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Hypothalamic magnocellular neurons release vasopressin and oxytocin not only from
their axon terminals into the blood, but also from their somata and dendrites into the
extracellular space of the brain, and this can be regulated independently. Differential
release of neurotransmitters from different compartments of a single neuron requires
subtle regulatory mechanisms. Somato-dendritic, but not axon terminal release can be
modulated by changes in intracellular calcium concentration [(Ca2+)] by release of calcium
from intracellular stores, resulting in priming of dendritic pools for activity-dependent
release. This review focuses on our current understanding of the mechanisms of priming
and the roles of actin remodeling, voltage-operated calcium channels (VOCCs) and SNARE
proteins in the regulation somato-dendritic and axon terminal peptide release.
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INTRODUCTION
Neurons have classically been considered to propagate informa-
tion in one direction; synaptic inputs onto the dendrites or soma
initiate action potentials which, after conduction to the axon
terminal, transmit information to the postsynaptic neuron via
a neurochemical signal that is confined to the pre- and post-
synaptic area. However, neurochemicals can ‘spillover’ to have
extra-synaptic actions, and in some cases can be released from
dendrites. Peptides in particular have actions unlikely to be con-
fined to synapses: they are packaged in large dense-cored vesicles
(LDCVs), containing much more cargo than conventional synap-
tic vesicles; they have much higher affinities for their receptors
than conventional neurotransmitters, half-lives much longer than
conventional neurotransmitters, and in general are not conspic-
uously located at synapses but are present throughout the cell
(Leng and Ludwig, 2008). More than 100 peptides are expressed
and secreted by different neuronal populations throughout the
brain, and many neuropeptides have profound effects on specific
behaviors. These considerations imply that neuropeptides have
organizational and activational roles that make them more akin to
hormones than to classical neurotransmitters (Ludwig and Leng,
2006).

Among the best-established sites of dendritic release are
the supraoptic (SON) and paraventricular nuclei (PVN) of the
hypothalamus, where magnocellular neurons synthesize vaso-
pressin and oxytocin. These peptides are packaged into LDCVs
that are abundant in the soma and dendrites as well as in swellings
and nerve endings in the neurohypophysis (Figure 1; Leng and
Ludwig, 2008). These neurons are aggregated into relatively
homogeneous nuclei, and the SON is particularly homogeneous,
containing only magnocellular vasopressin and oxytocin neurons,

so studies of dendritic release from the SON can be accomplished
in the absence of contamination by axonal release of peptide.

Somato-dendritic release was first unequivocally confirmed in
this system using tannic acid fixation and electron microscopy;
this allowed the visualization of omega fusion profiles in the
dendritic plasma membrane and the dense-cores from exocy-
tosed vesicles in the extracellular space (Morris and Pow, 1991).
These studies also showed that magnocellular neurons lack active
zones – the specialized region of the presynaptic terminal at which
exocytosis typically occurs (Pow and Morris, 1989; Morris and
Pow, 1991). Indeed they showed that exocytosis could occur from
any part of the neuron with the probability of release from any
compartment determined simply by the number of vesicles that
were close to the plasma membrane.

The blood-brain barrier is impermeable to oxytocin and vaso-
pressin, and simultaneous measurement of peptide release within
the blood and the brain has demonstrated that release from these
compartments can be independently controlled (Ludwig and
Leng, 2006). For example, in lactating rats, suckling evokes inter-
mittent pulsatile secretion of oxytocin into the blood to mediate
milk let-down, and this is the result of synchronous bursting
discharge of the oxytocin neurons. However, suckling stimulates
dendritic oxytocin release before peripheral secretion occurs, and
this is essential for co-ordinating the bursting activity (Moos et al.,
1989; Rossoni et al., 2008). By contrast, systemic osmotic stim-
ulation activates vasopressin neurons and increases secretion of
vasopressin from the pituitary, but dendritic vasopressin release
is delayed, occurring after plasma concentrations of vasopressin
have returned to baseline (Ludwig et al., 1994).

Over the last decade, in vivo and in vitro studies have revealed
many aspects of the control of dendritic vasopressin and oxytocin
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FIGURE 1 | Vasopressin and oxytocin are synthesized by a few thousand

large (magnocellular) neurons (vasopressin cells are immunostained

with fluorescent green and oxytocin cells with fluorescent red) whose

cell bodies are located mainly in the supraoptic (A) and paraventricular

(not shown) nuclei of the hypothalamus. (B) The vasopressin
immunostaining is punctate and represents individual or aggregates of large
dense-cored vesicles. In the dendrite thickenings the vesicles are particularly

abundant. Strong punctuate staining of VAMP2 (red labeling) was seen
around the vasopressin and oxytocin (not shown) somata and dendrites,
however there was no co-localization with the peptide suggesting labeling of
pre-synaptic terminals. (C) Large dense-core vesicles in an electron
microscopic section of a dendrite appear as dark, round, membrane-bound
organelles (black dots). Scale bars show (A) 100, (B) 10, and (C) 1µm
respectively.

release (Landgraf, 1995; Ludwig, 1998; Ludwig and Pittman,
2003; Landgraf and Neumann, 2004). Here we focus on the roles
of actin remodeling, voltage operated calcium channels (VOCCs)
and SNARE proteins in the regulation of somato-dendritic and
axon terminal release.

AUTOREGULATION AND PRIMING
Exocytosis of oxytocin and vasopressin from the neurohypophysis
results from calcium entry via voltage-gated channels following
depolarization of the terminals by invading action potentials
(Leng et al., 1999) (Figure 2). By contrast, some chemical sig-
nals, notably oxytocin itself, can elicit dendritic release without
increasing the electrical activity of the neurons. In particular, acti-
vation of G-protein coupled receptors on the dendrites can elevate
intracellular [Ca2+] enough to trigger exocytosis of LDCVs from
the soma and dendrites (Figure 2). Oxytocin neurons express
oxytocin receptors (Freund-Mercier et al., 1994), and activation
of these receptors mobilises calcium from thapsigargin-sensitive
intracellular stores, producing a rise in intracellular [Ca2+] that
can trigger dendritic oxytocin release (Lambert et al., 1994).
Thus, once triggered, dendritic oxytocin release can be self-
sustaining and hence long-lasting (Ludwig and Leng, 2006). This
self-sustaining nature of oxytocin release and its physiological role
has been demonstrated in parturient rats. During parturition,
oxytocin is released from the SON and this drives the pulsatile
release of oxytocin into the periphery to cause uterine contrac-
tions and thus regulate pup delivery. Infusion of an oxytocin
receptor antagonist into the SON during parturition significantly

reduced SON oxytocin release, and delayed further pup delivery
(Neumann et al., 1996).

As vasopressin neurons similarly express receptors for
vasopressin, part of the function of dendritic release involves
auto-regulation of neuronal activity, either by acting directly
(Gouzenes et al., 1998), or indirectly, by regulating afferent inputs
(Kombian et al., 1997, 2002; Curras-Collazo et al., 2003). For
oxytocin neurons, this presynaptic action is partly mediated by
oxytocin-induced production of endocannabinoids (Hirasawa
et al., 2004), acting at CB1 receptors on presynaptic gluta-
matergic terminals. These effects act on different spatial and
temporal scales, and one important consequence is the emer-
gence of intense, synchronous bursting activity, the key phe-
nomenon that underpins the milk-ejection reflex (Rossoni et al.,
2008). For vasopressin cells, the autoregulatory effects are differ-
ent, but are also complex, because vasopressin is inhibitory to
active vasopressin cells but excitatory to inactive cells (Gouzenes
et al., 1998). Thus, vasopressin release tends to reduce the het-
erogeneity of firing rates amongst vasopressin cells, and this
may be an important load-sharing mechanism during sus-
tained secretory demand, such as dehydration (Leng et al.,
2008b).

How much dendritic release occurs in response to electri-
cal activity depends on the extent to which the vesicle pools
in the dendrites are available for release. In magnocellular neu-
rons, increases in intracellular [Ca2+] induced by agents such
as thapsigargin or cyclopiazonic acid, which block calcium
re-uptake into intracellular calcium stores and hence result in
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FIGURE 2 | Comparison of peptides release from somata-dendrites

(A) and axon terminals (B) of magnocellular neurons. Depolarization
induced calcium entry via voltage-operated calcium channels (VOCCs)
stimulates peptide release from large dense-cored vesicles (LDCVs). In the
somata-dendrites this requires the depolymerization of F-actin to G-actin.
The stimulation of G-protein coupled receptors, such as the oxytocin
receptor (OTR), stimulates the mobilization of calcium from intracellular
stores and an increase in both the number of LDCVs and N-type

channels at the plasma membrane which primes release for subsequent
activity-dependent release. In contrast, release from axon terminal
appears more simple; LDCV movement utilizes actin depolymerization, but
release does not depend upon it. Although some members of the SNARE
family are detectable by immunocytochemistry in both compartments, there
appears to be a lack of VAMP, SNAP-25 and synaptotagmin-1 in the
somata-dendrites, with their function perhaps being replaced by other
SNARE proteins.

a large, transient increase in intracellular [Ca2+], result in the
preparation (“priming”) of dendritic vesicle pools for subsequent
activity-dependent release (Ludwig et al., 2002, 2005) (Figure 2).
This priming is not a consequence of elevation of intracellu-
lar [Ca2+] per se, as priming is detected well after the increase
in intracellular [Ca2+] has returned to baseline levels (Lambert
et al., 1994), and as depolarization-induced increases in intracel-
lular [Ca2+] do not result in priming. Priming involves preparing
a system for some anticipated trigger that will come at some
uncertain time in the future; it involves making the secretory pool
of the target cell available for rapid release in response to that
future trigger. In particular, oxytocin binding to oxytocin neu-
rons has been shown to prime dendritic oxytocin release (Ludwig
et al., 2002).

Analogous priming occurs in some endocrine cells. In the
anterior pituitary of oestrogen-primed female rats, luteinis-
ing hormone releasing hormone (LHRH) is capable of “self-
priming” gonadotrophs, causing a potentiation of luteinising
hormone release in response to successive challenges with
LHRH. This priming is delayed and long-lasting, and involves
translocation of LDCVs to docking sites at the plasma mem-
brane (Thomas and Clarke, 1997; Leng et al., 2008a). Priming
in magnocellular neurons similarly involves a recruitment of
LDCVs from a reserve pool into a readily-releasable pool
(Tobin et al., 2004), but also involves a recruitment of VOCCs
(Tobin et al., 2011). Priming does not appear to require
either de novo transcription or translation (Tobin and Ludwig,
2007a).
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F-ACTIN
Because peptide release from magnocellular neurons is not
restricted to any particular part of the plasma membrane (Morris
and Pow, 1991), regulation depends on controlling the access of
vesicles to the plasma membrane, and in endocrine cells this con-
trol is exerted by cytoskeletal elements (Morgan, 1995; Park and
Loh, 2008). Many secretory cells possess a network of cortical
polymerized actin (filamentous or F-actin) in the subplasmale-
mal space. Cortical F-actin is often described as a barrier, as it is
thought to anchor the LDCVs and regulate their availability for
docking at the plasma membrane (Goddette and Frieden, 1986;
Vitale et al., 1995; Ehre et al., 2005). Consistent with this idea,
F-actin undergoes fast, transient and reversible depolymerization
during exocytosis from many cells (Cheek and Burgoyne, 1986;
Nakata and Hirokawa, 1992; Trifaro et al., 2000) and areas of
exocytosis have been shown to be void of F-actin (Goddette and
Frieden, 1986; Nakata and Hirokawa, 1992). In general, release of
neurotransmitters from axon terminals is increased after F-actin
depolymerization (Morales et al., 2000; Sankaranarayanan et al.,
2003). Similarly, in chromaffin cells, depolymerization of F-actin
increases the translocation of vesicles to the plasma membrane
(Vitale et al., 1995) and polymerization of actin inhibits exocy-
tosis (Zhang et al., 1995). However, depolymerization of F-actin
inhibits release from PC12 cells (Matter et al., 1989), HIT insulin-
secreting cells (Li et al., 1994) and mast cells (Pendleton and
Koffer, 2001). Thus, F-actin can also facilitate vesicle fusion for
release, depending on the cell type or time course of measured
response.

As well as a network throughout the cytoplasm, the cell
bodies of magnocellular neurons possess a network of F-actin
beneath the plasma membrane (Tobin and Ludwig, 2007b). Actin
depolymerization can stimulate peptide release from both the
dendritic and axonal compartments, consistent with the idea of
cortical actin acting as a barrier for LDCVs to access release sites.
Concomitant actin polymerization or depolymerization does not
affect secretion from the axon terminals, but release from the
dendrites is inhibited by actin polymerization and potentiated
by actin depolymerization. Thus, depolarization-evoked release
from the dendrites, unlike that from the axon terminals, requires
actin depolymerization. It has previously been suggested that a
cortical F-actin network might separate vesicles into a small read-
ily releasable pool and a larger reserve pool (Trifaro et al., 2000).

The role of actin in regulating the availability of LDCVs for
dendritic release is highlighted by the observation that actin
depolymerization potentiates depolarization-evoked dendritic
release, yet blocks thapsigargin-induced priming. In hippocam-
pal neurons, F-actin polymerization potentiates thapsigargin-
induced increases in intracellular [Ca2+] (Wang et al., 2002), so it
seems unlikely that the block of priming is because of an effect on
calcium mobilization.

F-actin might facilitate release either by providing “tracks” that
permit the docking of vesicles at appropriate membrane sites, or
by spatially constraining components of the exocytotic machin-
ery. This suggests that activation of release involves a reorganiza-
tion of F-actin which allows the vesicles access to the exocytotic
sites and provides the structural support necessary for exocytosis.
In the magnocellular system, it appears that F-actin remodeling

regulates the availability of mature and readily-releasable vesicles
in different parts of the cell, and thus may be involved in the
differential control of release from different parts of the cell.

VOLTAGE OPERATED CALCIUM CHANNELS
Like axon terminal release, dendritic release of oxytocin and
vasopressin depends on the entry of calcium into the cell
(Neumann et al., 1993; Shibuya et al., 1998; de Kock et al.,
2003) via VOCCs (Fisher and Bourque, 1996). Whereas terminal
secretion is very sensitive to the frequency of action potentials,
dendritic release is normally less tightly coupled to action poten-
tial events (Leng and Ludwig, 2008), but depolarization-induced
dendritic release can be primed by a prior mobilization of intra-
cellular calcium (Ludwig et al., 2002, 2005). This mechanism is
absent from the axon terminals of magnocellular neurones, which
lack thapsigargin-sensitive calcium stores. In some systems, neu-
ronal synaptic release of neurotransmitters can be potentiated by
a recruitment of VOCCs to the active zone, increasing calcium
entry upon depolarization. Thus, one target for priming may be a
change in the number and/or activity of VOCCs or an increased
proximity of channels to docked vesicles (Becherer et al., 2003).

Magnocellular neurons express several types of VOCC
(Foehring and Armstrong, 1996; Joux et al., 2001), but one sub-
type in particular, the N-type channels, appears to be particularly
important for dendritic release. Although the current carried by
N-type channels is comparatively minor in magnocellular somata
compared to the other VOCC types or indeed the whole-cell cal-
cium current (Joux et al., 2001; Tobin et al., 2011), release of
oxytocin from SONs is most sensitive to blockade of N-type chan-
nels. This suggests that a change in the expression and/or activity
of VOCCs might underlie priming, and indeed, thapsigargin
treatment significantly increases the calcium current carried by
N-type channels as a proportion of the whole-cell calcium current
(Tobin et al., 2011).

As mentioned, priming does not require de novo transcription
or translation, arguing against new channels or channel con-
stituents being made. Therefore, the potential mechanisms are
either that existing N-type channels at the plasma membrane
carry more charge per channel, or that more N-type channels are
inserted into the membrane. The latter is more likely, as there is
no change in the voltage-dependent activity of the N-type chan-
nels after priming, and suggests that there is a “reserve pool” of
channels (Tobin et al., 2011).

We observed a strong perinuclear immunocytochemical sig-
nal for N-type channels in both oxytocin and vasopressin somata.
Differentiated neuroblastoma, neuronal and endocrine cell types
all contain an intracellular pool of recruitable N-type channels
which can be translocated to the plasma membrane (Passafaro
et al., 1994, 1998; Sher et al., 1998). This suggests the presence of a
channel reserve pool via which a neuron can increase the number
of cell surface VOCCs, for example during synaptogenesis or, as in
this case, to increase secretory responsiveness. In neuroendocrine
bag cell neurons of Aplysia californica, actin-dependent transloca-
tion of VOCCs from the central region of a growth cone into the
plasma membrane of the growth cone is an important part of the
process of transformation into mature neurosecretory endings
(Knox et al., 1992; Zhang et al., 2008). Recruitment of N-type
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channels on peptide-containing LDCVs seems unlikely, as there is
not a strong co-localization of the N-type channel and either oxy-
tocin or vasopressin (Tobin et al., 2011). Thus, the priming signal
stimulates the translocation of both peptide-containing LDCVs
and N-type channels in parallel.

The particular involvement of one type of VOCC with a secre-
tory response has previously been demonstrated with the involve-
ment of L-type channels in somato-dendritic vasopressin release
by pituitary adenylate cyclase activating polypeptide (PACAP)
(Shibuya et al., 1998), R-type channels with the axon terminal
release of oxytocin (Wang et al., 1999) and P/Q-type channels
with vasopressin secretion (Wang et al., 1997). The requirement
for somato-dendritic release of calcium entry through mainly
L- and N-type channels has been shown for other transmitters,
including dynorphin (Simmons et al., 1995), dopamine (Kim
et al., 2009; Mendez et al., 2011) and serotonin (De-Miguel and
Trueta, 2005).

As previously reviewed (Catterall, 2000; Felix, 2005)
VOCC activity can be acutely modulated by events such as
phosphorylation/de-phosphorylation or by interaction (via
G-proteins) with other membrane receptors. These rapid mod-
ulatory events occur, and revert, within a time-scale of a few
milliseconds to minutes. By contrast, gonadotrophs also show a
steroid-dependent modulation of VOCCs which occurs over a
much longer time-scale (24–36 h). Treating gonadotrophs with
estradiol produces a time-dependent change in secretory respon-
siveness which mimics the pre-ovulatory luteinizing hormone
surge. This treatment also stimulates a parallel change in the
calcium current (Heyward and Clarke, 1995) that depends on
the synthesis of new VOCCs and their insertion into the plasma
membrane, and this change is a prerequisite for gonadotrophs
to display the self-priming response to LHRH. Here, we sug-
gest that a stimulus that produces an increased secretory
responsiveness with an intermediate time scale (30–90 min) may
cause magnocellular neurons to recruit N-type channels to the
plasma membrane, allowing them to respond to a subsequent
depolarization with a larger secretory response.

SNARE PROTEINS
The stimulated release of both LDCVs and synaptic vesicles
involves the N-ethylmaleimide sensitive fusion protein attach-
ment protein receptor (SNARE) complex, which allows the
vesicle membrane to fuse with the plasma membrane. The
roles in dendritic release of the protein members which com-
prise this complex have been reviewed recently (Ovsepian and

Dolly, 2011). The basic configuration of this complex comprises
a vesicle associated membrane protein-2 (VAMP2), syntaxin-1
and soluble N-ethylmaleimide attachment protein-25 (SNAP25)
(or other members of the VAMP, syntaxin or SNAP families).
Other proteins regulate the activity of these core proteins (e.g.,
munc18 regulating syntaxin-1), or act as calcium sensors (e.g.,
synaptotagmin-1). Some of these proteins, including VAMP-2, are
targeted to exocytosis sites by being inserted into the coat of the
vesicle, others, including RIM, bassoon and piccolo, are targeted
to the pre-synaptic area and assembled into specialized zones of
release by the cytomatrix proteins (tom Dieck et al., 1998; Fenster
et al., 2000).

Despite their ability to release LDCVs, the magnocellular neu-
ron dendrites showed a surprising lack of some of these core pro-
teins. We (Tobin et al., 2012) and others (Deleuze et al., 2005) did
not detect any immunocytochemical signal for VAMP-2 despite
abundant signal surrounding these cells on pre-synaptic contacts
(Figure 1). In fact, we did not detect co-localization of any VAMP
family member with either peptide, as would be expected for a
protein inserted into the vesicle coat. We also failed to detect
SNAP-25, but did detect syntaxin-1 and munc-18. Although we
detected all of these in the axon terminals, the resolution did not
allow us to determine if the terminal VAMP-2 was associated with
LDCVs. An earlier study using electron microscopy also failed to
demonstrate an association between LDCVs and VAMP-2 in the
terminals (Zhang et al., 2000).

Although they express VAMP-2 and SNAP-25, gonadotrophs
lack an immunocytochemically-detectable signal for syntaxin-1
(Thomas et al., 1998). Knock-out of syntaxin 1A was not lethal in
mice, and although synaptic plasticity was impaired, basic synap-
tic release appeared normal (Fujiwara et al., 2006). Although
knock-out of either SNAP-25 or VAMP-2 in mice was lethal after
birth, in vitro recordings from embryonic brains showed compro-
mised but not ablated evoked synaptic release, as well as reduced
spontaneous release. Significantly in all three cases, there was no
compensatory expression of other SNARE proteins (Schoch et al.,
2001; Washbourne et al., 2002). Perhaps there are more mem-
bers or isoforms of the existing members to be identified, but for
the time being somato-dendritic peptide release from these mag-
nocellular neurons and anterior pituitary gonadotrophs appear
to occur in the absence of the full complement of exocytotic
machinery considered to be mandatory.
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