNβ, IFNλ, and IFNω), the type I IFN IFNα is
expressed at highest quantities (Ito et al., 2006). This cytokine can
enact multiple functions in different cell types during immune
responses, such as the induction of the maturation of CD11c+
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cDCs (Ito et al., 2001), the skewing of T cells toward the Th1 phe-
notype (Kadowaki et al., 2000), or the stimulation of B cells to
differentiate into antibody-secreting plasma cells (Le Bon et al.,
2001).

Plasmacytoid DCs are described to play a proinflammatory
role in the context of different autoimmune diseases, e.g., pso-
riasis (Gerlini et al., 2006), systemic lupus erythematosus (SLE;
Blomberg et al., 2001), and multiple sclerosis (Lande et al.,
2008). However, pDCs are also equipped to trigger the develop-
ment of Tregs, thereby inhibiting acute graft-versus host disease
(Hadeiba et al., 2008) or mediating tolerance to vascularized grafts
(Ochando et al., 2006). pDC-mediated control of local inflamma-
tion in part depends on the release of indoleamine 2,3-dioxygenase
(IDO), which can be induced by IFNs (type I and II) and requires
non-canonical NF-κB signaling. IDO was shown to facilitate Treg
differentiation from naïve CD4+ T cells interacting with pDCs
by promoting CD40 signaling including the co-receptor systems
CTLA4/CD80, CD40/CD40L, and GITR/GITRL. In turn, these
signaling events can sustain IKKα-dependent induction of IDO
expression by pDCs, triggering and maintaining an immunosup-
pressive feedback loop (Puccetti and Grohmann, 2007; Johnson
et al., 2009). In addition, IDO controls effector T-cell responses by
influencing their tryptophan metabolism.

The full scope of (p)DC-driven effects in vascular pathologies,
however, remains to be elucidated (Bobryshev and Lord, 1995;
Galkina and Ley, 2009; Manthey and Zernecke, 2011). We here
provide an overview of the functions of pDCs and their signature
cytokine IFNα in atherosclerosis.

pDCs IN CORONARY ARTERY DISEASE
Plasmacytoid DCs can be detected in atherosclerotic lesions in
humans (Yilmaz et al., 2004) and mice (Jongstra-Bilen et al., 2006),
predominantly in the shoulder region of plaques and in clusters
with cDCs. As an indirect measure to determine a possible role
of pDC in coronary artery disease and atherosclerosis, pDC (and
cDC) numbers have been evaluated in the blood of patients with
stable and unstable coronary disease, in comparison to controls.
van Vre et al. (2006) observed that pDC numbers were decreased
in patients with troponin-positive unstable coronary artery syn-
dromes, and that disease severity was inversely correlated with a
reduction in pDC numbers (van Brussel et al., 2010). Similarly,Yil-
maz et al. (2009) described significantly lower numbers of pDCs
(and other DC subsets) in patients with advanced stable coro-
nary artery disease. It was assumed that these findings may relate
to an enhanced recruitment of this cell type into plaques. Like-
wise, pDCs were implicated in myocardial infarction due to their
recruitment to the heart post-infarct (Sorrentino et al., 2010).
Other studies, however, have also reported unchanged circulat-
ing pDC numbers in patients with coronary artery disease (Shi
et al., 2007), Kawasaki disease (Yilmaz et al., 2007), and myocar-
dial infarction (Wen et al., 2012). These differences may at least in
part originate from the use of different markers to identify pDCs
in these studies.

PLASMACYTOID DC PHENOTYPE IN ATHEROSCLEROSIS
There is evidence that pDC functions may be impaired in patients
suffering from coronary artery disease. Blood-born pDCs from

patients with coronary artery disease and cultured in vitro, dis-
played a reduction in the expression of CD83 and decreased
IFNα secretion after stimulation (van Brussel et al., 2011). Func-
tional alterations of pDCs were furthermore observed in patients
suffering from both atherosclerosis and type 2 diabetes, with circu-
lating pDCs showing aberrant cytokine secretion (Corrales et al.,
2007). Underlying mechanisms for these observations are yet to
be determined.

Modified lipoproteins, in particular oxLDL, are key mediators
in atherosclerosis. pDCs are also affected by oxLDL; Nickel et al.
(2009) reported that oxLDL-stimulation of monocyte-derived
DC progenitors promotes the differentiation of BDCA2+ pDCs.
We have recently observed that isolated pDCs are able to take
up oxLDL ex vivo, and that oxLDL treatment not only upregu-
lates expression of the scavenger receptor CD36, the predominant
receptor for oxLDL (Kunjathoor et al., 2002), but also the uptake
of other proteins, and to promote pDC-driven antigen-specific
T-cell proliferation (Döring et al., 2012; Figure 1). oxLDL may
thus enhance pDC-driven immune responses in the context of
atherosclerosis.

TYPE I IFNs AND pDCs IN LESION DEVELOPMENT
Several studies have addressed the principle role of type I IFNs
in atherosclerosis. In line with a strong proinflammatory activ-
ity of this cytokine, Levy et al. (2003) demonstrated increased
atherosclerotic lesion size in LDL-receptor deficient (Ldlr−/−)
mice after long-term low-dose treatment with IFNα. However,
this was accompanied by increased plasma cholesterol and triglyc-
eride levels, complicating data interpretation. Another more recent
study demonstrated that the type I IFN IFNβ aggravates athero-
sclerotic lesion formation without affecting lipid levels Apoe−/−

and Ldlr−/− mice on a high fat diet. Enhanced atheroscle-
rosis was associated with an increased chemokine-dependent
macrophage-endothelial cell adhesion and leukocyte attraction to
atherosclerosis-prone sites, and an increased macrophage accu-
mulation within plaques (Goossens et al., 2010; Noels and Weber,
2011).

In human plaques, secretion of IFNα was shown to correlate
with plaque instability. IFNα stimulation triggered the produc-
tion of IFNγ and TRAIL by CD4+ T cells (TNF-related apoptosis
inducing ligand) in an antigen-independent manner, resulting in
the killing of vascular smooth muscle cells (Niessner et al., 2006;
Figure 1). In addition, IFNα induced the upregulation of TLR4 on
cDCs, leading to their sensitization toward TLR4 ligands. In addi-
tion, an increased production of proinflammatory cytokines, such
as TNFα, IL-12, and IL-23 was observed in cDCs in response to
IFNα (Niessner et al., 2007; Figure 1). These findings imply that
pDCs and their index cytokine IFNα function as inflammatory
amplifiers in vascular disease.

Importantly, patients that suffer from SLE-display chronically
increased titers of IFNα and succumb to an increased risk of ath-
erosclerosis (Ronnblom, 2011). Accumulating evidence suggests
that type I IFNs (and in particular IFNα) alter the phenotype and
function of endothelial progenitor cells and can thereby hamper
vascular repair, which may predispose to an increased cardiovas-
cular risk and premature atherosclerosis in SLE (Denny et al., 2007;
Lee et al., 2007; Thacker et al., 2010). In addition, IFNα was shown
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FIGURE 1 | Plasmacytoid DCs in atherosclerosis. (A) pDCs activated by
nucleic acids of viral, bacterial or self-origin via TLR7 and TLR9 produce robust
amounts of IFNα. This cytokine enhances the sensitivity of other antigen
presenting cells by upregulation of TLR4. Furthermore, IFNα upregulates the
expression of the pro-apoptotic molecule TRAIL on CD4+ T cells, thereby
multiplying their cytotoxic potential. These TRAIL-expressing T cells have the
ability to kill plaque-resident cells such as vascular smooth muscle cells
(VSMCs) and endothelial cells (ECs). IFNα activates cDCs and macrophages
(Mφ) to produce effector molecules such as metalloproteinases (MMP)
degrading the extracellular matrix, and proinflammatory cytokines, such as
IL-12, TNFα or IL-23 (Niessner and Weyand, 2010). (B) The antimicrobial
peptides LL37/Cramp secreted by infiltrating neutrophils bind self-DNA
fragments released from dying cells to form aggregates of
self-DNA–LL37/Cramp. These complexes activate pDCs and lead to a robust

type I interferon production. Furthermore, netting neutrophils release nuclear
chromatin structures riddled with antimicrobial granule proteins, and also
these complexes may be strong stimulators of IFNα production by pDCs
within atherosclerotic lesions. Ultimately, IFNα released by activated pDCs
supports humoral immunity, e.g., by enabling B cells to undergo
isotype-switching and to mature into antibody-secreting cells. Autoantibodies
in turn can bind self-DNA to form autoimmune complexes that in addition
trigger IFNα secretion by pDCs (Le Bon et al., 2001). (C) Modified lipids, such
as oxLDL, are deposited within atherosclerotic lesions, and may be
encountered by pDCs resulting in enhanced CD36 surface expression and
antigen uptake by pDCs. Subsequently, pDCs can stimulate increased
antigen-specific T-cell proliferation and cytokine secretion by T cells
furthermore promoting inflammation. (The order of Roman numbers is not
hierarchical, all stimulation scenarios described may happen simultaneously.)

to trigger an increased expression of class A macrophage scav-
enger receptor (SR-A) expression in peripheral blood mononu-
clear cells (predominantly in monocytes/macrophages) in SLE
patients (Li et al., 2011). An enhanced SR-A-mediated lipid uptake
may in consequence support accelerated foam cell formation
within plaques, thereby contributing to increased atherosclerosis
in patients suffering from SLE.

Recent studies in mice have now probed the direct in vivo role
of pDCs in atherosclerosis. Daissormont et al. (2011) reported
that pDC depletion with a specific antibody against bone mar-
row stromal cell antigen 2 (BST2) in Ldlr−/− mice fed a high fat

diet, aggravated atherosclerotic lesion development in the carotid
artery after collar placement and in the aortic root. Mechanisti-
cally, the authors observed that increased plaque formation in the
absence of pDCs may be attributable to a loss of IDO-dependent
restraint in T-cell proliferation (Daissormont et al., 2011). These
findings may be in line with observations by Nakajima et al.
(2011) and functions of IDO in DCs in general, demonstrating
that the oral administration of eicosapentaenoic acid to Ldlr−/−

mice induced an increased IDO expression and immature pheno-
type in cDCs, which was associated with diminished T effector cell
numbers and a substantial regression of atherosclerotic lesions. In
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contrast, we have recently observed that pDC depletion using a dif-
ferent antibody against BST2 significantly decreased diet-induced
early lesion formation in the aortic root and aorta, whereas the
specific stimulation of pDCs with type A CpG oligonucleotides
(ODNs) lead to a clear increase in plaque burden in high fat
diet-fed Apoe−/− mice. Furthermore, administration of IFNα to
Apoe−/− mice promoted increased lesion formation, corroborat-
ing previous observations by Levy et al. (2003) and Goossens et al.
(2010). Notably, in vivo approaches employed by Döring et al. and
Daissormont et al. to define the role of pDCs in lesion develop-
ment significantly differ in a number of ways. Both groups have
used an antibody which recognizes the antigen BST2; Daissor-
mont et al. used the 120G8 antibody from Bioceros BV, we have
used the commercially available PDCA1 antibody from Miltenyi.
While Daissormont et al. reported a repopulation of blood pDCs
at 72 h after antibody depletion, and therefore have applied repet-
itive 120G8 antibody injections four times a week throughout the
study period, we have injected the PDCA1 antibody twice within
7 days at the beginning of our study and have observed restora-
tion of pDCs numbers in spleen and bone marrow to require more
than 14 days after the last injection. Daissormont et al. were able to
detect sufficient numbers of pDCs in blood to monitor antibody
depletion and reconstitution; we found it very difficult to trace
blood pDC numbers with baseline frequencies ranging at around
∼0.1% of CD45+ blood leukocytes. This may point at important
differences in the mouse models employed, with Ldlr−/− mice
used by Daissormont et al., and Apoe−/− animals in our study.
Moreover, the composition of the high fat diet was different in
these studies, and higher cholesterol content was used for Ldlr−/−

mice. Daissormont et al. studied atherosclerotic lesion formation
in the carotid artery after collar placement, representing a differ-
ent vascular bed and model system, mostly employed for studying
advanced lesion formation, compared to primary atherosclerosis
in the aortic root and aorta, as addressed in our study. However,
Daissormont et al. in addition analyzed lesion formation in the
aortic root, similarly showing accelerated atherosclerosis in pDC-
depleted mice. Of note, the same animals that had received a collar
were subjected to subsequent plaque analysis in the aortic root.
It is conceivable that collar placement in the carotid artery also
affected plaque growth in aortic root, e.g., by systemic or local
immunological or inflammatory changes induced by the collar,
changes in blood pressure, or flow disturbances. The latter may
be of particular relevance when reviewing the extent of collar-
induced plaque growth in the carotid artery, showing an almost
complete occlusion of the artery. In summary, the experimental
model, mouse model, composition of the diet, antibody, and its
administration regime were different, all of which may under-
lie differences in plaque formation and explain conflicting data.
Notably, pDC depletion by the PDCA1 antibody in Apoe−/− mice
with already established lesions, starting after 4 weeks of high fat
diet, and analysis of lesion formation in the aortic root and aorta
after an additional 4 weeks did not reveal any alterations in the pro-
gression of lesion formation in our hands (Döring and Zernecke,
unpublished observations).

In general it is now established that pDCs not only represent a
first line of defense to pathogens by releasing vast amounts of type
I IFNs, but that this cell type is also capable of exerting typical

“cDC functions”. The contribution of pDCs to various autoim-
mune diseases, however, my primarily correspond to functions as
an IFN-producing cell type (Gilliet et al., 2008). Tolerogenic func-
tions of pDCs, and the presentation of antigen and stimulation
of Treg responses, in contrast, may mostly be confined to specific
pDC subsets (Ochando et al., 2006; Hadeiba et al., 2008), e.g.,
related to mature (Ochando et al., 2006) and/or tissue restricted
Ccr9-expressing pDC populations (Hadeiba et al., 2008).

In atherosclerosis, pDCs may influence disease development
in both ways, and trigger type I IFN release, but also induce T-
cell activation, which could ultimately also include triggering of
Treg responses. It may be conceivable that pDCs contribute to the
initiation of early lesion development by rapidly secreting type
I IFNs as an innate cell type, whereas during more advanced
stages of lesion formation, pDCs exert atheroprotective func-
tions and decelerate disease development. However, these notions
clearly require further investigations. Given the function of Tregs
as powerful inhibitors of atherosclerosis, antigen-specific tolero-
genic functions of pDCs seem highly desirable, and elucidation
of mechanisms triggering these responses would be of primary
interest.

AUTOIMMUNE ACTIVATION OF pDCs
During infection, pDCs sense nucleic acids of foreign origin (but
not self-nucleic acids of dying host cells). For this it is critical that
the expression of TLR7 and TLR9 is restricted to endosomal com-
partments within the cell (Barton et al., 2006). However pDCs are
able to retain DNA in early endosomes for prolonged periods of
time if multimeric DNA complexes are being formed that lead
to the sustained activation of IRF7, which dominates the regula-
tion of type I IFN responses in pDCs (Honda et al., 2005). While
usually not recognizing self-nucleic acids, free self-DNA can be
complexed to cationic LL-37 (or its murine homologue Cramp),
a protein overexpressed and released by neutrophils as well as
damaged epithelial cells in psoriasis (Lande et al., 2007). These
complexes can enter endosomal pDC compartments most likely
via lipid rafts (Sandgren et al., 2004), and protect self-DNA from
nuclease degradation, resulting in the retention of aggregated self-
DNA-LL37 complexes in early endosomes to trigger robust type I
IFN production.

Notably, extending findings by Edfeldt et al. (2006) describ-
ing the detection of LL-37 in human atherosclerotic lesions,
we detected increased Cramp expression in murine atheroscle-
rotic plaques of Apoe−/− mice (Döring et al., 2012; Figure 1).
While deficiency in Cramp in bone marrow cells in Ldlr−/−

mice protected from atherosclerotic lesion formation, the injec-
tion of Apoe−/− mice fed a high fat diet with Cramp (requiring
the presence of extracellular DNA) and of preformed DNA-
Cramp complexes pDC-dependently enhanced atherosclerotic
lesion development (Döring et al., 2012).

Neutrophil extracellular traps (NETs) released during a form
of pathogen-induced cell death named NETosis that contain large
amounts of Cramp protein (Garcia-Romo et al., 2011; Lande et al.,
2011), can furthermore be evidenced within murine plaques, rep-
resenting another mechanism within atherosclerotic lesions that
may drive pDC activation (Döring et al., 2012; Figure 1). This con-
curs with observations that complexes of NETs that contain DNA,
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LL37, and HMGB1 trigger pDC activation in SLE and psoriasis
(Garcia-Romo et al.,2011; Lande et al., 2011). The pathophysiolog-
ical relevance of increased NET-formation has furthermore been
described for infection-associated thrombosis (Fuchs et al., 2010)
and small vessel vasculitis, a chronic autoinflammatory condition
characterized by the presence of anti-neutrophil cytoplasmatic
autoantibodies (Kessenbrock et al., 2009).

Circulating immune complexes that are comprised of self-DNA
and auto-antibodies to DNA, nucleoproteins or NET structures,
can furthermore trigger the activation of pDCs, as seen in patients
with SLE (Ronnblom et al., 2003; Barrat et al., 2005; Lande et al.,
2011). In line, isolated immune complexes from SLE patients con-
taining DNA fragments stimulate IFNα secretion by pDCs in vitro
(Lovgren et al., 2004). Mechanistically, complexes of self-DNA
and DNA-specific antibodies (produced by autoreactive B cells)
are bound and internalized by low-affinity Fc receptors for IgG
(FcγRIIA), and translocate to TLR9-containing endosomal com-
partments (Means et al., 2005). pDCs continuously activated by
these immune complexes sustain the production of type I IFNs,
a mechanism likely contributing to pathophysiologically elevated
type I IFN levels in SLE (Guiducci et al., 2010). Production of
type I IFNs can in turn furthermore promote autoreactive B- and
T-cell stimulation (Blanco et al., 2001; Jego et al., 2003; Eloranta
et al., 2009). Increased pDC numbers and elevated IFNα levels in
SLE patients may thus serve as one explanation for an increased
risk to develop atherosclerosis (Frostegard, 2008). Importantly, a
hallmark of SLE diagnostics is the detection of anti-nuclear anti-
bodies (ANAs), including anti-dsDNA antibodies (Banchereau
and Pascual, 2006). In 115 tested patients, these autoantibod-
ies were already present 3.4 years before the diagnosis of SLE.
A progressive accumulation of specific autoantibodies may thus
occur before the onset of disease at a time when patients are still
asymptomatic (Arbuckle et al., 2003; Tew et al., 2012).

One of the triggers causing autoantibody production in SLE
patients may in addition arise from a molecular mimicry between
a peptide from latent viral protein Epstein-Barr virus nuclear
antigen-1 (EBNA-1) and a specific lupus auto-antigen, in accor-
dance with an etiologic role for Epstein-Barr virus in SLE (McClain
et al., 2005). Given the association of Epstein-Barr virus infec-
tion with atherosclerosis (Rupprecht et al., 2001), virus, but then
also anti-dsDNA antibody-mediated pDC activation and IFNα

production, may likewise contribute to accelerated atherosclerotic
lesion formation.

Importantly, Pertovaara et al. (2009) observed that elevated
anti-nuclear antibody titers were associated with decreased carotid
elasticity in young Finns, which may indicate their contribution
to the development of early atherosclerosis. Similarly, we recently
detected enhanced anti-dsDNA antibody titers in patients with
symptomatic compared with asymptomatic carotid artery stenosis
and in atherosclerotic Apoe−/− mice compared with healthy

controls but not in mice depleted of pDCs (Döring et al., 2012).
In addition, defects in apoptotic cell clearance associated with an
accumulation of self-DNA was proposed as a pathogenic trigger
in both atherogenesis and SLE in a study using a combined mouse
model of lupus and atherosclerosis (Aprahamian et al., 2004).

CONCLUDING REMARKS
The complex pathophysiology of atherosclerosis as a chronic
inflammatory disease is influenced by innate and adaptive immune
mechanisms. Although antigens discussed as being recognized in
atherosclerosis are of self-origin, e.g., oxLDL or HSP60, the recog-
nition of atherosclerosis as being partly driven by autoimmune
mechanisms is still a matter of debate (Blasi, 2008). The aberrant
conversion of self-nucleic acids into TLR7/9 ligands and triggers
of pDC activation, however, may represent a common nominator
of several pathogenic cascades in autoimmune diseases, such as in
psoriasis and SLE (Reizis et al., 2011a). Importantly, both SLE and
psoriasis are associated with an increased risk of atherosclerosis
(Ghazizadeh et al., 2010; Lopez-Pedrera et al., 2010; Sherer et al.,
2010). Thus, this pathogenic mechanism may also be relevant in
atherosclerosis, and precipitate vascular disease. pDCs represent a
diverse cell population mediating a variety of immune functions
in atherosclerosis. This plasticity includes inflammatory responses
leading to DC and T-cell stimulation (Niessner et al., 2006, 2007)
as well as breakdown of self-tolerance (Döring et al., 2012), both
of which increase lesion burden. However, pDCs also seem to be
capable of facilitating protective effects by controlling T effector
cell responses (Daissormont et al., 2011).

More advanced animal models (e.g., cell specific knock-out
mouse models, as recently described by the group of Marco
Colonna; Swiecki et al., 2010) that allow the stage-specific deple-
tion of pDCs, and the employment of pDC-specific knock-out
mouse models of, e.g., IFNα and IDO, will help to unequivo-
cally scrutinize the role of pDCs in lesion formation and their
predominant mediators in promoting or curtailing inflammation.
Moreover, a better characterization of pDCs and their potential
subsets in steady state and during lesion evolution, as well as
mapping their fate during lesion development to determine a pos-
sible plasticity and differentiation into cDC-like cells with different
functions are to be addressed in future studies.

A detailed understanding of the mechanisms triggering inflam-
matory versus protective immune responses by pDCs in the con-
text of atherosclerosis should be an important objective in future
research (Niessner and Weyand, 2010), and may promote the dis-
covery of novel therapeutic approaches targeting autoimmune
disease and atherosclerosis.
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