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Figure-ground (FG) segmentation is the separation of visual information into background
and foreground objects. In the visual cortex, FG responses are observed in the late
stimulus response period, when neurons fire in tonic mode, and are accompanied by
a switch in cortical state. When such a switch does not occur, FG segmentation fails.
Currently, it is not known what happens in the brain on such occasions. A biologically
plausible feedforward spiking neuron model was previously devised that performed FG
segmentation successfully. After incorporating feedback the FG signal was enhanced,
which was accompanied by a change in spiking regime. In a feedforward model neurons
respond in a bursting mode whereas in the feedback model neurons fired in tonic mode.
It is known that bursts can overcome noise, while tonic firing appears to be much more
sensitive to noise. In the present study, we try to elucidate how the presence of noise
can impair FG segmentation, and to what extent the feedforward and feedback pathways
can overcome noise. We show that noise specifically destroys the feedback enhanced
FG segmentation and leaves the feedforward FG segmentation largely intact. Our results
predict that noise produces failure in FG perception.
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The task known as Figure-ground (FG) segmentation is the
assignment of visual elements to either objects or background,
and constitutes a primary step in visual perception. In the brain,
visual features are detected by neurons by means of their feed-
forward defined classical receptive field, whereas contextual influ-
ences beyond the classical receptive field have been interpreted as
the neural substrate of FG segmentation. In the primary visual
cortex (V1), feedback projections covering large parts transmit
extra-classical receptive field information (Angelucci et al., 2002),
and are considered to be critical for FG segmentation (Lamme
and Roelfsema, 2000). This assumption has been developed in
many theoretical and computational models (Sporns et al., 1991;
Sun et al., 1999; De Kamps and van der Velde, 2001; Grossberg
and Williamson, 2001; Wersing et al., 2001; Roelfsema et al., 2002;
Thielscher and Neumann, 2003; Deco and Lee, 2004; Baeck and
Sajda, 2005; Zhaoping, 2005; Bhatt et al., 2007; Craft et al., 2007;
Jehee et al., 2007; Zwickel et al., 2007; Domijan and Seti¢, 2008;
Wagatsuma et al., 2008) that explain FG segmentation by recur-
rent processing through horizontal and/or feedback connections.

Spike bursts are evoked by feedforward stimulus input whereas
cortical feedback modulates the stimulus evoked activity. The role
of feedback in not clear but it is believed that feedback transmits
top-down attention signals (Theeuwes, 2010). The findings are
in agreement with the results of a recent computational mod-
eling study showing that feedback enhances FG segmentation

(Supér and Romeo, 2010, 2011; Super et al., 2010, see also Super
and Lamme, 2007a). This enhancement was seen to occur by a
change in cortical state (Le Masson et al., 2002; Supér and Lamme,
2007a), i.e., a change in the firing pattern from a bursting into a
tonic mode (Sherman, 2001). In monkey visual cortex a switch
in cortical state also has been observed during FG segmentation
(Super et al., 2003b; van der Togt et al., 2006). Thus, both cortical
state and cortical feedback are crucial for conscious FG perception
(Pascual-Leone and Walsh, 2001; Supér and Lamme, 2007a) and it
is, therefore, conceivable that FG segmentation by feedback oper-
ates by controlling sensory-evoked spiking pattern. For instance,
Sillito et al. (2006) manipulated feedback from cortical layer 6
to the thalamus in vivo by focally injecting a GABAD receptor
antagonist into the cortex. As a consequence of this manipulation,
two-thirds of the studied thalamic relay cells changed their firing
patterns. Some relay cells showed a shift from bursting to more
tonic firing. So his experiment shows that changes in the strength
of corticothalamic feedback can cause shifts in burst probability
of thalamic relay cells. Further evidence of corticothalamic con-
trol of relay cell bursting comes from the rat somatosensory cortex
(Fanselow et al., 2001; Wiest and Nicolelis, 2003).

Sometimes FG segmentation fails (Super et al., 2003b; van der
Togt et al., 2006) and currently it is not known what causes this
failure. FG activity follows the initial burst response to the visual
stimulus and forms part of the late tonic stimulus response. Bursts
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are believed to be less affected by noise (Cecchi et al., 2000; Du
et al., 2010) and are important to overcome the synaptic trans-
mission failure. Noise can make the burst durations of periodic
regimes, however, variable (Rowat and Elson, 2004). On the con-
trary, according to results from computational modeling studies
tonic firing mode appears to be much more sensitive to noise
(Finke et al., 2008) and sufficient noise can convert tonic fir-
ing into bursting (Rowat and Elson, 2004) possibly by affecting
the interspike interval (Rowat and Elson, 2004; Du et al., 2010).
Thus noise may have different effects on the feedforward and on
the feedback contributions to FG segmentation. In the present
work, we try to determine whether the presence of Gaussian noise
can impair FG segmentation, and to what extent the feedforward
and feedback pathways can overcome noise. We show that noise
specifically destroys the feedback enhanced FG segmentation and
leaves the feedforward FG segmentation largely intact. The results
of our study predict that noise produces failure in FG perception.

MATERIALS AND METHODS

MODEL ARCHITECTURE

The model consists of stimuli representations and two layers,
each containing two separate arrays of N X N neurons of the
Izhikevich type (Izhikevich, 2003; see Figure 1). Most of times
we use N = 64. The two arrays of each layer represent two neu-
ronal cell populations with opposite preference for a given feature.
Of course, topological properties of the brain are much more

A
Feat 1, Feat 2,
Layer 2 Layer 2
Feat 1, B a Feat 2,
Layer 1 Layer 1
Feat 1, Feat 2,
Stimulus - Stimulus

B

Feat 1 Feat 2

FIGURE 1 | Schematic representation of the model. (A) Network made
of two layers including two features in separate channels. Black lines
indicate feedforward pathways and gray lines show optional feedback
pathways. (B) The two input features, sometimes referred to as “feat 1"
and “feat 2." In a successful FG segmentation, both spike maps on layer
two should signal the figure—and not the background—, i.e., both of them
have to look like “feat 1" itself.

complex than the picture offered by the presented model. For
instance, the relationship between structure and function has
been illustrated in (Bock et al., 2011), showing the existence of
a large number of convergent inputs onto inhibitory neurons
(although the result might depend on the size of the analyzed
sample). The existence of “hubs” is related to small-world net-
works and scale-free networks (for a review see Sporns et al.,
2005). For a detailed quantitative map of the circuitry of pri-
mary visual cortex (see e.g., Binzegger et al., 2004). Nevertheless
each layer is ascribed to a visual region. Neurons in the first layer
transform continuous or graded input into spike activity and may
represent the retina, which provide reliable input to the cortex.
The second layer can be regarded as V1 where neural correlates
of FG segmentation are observed (Lamme, 1995; Super et al,
2001).

CONNECTIONS

Feedforward connections between layers have, in general, excita-
tory and inhibitory contributions. All excitatory connections are
retinotopic (point-to-point connections) where the neuron at site
(j, k) in one layer solely connects to the neuron at site (j, k) in the
next layer. Thus the excitatory part of a neuron’s receptive field has
size one. The pattern of inhibitory connections differs between
layers. Neurons in the first layer do not receive inhibitory signals
from the FG input, although they will optionally receive inhibi-
tion from layer 2, i.e., feedback. In the second layer all neurons
of a feature map receive inhibition from all neurons located in the
same feature map of the first layer, in agreement with observations
of large numbers of convergent inputs onto inhibitory neurons in
the cortex. Inhibition is achieved by assigning negative weights
to the connections. No intra-laminar connections, i.e., horizontal
connections between neurons within or across feature maps, are
included in the network architecture.

INPUTS

The studied figures are arrays of N x N pixels containing a cen-
tered square. Input arrays are binary (0 or 1) and correspond to
the preference of a single visual feature, like luminance, orien-
tation, direction of motion, color etc. In other words, 1 stands
for optimal tuning whereas 0 is the opposite. For every shape we
include its binary complementary, which represents the reverse
preference of the visual feature. These two arrays are referred to as
feature map 1 and feature map 2, or “feat 1” and “feat 2.” Together
they form the “figure-ground texture.”

NEURONAL CELL TYPE

We opted to use the spiking neurons of Izhikevich (2003). These
neurons combine the biological plausibility of Hodgkin—Huxley-
type dynamics and the computational speed of integrate-and-fire
neurons, and can produce a wide variety of firing patterns exhib-
ited by real biological neurons. We choose our neurons to be
phasic bursting, which report the beginning of their activity by
transmitting a burst.

MODEL DYNAMICS
Cell dynamics is described by the “simple” spiking model of
Izhikevich (Wiest and Nicolelis, 2003), defined by the system of
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differential equations

av

CE =uV2+BV+y—u+I
d
d—;‘ — a(bV — u), (1)

and the after-spike reset rule

V «—¢
u <—u-+d.

if V.= Vp, then { (2)

The C, V,u, I, and t symbols indicate membrane capacitance,
membrane potential, recovery variable, input intensity and time,
respectively. Expectable potential variations are of the order of
“a few” mV per ms. Therefore, admitting that typical intensities
are of “a few” WA, capacitances should be of the order of wF
and for definiteness we set C = 1 wF. The spike limit is set at
Vsp = 30mV. As for the other parameters, a is a time scale for
the u evolution, b measures the recovery sensitivity, c is the reset
value for V, and d is the height of the reset jump for u. We adopt
a=0.02 (ms)~!, b=0.25pA/mV, c = —55mV, d = 0.05 pA,
which correspond to the phasic bursting type of the Izhikevich
neuron (Izhikevich, 2003), and the o, B, Y symbols indicate fitted
constants, with the values o = 0.04 pA/(mV)?, = 5pA/(mV),
y = 140 L A. The initial conditions at ty (to us tp = 0) are

V(to) =c, ulty) = bV(t) 3)
When going from the description of a single neuron to systems
of two-dimensional arrays, Eqs. (1-3) are understood for V —
Vik, t —> tjg, I — I, 1 <j, k <N, and these Vjx, uj, I are
regarded as coefficients of N x N matrices, say V, u, I. Numerical
integration is performed using the Euler method with a time step
At =0.20ms. In most of our simulations ¢ ranges from 0 to
fmax = 100 ms. The aforementioned input matrix [ is, in general,
the result of adding two possible contributions:

it = Lk + Lijk (4)

where e stands for “excitatory” and i for “inhibitory.” In particular,
for layer 1,

I, = w,T

I; = w;S;1 for t>1 + t and 0 otherwise

— 1

Si=13 > Siik (5)
ik

where T is the stimulus itself taken as a matrix, #; is the time of
the first spike and #; indicates a chosen delay for the inhibitory
action. Thus, inhibition is active only #; ms after t = #;. Sf is the
binary array defined by the presence of spikes on layer L [i.e., with
ones where condition (2) is satisfied and zeros elsewhere], also
called “spike map,” and S indicates the spatially averaged spike
map for layer L, or “mean S;” Obviously, the S;. value amounts to
the ratio between spiking area and total area. Thus, the inhibitory

contribution to layer 1 is a feedback term coming from the spike
map of layer L = 2. The 1 symbol denotes an N x N matrix
which contains just ones, indicating that the inhibition is spatially
constant.

Concerning the inputs to layer 2, they are given by

Ie = Wesl

Ii = w;Si1 (6)

Since excitatory receptive fields have size one, excitatory sig-
nals are point-by-point (retinotopic) copies of S;, multiplied by
the corresponding weight. Again, the inhibitory part is spatially
constant. The inhibition is now feedforward, and proportional to
the spatial average of S;. Our chosen weights are w, = 1 for sig-
nals from image to layer 1, w; = —400 for inhibition from layer 2
to layer 1—if present—, t; = 5 ms, and w, = 400, w; = —700 for
signals from layer 1 to layer 2 (when not explicitly written it has to
be understood that weights or weight variations are given in the
employed current intensity units which, in our system, are pLA).

CRITICAL VALUES
The first issue is to obtain a limit to input values which can cause
their receiving neurons to spike. As an approximate bound for
non-spiking |spiking regimes we shall take I < I|I > I;, being
I, the I value limiting the presence of equilibrium states in
(B=b)*

Izhikevich’s model (1), which amounts to I, = — vy, where
o, B, v, b are the parameters in Eq. (1). Thus, the I}, value depends
on the cell properties, and for our chosen neuron type I ~
1.02 pA. In view of the involved scales (see below) using this I,
or just I = 0 makes little difference.

Synaptic efficiency has been object of interest from several
viewpoints (see e.g., Faure et al., 2000; Hardingham et al., 2010;
Paprocki and Szczepanski, 2011) and, among other possible
approaches, may be related to the presence of noise. Let w, w;
indicate the excitatory and inhibitory weights from middle to top
layer. As w; < 0, w; = —|w;|. Now, considering the connections
between middle and top layer in our model (in the feedfor-
ward connection and if applicable in the feedback connection),
we shall imagine that the total input includes now a stochastic
contribution, i.e.,

I+ — I+ +&,

where & is a noise matrix of the same size as I, or I,.

The incorporation of noise from stimulus to layer 1 will be
considered below. Among all the known noise types, Gaussian
noise is just one of the most widely used and will be employed, for
simplicity, in the present work. Nevertheless, it is in general inter-
esting to consider the effects of noise types with power spectra of
the form 1/f", like in (Nozaki et al., 1999).

We denote by r the ratio between figure area and total area.
For the ground, the analogous ratio is 1 — r. In the absence of
noise, the input to layer 2 is given by Eqs. (4) and (6). Taking into
account that the excitatory part is retinotopic and the inhibitory
contribution amounts to w; multiplied by the ratio spiking area/
total area, one realizes that the continuation of spiking inside the
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figure area requires
We — [wilr > I,

and, at the same time, to maintain the non-spiking regime inside
the ground area calls for

we — [Wi|(1 = 1) < I.
The last two relations lead to

We — I we — Iy
< |wi| < .
1—r

From these inequalities it follows that necessarily r < 1/2, oth-
erwise there can be no solution. Of course, this “critical” ratio
is the result of a rather rough estimation. In actual simulations,
the process fails for somewhat smaller r values (for N = 64 this
failure is already evident at r ~ 0.4). When the figure size is safely
below the critical value, then, for a given excitatory weight there is
a limited range of inhibitory weights. The mid-value of this range
is [Wilmid = ﬁ(we — Ip) and the “semi-width” or half-range
is given by Alw;| = %(We — Ip). We set figure and total area
sides at 32 and 64 pixels, which yield r = 1/4. Taking w, = 400,
these formulas give |wj|mig = 1064, A|w;| = 532. Thus, for w;
around 1000, A|w;| ~ 500 can be interpreted as a noise ampli-
tude which causes the FG segmentation to go significantly wrong.
This “amplitude” is just a typical scale, like the o value in the
case of a Gaussian noise. The described set-up has been simu-
lated for increasing o’s from 0 to values of the order of A|w;|. The
unwritten units for o are the same as for current intensities: in our
studied case, [LA.

FIGURE-GROUND INDEX
The plotted FG efficiency or “modulation index” is a measure
defined as:

_ Fm — G

~ Fu+Gn’

where F,, G, are mean values, including both “features,” of
space-averaged spiking rates for sites on figure and ground areas,
respectively (Super and Romeo, 2012).

RESULTS

Cells on layer 1 transform stimuli input into spike maps by retino-
topic signals (i.e., point-to-point). In the feedforward model,
responses take the form of transient bursts (Figure 2A). When
feedback is in included spike responses become more tonic
(Figure 2B). Cells on layer 2 integrate the information from
layer 1 through center-surround “receptive fields” made of exci-
tatory retinotopic centers and inhibitory surround performing
a global space average. In the first feature channel “feat 1,
cells on the central figure produce similar spike bursts. For the
“feat 2” channel, cells in the central part of layer 1 are quiescent.
The relatively large surround area—the background—causes a
strong suppression which can neutralize the retinotopic excita-
tion. When this happens, FG segmentation occurs. Thus, FG
segmentation is achieved by the model architecture and by a
proper balance between excitation and inhibition (see Supeér et al.,
2010 for details). Next we go on to consider the role of noise in FG
segmentation.

FIGURE-GROUND INDEX AND NOISE

Without noise or feedback our model yields a modulation index
M = 0.14. When including noise the FG modulation index
increases. For increasing o’s FG performance grows to a max-
imum and slowly decreases (Figure 3). When the evolution is
dominated by intense noise, the spatial distribution of spikes
is highly random to the extent that F,,, G,, are almost equal.
As o reaches the predicted A|w;|, the “efficiency” is very close
to zero.

Activating the feedback connections affords a higher FG
index of M = 0.48, in accordance with previous observations
(Super and Romeo, 2011). If now a Gaussian noise of increas-
ing o is added, the FG modulation index decays for o values
~ 10 (Figure 4 black trace). Therefore, a noise of this magni-
tude destroys the enhancing effect of feedback. We interpret the
enhancing power of feedback as something measurable by the
difference in noise amplitude which yields the same jump in
modulation efficiency.

SPACE CORRELATIONS

Next we calculated the space correlations. Let Cpp(¢) denote the
space cross-correlation matrix of the spike map of “feat” F, layer
L with itself at some time ¢, and <Cpp > the time average of Crp(t)
along a simulation. In the absence of noise (o = 0), the effect of
feedback increases the relative correlation strengths for the figural
region of the “feat 1” channel (Figure 5). When noise is added,
facilitation in the absence of feedback can be noticed (Figure 6).
Feedback gives better results for 0 = 0, but from there on there is
a monotonic decay. Without feedback, the noiseless case is worse,
but there is a relative improvement for noise amplitudes around
o~ 10 — 20.

NOISE ON BOTH LAYERS

When noise affects synapses on both layers, and not just layer
2 as above, a similar picture emerges. Figure 7 depicts a sim-
ulation with noise of the same o on layer 1 and layer 2.
Like the case of noise on layer 2 only, the FG modulation
index with feedback is M = 0.48 and drops by adding noise.
Without feedback the FG index appears to have a minimum
before reaching the maximum, and drops to zero with higher
o values.

LARGER NETWORK AREAS

We tested the performance of the model for larger N values,
namely for N = 128 and for N = 256 (Figure8). When o is
zero feedforward FG becomes stronger for larger networks and
we observe stronger FG modulation when feedback is included.
After including noise (0 =5), the enhanced FG modulation
by feedback has almost vanished (on average 80% decline)
while the strength feedforward FG modulation remains simi-
lar. Note that unlike the case of N = 64, noise-facilitation in
the absence of feedback is practically invisible in the larger
networks.

DIFFERENT FIGURE SIZES
A change in figure size translates into a change in the bal-
ance between excitation and inhibition and, therefore, affects
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FIGURE 2 | Spiking responses. Time evolution of membrane potentials, inmV, at the middle point for each layer and feature map of the model without

250 300 350 400 450 500

the strength of FG modulation (Super et al, 2010) which
in turn affects the feedback contribution to FG modulation
(Super and Romeo, 2011). To further support the idea that noise
destroys feedback enhanced FG modulation, we tested the model
for smaller figure sizes when the strength of FG modulation
becomes stronger. As expected, without feedback FG modulation
is stronger for small figure sizes (Figure 9A). Feedback enhanced
the FG index. This enhancement is strong when feedforward
FG modulation is weak. After including noise (¢ = 5), the FG

modulation index strongly drops in the recurrent model but not
in the feedforward model, even when FG modulation is strong
(Figure 9B).

DISCUSSION

The occurrence and strength of FG modulation to a particu-
lar stimulus depends on the state of the visual cortex (Super
et al., 2003b; van der Togt et al., 2006), and translates into cor-
responding perceptual performance (Super et al., 2001, 2003a,
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FIGURE 3 | Strength of figure-ground modulation in a feedforward model. Modulation indices for simulations with Gaussian white noise of increasing
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feedback model, respectively. Error bars indicate standard deviations.

FIGURE 4 | Strength of figure-ground modulation as a function of noise (o). The gray dotted and black lines show FG modulation in feedforward and

30 40 50

2007; Super and Lamme, 2007b). Cortical state is character-
ized by the way neurons transmit sensory information, i.e.,
bursting versus tonic spiking (Bock et al., 2011). In agreement
with neurophysiological observations (Le Masson et al., 2002),
computer modeling studies (Super and Romeo, 2011) demon-
strated that this differential gating of feedforward information
involves inhibition by feedback projections. In a feedforward
scheme neurons performing FG segmentation show a bursting
spiking pattern whereas in a recurrent model, i.e., with feed-
back, neurons show tonic firing patterns. In addition, when
feedback is present segmentation of FG is enhanced (Super and
Romeo, 2011). In this study we show that noise destroys the
enhanced FG signal by feedback but not the feedforward FG
segmentation.

Sensory information rapidly propagates across the neural sys-
tem by spike bursts, which are less affected by noise (Cecchi et al.,
2000; Du et al., 2010). Our findings are in agreement with these
studies as we observe that the strength of FG segmentation is
not affected by the appearance of noise when the neurons fire
in bursting mode, i.e., in a feedforward connectivity scheme. On
the contrary, when neurons respond in a tonic mode we find that
noise eliminates the enhancement of the FG signal. This result
supports previous evidence demonstrating that noise is a disturb-
ing factor (Faisal et al., 2008), and is in particular harmful during
periods of tonic spike responses (Finke et al., 2008).

In a previous paper we showed that segmentation of figure
from ground depends on the ratio of FG size, where segmen-
tation occurred for very small as well as for very large figures
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FIGURE 5 | Time-averaged space correlations without noise. Model without (A) and with (B) feedback
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FIGURE 6 | Logarithms of time-averaged space correlations with Gaussian white noise of increasing o from 0 to 30. (A) without feedback. (B) with
feedback. The part where the correlation is exactly zero has been excluded.
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FIGURE 7 | Modulation index for increasing o when there is noise in the synapses of layer 1 (in addition to those of layer 2). Gray trace represents data
from model without feedback and black trace with feedback. Error bars indicate standard deviations.
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FIGURE 8 | Effect of larger network sizes. Bar plots showing the modulation index for sizes N = 64, 128, and 256, when o = 0 (A) and o = 5 (B).
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(Super et al.,, 2010). This finding agrees with human FG per-
ception, where small stimuli are interpreted as figures and larger
ones as background, and with the notion that the assignment
of figure and ground becomes ambiguous when they have the
same size (Barenholtz and Feldman, 2006). Here we show that
the feedback enhanced FG modulation occurs for small as well

for large figures. However, the enhancement is most noticeable
for large figures, when FG modulation is weak. This agrees with
our previous study on the role of feedback in FG segmentation
(Super and Romeo, 2011). In that study we suggest that feedback
functions as an attention mechanism. After including noise, the
enhanced FG modulation disappears for all figure sizes whereas
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FIGURE 9 | Effect of figures size. Bar plots show the modulation index for different figure sizes with N = 8 (small), 16 (medium), and 32 (large) when
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the feedforward FG modulation remains intact even for small
figures when feedforward FG modulation is strong. Thus, noise
appears to specifically disrupt feedback FG modulation.

Furthermore, in our study we observe that for relatively small
noise levels, noise slightly increases the FG signal in the feedfor-
ward model. In contrast, we did not observe any facilitation effect
in the feedback model. Such facilitation may occur only when sig-
nals are relatively weak and noise can help a sub-threshold value
to get over the limit (Faisal et al., 2008). Our observations in
the feedforward model support the idea that in spike generating
neurons noise can transform threshold nonlinearities by making
sub-threshold inputs more likely to cross the threshold, thereby
facilitating spike initiation and improving neural-network behav-
ior (Anderson et al., 2000).

To detect a FG stimulus the cortical state has to change during
the stimulus presentation period (Super et al., 2003b; van der Togt

etal., 2006). Previous FG studies predict that this change in corti-
cal state entails a shift from bursting to tonic spiking patterns (van
der Togt et al., 2006; Super and Romeo, 2011). Disturbing this
transition process, noise may prohibit a correct and timely change
in neuronal interactions thereby preventing the occurrence of FG
perception (see van der Togt et al., 2006 for a discussion). The idea
that noise affects the change in spiking mode is in line with stud-
ies showing that noise makes burst durations of periodic regimes
variable (Rowat and FElson, 2004) and that sufficient noise can
convert tonic firing into bursting (Rowat and Elson, 2004). In
addition, we speculate that the fluctuation of noise levels may
be the cause of the varying strength of FG signals for repeated
stimulus (Super et al., 2003a, 2007; Super and Lamme, 2007b). In
conclusion, we speculate that noise turns out to be more destruc-
tive for feedback-enhanced FG segmentation than for the purely
feedforward process, because of the different spiking regimes.

REFERENCES

Anderson, J. S., Lampl, I, Gillespie,
D., and Frester, D. (2000). The
contribution of noise to contrast
invariance of orientation tuning in
cat visual cortex. Vis. Neurosci. 7,
531-546.

Angelucci, A., Levitt, J. B., Waltan, E.
J. S., Hupé, J. M., Bullier, J., and
Lund, J. S. (2002). Circuits for local
and global signal integration in pri-
mary visual cortex. J. Neurosci. 22,
8633-8646.

Baek, K., and Sajda, P. (2005). Inferring
figure-ground using a recurrent
integrate-and-fire

neural circuit.

IEEE Trans. Neural Syst. Rehabil.
Eng. 13, 125-130.

Barenholtz, E., and Feldman, J.
(2006). Determination of visual
figure and ground in dynamically
deforming shapes. Cognition 101,
530-544.

Bhatt, R., Carpenter, G. A, and
Grossberg, S. (2007). Texture
segregation by visual cortex:
perceptual  grouping, attention,
and learning. Vision Res. 47,
3173-3211.

Binzegger, T., Douglas, R. ], and
Martin, K. A. C. (2004). A quan-
titative map of the circuit of cat

primary visual cortex. J. Neurosci.
24, 8441-8453.

Bock, D. D., Lee, W. A., Kerlin, A.
M., Andermann, M. L., Hood,
G., Wetzel, A. W., Yurgenson, S.,
Soucy, E. R, Kim, H. S., and Reid,
R. C. (2011). Network anatomy
and in vivo physiology of visual
cortical Nature 471,
177-182.

Cecchi, G. A., Sigman, M., Alonso,
J.-M., Martinez, M., Chialvo, D. R.,
and Magnasco, M. O. (2000). Noise
in neurons is message dependent.
Proc. Natl. Acad. Sci. US.A. 97,
5557-5561.

neurons.

Craft, E., Schiitze, H., Niebur, E,
and von der Heydt, R. (2007).
A neural model of figure-ground
organization. J. Neurophysiol. 97,
4310-4326.

De Kamps, M., and van der Velde,
F (2001). From knowing what to
knowing where: modeling object-
based attention with feedback dis-
inhibition of activation. J. Cogn.
Neurosci. 13, 479-491.

Deco, G., and Lee, T. S. (2004). The role
of early visual cortex in visual inte-
gration: a neural model of recur-
rent interaction. Eur. J. Neurosci. 20,
1089-1100.

www.frontiersin.org

July 2012 | Volume 3 | Article 274 | 9


http://www.frontiersin.org
http://www.frontiersin.org/Fractal_Physiology/archive

Romeo et al.

Noise destroys figure-ground segmentation

Domijan, D., and Seti¢, M. (2008).
A feedback model of figure-ground
assignment. J. Vis. 8, 10.1-27.

Du, Y, Lu, Q., and Wang, R. (2010).
Using interspike intervals to quan-
tify noise effects on spike trains
in temperature encoding neurons.
Cogn. Neurodyn. 4, 199-206.

Faisal, A. A. Selen, L. P. J, and
Wolpert, D. M. (2008). Noise in the
nervous system. Nat. Rev. Neurosci.
9, 292-303.

Fanselow, E. E., Sameshima, K.,
Baccala, L. A., and Nicolelis, M. A.
(2001). Thalamic bursting in rats
during different awake behavioral
states. Proc. Natl. Acad. Sci. U.S.A.
98, 15330-15335.

Faure, P., Kaplan, D., and Korn,
H. (2000). Synaptic efficacy and
the transmission of complex fir-
ing patterns between neurons.
J. Neurophysiol. 84, 3010-3025.

Finke, C., Vollmer, J., Postnova, S., and
Braun, H. A. (2008). Propagation
effects of current and conductance
noise in a model neuron with sub-
threshold oscillations. Math. Biosci.
214, 109-121.

Grossberg, S., and Williamson, J. R.
(2001). A neural model of how hor-
izontal and interlaminar connec-
tions of visual cortex develop into
adult circuits that carry out percep-
tual grouping and learning. Cereb.
Cortex 11, 37-58.

Hardingham, N. R., Read, J. C. A,
Trevelyan, A. J., Charmaine Nelson,
J., Jack, J. J. B., and Bannister, N.
J. (2010). Quantal analysis reveals
a functional correlation between
presynaptic  and  postsynaptic
efficacy in excitator connections
from rat neocortex. J. Neurosci. 30,
1441-1451.

Izhikevich, E. M. (2003). Simple model
of spiking neurons. IEEE Trans.
Neural Netw. 14, 1569-1572.

Jehee, J. E, Lamme, V. A. E, and
Roelfsema, P. R. (2007). Boundary
assignment in a recurrent net-
work architecture. Vision Res. 47,
1153-1165.

Lamme, V. A. F. (1995). The neurophys-
iology of figure-ground segregation
in primary visual cortex. J. Neurosci.
15, 1605-1615.

Lamme, V. A. E, and Roelfsema,
P. R. (2000). The distinct modes
of vision offered by feedforward

and recurrent processing. Trends
Neurosci. 23, 571-579.

Le Masson, G., Renaud-Le Masson,
S., Debay, D., and Bal, T. (2002).
Feedback inhibition controls spike
transfer in hybrid thalamic circuits.
Nature 417, 854-858.

Nozaki, D., Mar, D. J., Grigg, P., and
Collins, J. J. (1999). Effects of col-
ored noise on stochastic resonance
in sensory neurons. Phys. Rev. Lett.
82, 2402-2405.

Paprocki, B., and Szczepanski, J. (2011).
Efficiency of neural transmission
as a function of synaptic noise,
threshold, and source characteris-
tics. Biosystems 105, 62-72.

Pascual-Leone, A., and Walsh, V.
(2001). Fast back projections from
the motion to the primary visual
area necessary for visual awareness.
Science 292, 510-512.

Roelfsema, P. R, Lamme, V. A. E,
Spekreijse, H., and Bosch, H.
(2002). Figure-ground segregation
in a recurrent network architecture.
J. Cogn. Neurosci. 14, 525-537.

Rowat, P. F, and Elson, R. C. (2004),
State-dependent effects of Na chan-
nel noise on neuronal burst gen-
eration. J. Comput. Neurosci. 16,
87-112.

Sherman, M. (2001). Tonic and burst
firing: dual modes of thalamo-
cortical relay. Trends Neurosci. 24,
122-126.

Sillito, A. M., Cudiero, J., and Jones,
H. E. (2006). Always returning:
feedback and sensory processing in
visual cortex and thalamus. Trends
Neurosci. 29, 307-316.

Sporns, O., Tononi, G., and Edelman,
G. M. (1991). Modeling perceptual
grouping and figure-ground segre-
gation by means of active reentrant
connections. Proc. Natl. Acad. Sci.
U.S.A. 88,129-133.

Sporns, O., Tononi, G., and Kétter, R.
(2005). The human connectome: a
structural description of the human
brain. PLoS Comput. Biol. 1:e42. doi:
10.1371/journal.pcbi.0010042

Sun, H., Liu, L., and Guo, A. (1999).
A neurocomputational model of
figure-ground discrimination and
target tracking. IEEE Trans. Neural
Netw. 10, 860-884.

Super, H., Romeo, A., and Keil, M. S.
(2010). Feed-forward segmentation
of figure-ground and assignment of

border-ownership. PLoS ONE 5:el.
doi: 10.1371/journal.pone.0010705

Super, H., Spekreijse, H., and Lamme,
V. A. E (2001). Two distinct modes
of sensory processing observed in
monkey primary visual cortex (V1).
Nat. Neurosci. 4, 304-310.

Super, H., Spekreijse, H., and Lamme,
V. A. E (2003a). Figure-ground
activity in primary visual cortex
(V1) of the monkey matches the
speed of the behavioral response.
Neurosci. Lett. 344, 75-78.

Super, H., van der Togt, C., Spekreijse,
H., and Lamme, V. A. E (2003b).
Internal state of the monkey pri-
mary visual cortex predicts figure-
ground perception. J. Neurosci. 23,
3407-3414.

Super, H., van der Togt, C., Spekreijse,
H., and Lamme, V. A. E (2007).
Correspondence of pre-saccadic
activity in the monkey primary
visual cortex with saccadic eye
movements. Proc. Natl. Acad. Sci.
U.S.A. 101, 3230-3235.

Supér, H., and Lamme, V. A. E
(2007a). Altered figure-ground per-
ception in monkeys with an extra-
striate lesion. Neuropsychologia 45,
3329-3334.

Super, H., and Lamme, V. A. E. (2007b).
Strength of figure-ground activity in
monkey primary visual cortex pre-
dicts saccadic reaction time in a
delayed detection task. Cereb. Cortex
17, 1468-1475.

Super, H., and Romeo, A. (2010).
Rebound spiking as a neural mech-
anism for surface filling-in. J. Cogn.
Neurosci. 23, 491-501.

Super, H., and Romeo, A. (2011).
Feedback enhances
figure-ground  segmentation by
changing firing mode. PLoS ONE
6:¢2. doi: 10.1371/journal.pone.
0021641

Super, H., and Romeo, A. (2012).
Masking of figure-ground texture
and single targets by surround
Inhibition: a computational spik-
ing model. PLoS ONE 7:3. doi:
10.1371/journal.pone.0031773

Theeuwes, J. (2010). Top-down and
bottom-up control of visual selec-
tion. Acta Psychol. (Amst.) 135,
77-99.

Thielscher, A.,
(2003).
cortico-cortical

feedforward

and Neumann, H.
Neural mechanisms of

interaction  in

texture boundary detection: a mod-
eling approach. Neuroscience 122,
921-939.

van der Togt, C., Kalitzin, S., Spekreijse,
H., Lamme, V. A. E, and Supeér,
H. (2006). Synchrony dynamics in
monkey V1 predicts success in
visual detection. Cereb. Cortex 16,
136-148.

Wagatsuma, N., Shimizu, R., and Sakai,
K. (2008). Spatial attention in early
vision for the perception of border
ownership. J. Vis. 8, 22.1-19.

Wersing, H., Steil, J. J., and Ritter, H.
(2001). A competitive-layer model
for feature binding and sensory
segmentation. Neural Comput. 13,
357-387.

Wiest, M. C., and Nicolelis, M. A.
(2003). Behavioral detection of tac-
tile stimuli during 7-12Hz corti-
cal oscillations in awake rats. Nat.
Neurosci. 6, 913-924.

Zhaoping, L. (2005). Border-ownership
from intracortical interactions in
visual area V2. Neuron 47, 143-153.

Zwickel, T., Wachtler, T., and Eckhorn,
R. (2007). Coding the presence of
visual objects in a recurrent neural
network of visual cortex. Biosystems
89, 216-226.

Conflict of Interest Statement: The
authors declare that the
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

research

Received: 05 December 2011; accepted:
26 June 2012; published online: 17 July
2012.

Citation: Romeo A, Arall M and Super H
(2012) Noise destroys feedback enhanced
figure-ground  segmentation but not
feedforward  figure-ground  segmenta-
tion. Front. Physio. 3:274. doi: 10.3389/
fphys.2012.00274

This article was submitted to Frontiers
in Fractal Physiology, a specialty of
Frontiers in Physiology.

Copyright © 2012 Romeo, Arall and
Super. This is an open-access article dis-
tributed under the terms of the Creative
Commons Attribution License, which
permits use, distribution and reproduc-
tion in other forums, provided the origi-
nal authors and source are credited and
subject to any copyright notices concern-
ing any third-party graphics etc.

Frontiers in Physiology | Fractal Physiology

July 2012 | Volume 3 | Article 274 | 10


http://dx.doi.org/10.3389/fphys.2012.00274
http://dx.doi.org/10.3389/fphys.2012.00274
http://dx.doi.org/10.3389/fphys.2012.00274
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Fractal_Physiology
http://www.frontiersin.org/Fractal_Physiology/archive

	Noise destroys feedback enhanced figure-ground segmentation but not feedforward figure-ground segmentation
	Materials and Methods
	Model Architecture
	Connections
	Inputs
	Neuronal Cell Type
	Model Dynamics
	Critical Values
	Figure-Ground Index

	Results
	Figure-Ground Index and Noise
	Space Correlations
	Noise on Both Layers
	Larger Network Areas
	Different Figure Sizes

	Discussion
	References


